Baseline characteristics
pneumo_clean1 %>%
dplyr::select(ibd_3, age_yrs, gender, race_5, ethnic_3, lang_3, relig_affil, mstat_5, act_tob, max_ch, insurance, IC, insurance, pop_dens,r_pct, RPL_THEMES, RPL_4, RPL_THEME1, RPL_THEME2, RPL_THEME3, RPL_THEME4, pvax_2, prevnar_2, pneumo_2) -> pneumo_baseline
pneumo_baseline %>% tbl_summary(
statistic = list(all_continuous() ~ "{mean} ({sd})"),
missing_text = "(Missing)")
| Characteristic |
N = 5,775 |
| IBD Diagnosis |
|
| Â Â Â Â CD |
3,630 (63%) |
| Â Â Â Â UC |
2,133 (37%) |
| Â Â Â Â IC |
0 (0%) |
| Â Â Â Â Unknown |
12 (0.2%) |
| Age |
43 (19) |
| Gender |
|
| Â Â Â Â Male |
2,777 (48%) |
| Â Â Â Â Female |
2,998 (52%) |
| Race |
|
| Â Â Â Â White |
4,989 (86%) |
| Â Â Â Â Black |
410 (7.1%) |
| Â Â Â Â Asian or Pacific Islander |
130 (2.3%) |
| Â Â Â Â American Indian or Alaska Native |
22 (0.4%) |
| Â Â Â Â Other |
224 (3.9%) |
| Ethnicity |
|
| Â Â Â Â Hispanic |
117 (2.1%) |
| Â Â Â Â Non-Hispanic |
5,504 (98%) |
| Â Â Â Â (Missing) |
154 |
| Preferred Language |
|
| Â Â Â Â English |
5,734 (99%) |
| Â Â Â Â Other |
41 (0.7%) |
| Any Religious Affiliation |
3,040 (55%) |
| Â Â Â Â (Missing) |
262 |
| Marital Status |
|
| Â Â Â Â Married |
2,063 (45%) |
| Â Â Â Â Single |
2,298 (50%) |
| Â Â Â Â Divorced/Separated |
150 (3.3%) |
| Â Â Â Â Widowed |
83 (1.8%) |
| Â Â Â Â (Missing) |
1,181 |
| Active Tobacco Use |
709 (12%) |
| Â Â Â Â (Missing) |
20 |
| Charlson Comorbidity Index |
2.8 (4.5) |
| Insurance Type |
|
| Â Â Â Â Private Insurance |
3,958 (69%) |
| Â Â Â Â Medicaid |
965 (17%) |
| Â Â Â Â Medicare |
793 (14%) |
| Â Â Â Â Other Governmental |
34 (0.6%) |
| Â Â Â Â Other |
24 (0.4%) |
| Â Â Â Â (Missing) |
1 |
| Immunocompromised |
5,775 (100%) |
| Population Density of Census Tract |
2,203 (2,351) |
| Â Â Â Â (Missing) |
123 |
| Percentage Republican Voters in Census Tract |
45 (18) |
| Â Â Â Â (Missing) |
807 |
| Social Vulnerability Index |
0.37 (0.26) |
| Â Â Â Â (Missing) |
18 |
| SVI by Quartile |
|
| Â Â Â Â First |
2,322 (40%) |
| Â Â Â Â Second |
1,733 (30%) |
| Â Â Â Â Third |
1,113 (19%) |
| Â Â Â Â Fourth |
589 (10%) |
| Â Â Â Â (Missing) |
18 |
| Socioeconomic Status |
0.35 (0.25) |
| Â Â Â Â (Missing) |
38 |
| Household Composition |
0.39 (0.26) |
| Â Â Â Â (Missing) |
18 |
| Minority and Language Status |
0.48 (0.29) |
| Â Â Â Â (Missing) |
16 |
| Housing and Transportation |
0.43 (0.29) |
| Â Â Â Â (Missing) |
23 |
| pvax_2 |
2,500 (43%) |
| prevnar_2 |
2,801 (49%) |
| pneumo_2 |
1,898 (33%) |
Bivariate Analysis
tbl_pneumo_biv <-
tbl_uvregression(
pneumo_clean1[c("pneumo_2", "ibd_3", "age_yrs", "gender", "race_5", "ethnic_3", "lang_3", "mstat_5", "relig_affil", "act_tob", "max_ch", "IC", "insurance", "pop_dens", "RPL_THEMES", "RPL_THEME1", "RPL_THEME2", "RPL_THEME3", "RPL_THEME4")],
method = glm,
y = pneumo_2,
method.args = list(family = binomial),
exponentiate = TRUE)
print(tbl_pneumo_biv, method = render)
`...` must be empty.
✖ Problematic argument:
• method = render
| Characteristic |
N |
OR |
95% CI |
p-value |
| IBD Diagnosis |
5,775 |
|
|
|
| Â Â Â Â CD |
|
— |
— |
|
| Â Â Â Â UC |
|
0.99 |
0.88, 1.11 |
0.9 |
| Â Â Â Â Unknown |
|
0.18 |
0.01, 0.95 |
0.11 |
| Age |
5,775 |
1.01 |
1.01, 1.01 |
<0.001 |
| Gender |
5,775 |
|
|
|
| Â Â Â Â Male |
|
— |
— |
|
| Â Â Â Â Female |
|
1.00 |
0.89, 1.11 |
>0.9 |
| Race |
5,775 |
|
|
|
| Â Â Â Â White |
|
— |
— |
|
| Â Â Â Â Black |
|
0.63 |
0.50, 0.80 |
<0.001 |
| Â Â Â Â Asian or Pacific Islander |
|
1.08 |
0.74, 1.54 |
0.7 |
| Â Â Â Â American Indian or Alaska Native |
|
1.12 |
0.45, 2.63 |
0.8 |
| Â Â Â Â Other |
|
0.74 |
0.54, 0.99 |
0.044 |
| Ethnicity |
5,621 |
|
|
|
| Â Â Â Â Hispanic |
|
— |
— |
|
| Â Â Â Â Non-Hispanic |
|
1.10 |
0.74, 1.65 |
0.7 |
| Preferred Language |
5,775 |
|
|
|
| Â Â Â Â English |
|
— |
— |
|
| Â Â Â Â Other |
|
0.84 |
0.41, 1.62 |
0.6 |
| Marital Status |
4,594 |
|
|
|
| Â Â Â Â Married |
|
— |
— |
|
| Â Â Â Â Single |
|
0.66 |
0.58, 0.75 |
<0.001 |
| Â Â Â Â Divorced/Separated |
|
0.88 |
0.62, 1.23 |
0.4 |
| Â Â Â Â Widowed |
|
0.49 |
0.29, 0.81 |
0.007 |
| Any Religious Affiliation |
5,513 |
|
|
|
| Â Â Â Â Yes |
|
— |
— |
|
| Â Â Â Â No |
|
0.84 |
0.75, 0.94 |
0.002 |
| Active Tobacco Use |
5,755 |
|
|
|
| Â Â Â Â No |
|
— |
— |
|
| Â Â Â Â Yes |
|
0.78 |
0.65, 0.92 |
0.004 |
| Charlson Comorbidity Index |
5,775 |
1.04 |
1.02, 1.05 |
<0.001 |
| Immunocompromised |
5,775 |
|
|
|
| Insurance Type |
5,774 |
|
|
|
| Â Â Â Â Private Insurance |
|
— |
— |
|
| Â Â Â Â Medicaid |
|
0.64 |
0.54, 0.74 |
<0.001 |
| Â Â Â Â Medicare |
|
1.06 |
0.90, 1.24 |
0.5 |
| Â Â Â Â Other Governmental |
|
0.59 |
0.25, 1.24 |
0.2 |
| Â Â Â Â Other |
|
0.50 |
0.17, 1.25 |
0.2 |
| Population Density of Census Tract |
5,652 |
1.00 |
1.00, 1.00 |
0.4 |
| Social Vulnerability Index |
5,757 |
0.62 |
0.50, 0.77 |
<0.001 |
| Socioeconomic Status |
5,737 |
0.64 |
0.51, 0.79 |
<0.001 |
| Household Composition |
5,757 |
0.58 |
0.47, 0.71 |
<0.001 |
| Minority and Language Status |
5,759 |
1.11 |
0.91, 1.34 |
0.3 |
| Housing and Transportation |
5,752 |
0.71 |
0.59, 0.87 |
<0.001 |
NULL
Multivariable Models: Full Pneumonia Vaccine
Complete Vaccination + SVI Continuous
pneumo_SVI <- glm(pneumo_2 ~ ibd_3 + age_yrs + gender + race_5 +
ethnic_3 + mstat_5 + relig_affil
+ lang_3 + act_tob + max_ch + IC + insurance
+ pop_dens + RPL_THEMES,
family = "binomial",
data = pneumo_clean1)
summary(pneumo_SVI )
Call:
glm(formula = pneumo_2 ~ ibd_3 + age_yrs + gender + race_5 +
ethnic_3 + mstat_5 + relig_affil + lang_3 + act_tob + max_ch +
IC + insurance + pop_dens + RPL_THEMES, family = "binomial",
data = pneumo_clean1)
Deviance Residuals:
Min 1Q Median 3Q Max
-1.2820 -0.9373 -0.8075 1.3394 2.0080
Coefficients: (1 not defined because of singularities)
Estimate Std. Error z value
(Intercept) -8.041e-02 2.918e-01 -0.276
ibd_3UC -1.255e-01 6.920e-02 -1.813
ibd_3Unknown -1.294e+01 2.139e+02 -0.061
age_yrs 4.778e-03 2.690e-03 1.776
genderFemale -1.051e-02 6.674e-02 -0.158
race_5Black -3.792e-01 1.454e-01 -2.608
race_5Asian or Pacific Islander 2.235e-01 2.186e-01 1.022
race_5American Indian or Alaska Native 3.576e-01 5.510e-01 0.649
race_5Other -2.656e-01 2.143e-01 -1.239
ethnic_3Non-Hispanic -4.803e-01 2.486e-01 -1.932
mstat_5Single -2.672e-01 8.602e-02 -3.107
mstat_5Divorced/Separated -7.455e-02 1.882e-01 -0.396
mstat_5Widowed -7.898e-01 2.772e-01 -2.849
relig_affilNo -9.169e-02 6.831e-02 -1.342
lang_3Other 1.341e-01 4.692e-01 0.286
act_tobYes -1.342e-01 1.075e-01 -1.248
max_ch 2.197e-02 8.015e-03 2.741
IC NA NA NA
insuranceMedicaid -1.912e-01 1.027e-01 -1.862
insuranceMedicare -1.552e-01 1.133e-01 -1.370
insuranceOther Governmental -8.643e-01 5.590e-01 -1.546
insuranceOther -5.881e-01 5.741e-01 -1.024
pop_dens 4.061e-05 1.453e-05 2.794
RPL_THEMES -3.858e-01 1.401e-01 -2.754
Pr(>|z|)
(Intercept) 0.78285
ibd_3UC 0.06978 .
ibd_3Unknown 0.95175
age_yrs 0.07567 .
genderFemale 0.87485
race_5Black 0.00910 **
race_5Asian or Pacific Islander 0.30659
race_5American Indian or Alaska Native 0.51630
race_5Other 0.21528
ethnic_3Non-Hispanic 0.05340 .
mstat_5Single 0.00189 **
mstat_5Divorced/Separated 0.69203
mstat_5Widowed 0.00439 **
relig_affilNo 0.17953
lang_3Other 0.77498
act_tobYes 0.21200
max_ch 0.00613 **
IC NA
insuranceMedicaid 0.06259 .
insuranceMedicare 0.17081
insuranceOther Governmental 0.12205
insuranceOther 0.30566
pop_dens 0.00520 **
RPL_THEMES 0.00589 **
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
(Dispersion parameter for binomial family taken to be 1)
Null deviance: 5389.6 on 4197 degrees of freedom
Residual deviance: 5277.4 on 4175 degrees of freedom
(1577 observations deleted due to missingness)
AIC: 5323.4
Number of Fisher Scoring iterations: 12
broom::glance(pneumo_SVI )
broom::tidy(pneumo_SVI , exponentiate = TRUE)
tbl_regression(pneumo_SVI, exponentiate = TRUE)
Warning: glm.fit: fitted probabilities numerically 0 or 1 occurredWarning: glm.fit: fitted probabilities numerically 0 or 1 occurredWarning: glm.fit: fitted probabilities numerically 0 or 1 occurredWarning: glm.fit: fitted probabilities numerically 0 or 1 occurredWarning: glm.fit: fitted probabilities numerically 0 or 1 occurredWarning: glm.fit: fitted probabilities numerically 0 or 1 occurredWarning: glm.fit: fitted probabilities numerically 0 or 1 occurredWarning: glm.fit: fitted probabilities numerically 0 or 1 occurredWarning: glm.fit: fitted probabilities numerically 0 or 1 occurredWarning: glm.fit: fitted probabilities numerically 0 or 1 occurred
| Characteristic |
OR |
95% CI |
p-value |
| IBD Diagnosis |
|
|
|
| Â Â Â Â CD |
— |
— |
|
| Â Â Â Â UC |
0.88 |
0.77, 1.01 |
0.070 |
| Â Â Â Â Unknown |
0.00 |
|
>0.9 |
| Age |
1.00 |
1.00, 1.01 |
0.076 |
| Gender |
|
|
|
| Â Â Â Â Male |
— |
— |
|
| Â Â Â Â Female |
0.99 |
0.87, 1.13 |
0.9 |
| Race |
|
|
|
| Â Â Â Â White |
— |
— |
|
| Â Â Â Â Black |
0.68 |
0.51, 0.91 |
0.009 |
| Â Â Â Â Asian or Pacific Islander |
1.25 |
0.81, 1.91 |
0.3 |
| Â Â Â Â American Indian or Alaska Native |
1.43 |
0.46, 4.20 |
0.5 |
| Â Â Â Â Other |
0.77 |
0.50, 1.16 |
0.2 |
| Ethnicity |
|
|
|
| Â Â Â Â Hispanic |
— |
— |
|
| Â Â Â Â Non-Hispanic |
0.62 |
0.38, 1.01 |
0.053 |
| Marital Status |
|
|
|
| Â Â Â Â Married |
— |
— |
|
| Â Â Â Â Single |
0.77 |
0.65, 0.91 |
0.002 |
| Â Â Â Â Divorced/Separated |
0.93 |
0.64, 1.34 |
0.7 |
| Â Â Â Â Widowed |
0.45 |
0.26, 0.77 |
0.004 |
| Any Religious Affiliation |
|
|
|
| Â Â Â Â Yes |
— |
— |
|
| Â Â Â Â No |
0.91 |
0.80, 1.04 |
0.2 |
| Preferred Language |
|
|
|
| Â Â Â Â English |
— |
— |
|
| Â Â Â Â Other |
1.14 |
0.44, 2.82 |
0.8 |
| Active Tobacco Use |
|
|
|
| Â Â Â Â No |
— |
— |
|
| Â Â Â Â Yes |
0.87 |
0.71, 1.08 |
0.2 |
| Charlson Comorbidity Index |
1.02 |
1.01, 1.04 |
0.006 |
| Immunocompromised |
|
|
|
| Insurance Type |
|
|
|
| Â Â Â Â Private Insurance |
— |
— |
|
| Â Â Â Â Medicaid |
0.83 |
0.67, 1.01 |
0.063 |
| Â Â Â Â Medicare |
0.86 |
0.69, 1.07 |
0.2 |
| Â Â Â Â Other Governmental |
0.42 |
0.12, 1.15 |
0.12 |
| Â Â Â Â Other |
0.56 |
0.16, 1.57 |
0.3 |
| Population Density of Census Tract |
1.00 |
1.00, 1.00 |
0.005 |
| Social Vulnerability Index |
0.68 |
0.52, 0.89 |
0.006 |
# Hosmer-Lemeshow Goodness-of-Fit Test
hltest(pneumo_SVI)
The Hosmer-Lemeshow goodness-of-fit test
Statistic = 5.35251
degrees of freedom = 8
p-value = 0.71932
# C-Statistic/AUROC
Cstat(pneumo_SVI)
[1] 0.5964078
# Model performance
model_performance(pneumo_SVI)
Warning: prediction from a rank-deficient fit may be misleadingWarning: prediction from a rank-deficient fit may be misleadingWarning: prediction from a rank-deficient fit may be misleadingWarning: prediction from a rank-deficient fit may be misleading
# Indices of model performance
AIC | AICc | BIC | Tjur's R2 | RMSE | Sigma | Log_loss | Score_log | Score_spherical | PCP
-----------------------------------------------------------------------------------------------------------
5323.446 | 5323.711 | 5469.320 | 0.026 | 0.468 | 1.124 | 0.629 | -Inf | 5.835e-04 | 0.562
performance::check_model(pneumo_SVI)
Variable `Component` is not in your data frame :/

# Margins
cplot(pneumo_SVI, "RPL_THEMES", what = "prediction", main = "Predicted Likelihood of Pneumococcal Vaccine Given SVI")
Warning: prediction from a rank-deficient fit may be misleadingWarning: prediction from a rank-deficient fit may be misleading

Complete Vaccination + SVI Quartiles
pneumo_SVI4 <- glm(pneumo_2 ~ ibd_3 + age_yrs + gender + race_5 +
ethnic_3 + mstat_5 + relig_affil
+ lang_3 + act_tob + max_ch + IC + insurance
+ pop_dens + RPL_4,
family = "binomial",
data = pneumo_clean1)
summary(pneumo_SVI4 )
Call:
glm(formula = pneumo_2 ~ ibd_3 + age_yrs + gender + race_5 +
ethnic_3 + mstat_5 + relig_affil + lang_3 + act_tob + max_ch +
IC + insurance + pop_dens + RPL_4, family = "binomial", data = pneumo_clean1)
Deviance Residuals:
Min 1Q Median 3Q Max
-1.3107 -0.9349 -0.8034 1.3392 1.9840
Coefficients: (1 not defined because of singularities)
Estimate Std. Error z value
(Intercept) -8.492e-02 2.905e-01 -0.292
ibd_3UC -1.244e-01 6.925e-02 -1.797
ibd_3Unknown -1.294e+01 2.134e+02 -0.061
age_yrs 4.749e-03 2.691e-03 1.765
genderFemale -1.081e-02 6.677e-02 -0.162
race_5Black -3.859e-01 1.459e-01 -2.644
race_5Asian or Pacific Islander 2.294e-01 2.188e-01 1.048
race_5American Indian or Alaska Native 3.475e-01 5.527e-01 0.629
race_5Other -2.716e-01 2.143e-01 -1.267
ethnic_3Non-Hispanic -4.795e-01 2.488e-01 -1.928
mstat_5Single -2.696e-01 8.608e-02 -3.132
mstat_5Divorced/Separated -7.485e-02 1.883e-01 -0.398
mstat_5Widowed -7.840e-01 2.774e-01 -2.826
relig_affilNo -9.025e-02 6.835e-02 -1.320
lang_3Other 1.186e-01 4.691e-01 0.253
act_tobYes -1.322e-01 1.076e-01 -1.229
max_ch 2.224e-02 8.019e-03 2.774
IC NA NA NA
insuranceMedicaid -1.909e-01 1.027e-01 -1.859
insuranceMedicare -1.559e-01 1.132e-01 -1.378
insuranceOther Governmental -8.529e-01 5.590e-01 -1.526
insuranceOther -5.661e-01 5.744e-01 -0.985
pop_dens 4.000e-05 1.453e-05 2.753
RPL_4Second -2.016e-01 7.883e-02 -2.557
RPL_4Third -2.309e-01 9.462e-02 -2.440
RPL_4Fourth -3.001e-01 1.299e-01 -2.310
Pr(>|z|)
(Intercept) 0.77003
ibd_3UC 0.07232 .
ibd_3Unknown 0.95163
age_yrs 0.07762 .
genderFemale 0.87144
race_5Black 0.00819 **
race_5Asian or Pacific Islander 0.29443
race_5American Indian or Alaska Native 0.52955
race_5Other 0.20513
ethnic_3Non-Hispanic 0.05390 .
mstat_5Single 0.00173 **
mstat_5Divorced/Separated 0.69095
mstat_5Widowed 0.00471 **
relig_affilNo 0.18671
lang_3Other 0.80047
act_tobYes 0.21912
max_ch 0.00554 **
IC NA
insuranceMedicaid 0.06302 .
insuranceMedicare 0.16832
insuranceOther Governmental 0.12705
insuranceOther 0.32440
pop_dens 0.00591 **
RPL_4Second 0.01057 *
RPL_4Third 0.01467 *
RPL_4Fourth 0.02088 *
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
(Dispersion parameter for binomial family taken to be 1)
Null deviance: 5389.6 on 4197 degrees of freedom
Residual deviance: 5273.9 on 4173 degrees of freedom
(1577 observations deleted due to missingness)
AIC: 5323.9
Number of Fisher Scoring iterations: 12
broom::glance(pneumo_SVI4 )
broom::tidy(pneumo_SVI4 , exponentiate = TRUE)
tbl_regression(pneumo_SVI4, exponentiate = TRUE)
Warning: glm.fit: fitted probabilities numerically 0 or 1 occurredWarning: glm.fit: fitted probabilities numerically 0 or 1 occurredWarning: glm.fit: fitted probabilities numerically 0 or 1 occurredWarning: glm.fit: fitted probabilities numerically 0 or 1 occurredWarning: glm.fit: fitted probabilities numerically 0 or 1 occurredWarning: glm.fit: fitted probabilities numerically 0 or 1 occurredWarning: glm.fit: fitted probabilities numerically 0 or 1 occurredWarning: glm.fit: fitted probabilities numerically 0 or 1 occurredWarning: glm.fit: fitted probabilities numerically 0 or 1 occurredWarning: glm.fit: fitted probabilities numerically 0 or 1 occurred
| Characteristic |
OR |
95% CI |
p-value |
| IBD Diagnosis |
|
|
|
| Â Â Â Â CD |
— |
— |
|
| Â Â Â Â UC |
0.88 |
0.77, 1.01 |
0.072 |
| Â Â Â Â Unknown |
0.00 |
|
>0.9 |
| Age |
1.00 |
1.00, 1.01 |
0.078 |
| Gender |
|
|
|
| Â Â Â Â Male |
— |
— |
|
| Â Â Â Â Female |
0.99 |
0.87, 1.13 |
0.9 |
| Race |
|
|
|
| Â Â Â Â White |
— |
— |
|
| Â Â Â Â Black |
0.68 |
0.51, 0.90 |
0.008 |
| Â Â Â Â Asian or Pacific Islander |
1.26 |
0.81, 1.92 |
0.3 |
| Â Â Â Â American Indian or Alaska Native |
1.42 |
0.46, 4.17 |
0.5 |
| Â Â Â Â Other |
0.76 |
0.50, 1.15 |
0.2 |
| Ethnicity |
|
|
|
| Â Â Â Â Hispanic |
— |
— |
|
| Â Â Â Â Non-Hispanic |
0.62 |
0.38, 1.01 |
0.054 |
| Marital Status |
|
|
|
| Â Â Â Â Married |
— |
— |
|
| Â Â Â Â Single |
0.76 |
0.64, 0.90 |
0.002 |
| Â Â Â Â Divorced/Separated |
0.93 |
0.64, 1.34 |
0.7 |
| Â Â Â Â Widowed |
0.46 |
0.26, 0.77 |
0.005 |
| Any Religious Affiliation |
|
|
|
| Â Â Â Â Yes |
— |
— |
|
| Â Â Â Â No |
0.91 |
0.80, 1.04 |
0.2 |
| Preferred Language |
|
|
|
| Â Â Â Â English |
— |
— |
|
| Â Â Â Â Other |
1.13 |
0.43, 2.78 |
0.8 |
| Active Tobacco Use |
|
|
|
| Â Â Â Â No |
— |
— |
|
| Â Â Â Â Yes |
0.88 |
0.71, 1.08 |
0.2 |
| Charlson Comorbidity Index |
1.02 |
1.01, 1.04 |
0.006 |
| Immunocompromised |
|
|
|
| Insurance Type |
|
|
|
| Â Â Â Â Private Insurance |
— |
— |
|
| Â Â Â Â Medicaid |
0.83 |
0.67, 1.01 |
0.063 |
| Â Â Â Â Medicare |
0.86 |
0.68, 1.07 |
0.2 |
| Â Â Â Â Other Governmental |
0.43 |
0.12, 1.16 |
0.13 |
| Â Â Â Â Other |
0.57 |
0.16, 1.61 |
0.3 |
| Population Density of Census Tract |
1.00 |
1.00, 1.00 |
0.006 |
| SVI by Quartile |
|
|
|
| Â Â Â Â First |
— |
— |
|
| Â Â Â Â Second |
0.82 |
0.70, 0.95 |
0.011 |
| Â Â Â Â Third |
0.79 |
0.66, 0.95 |
0.015 |
| Â Â Â Â Fourth |
0.74 |
0.57, 0.95 |
0.021 |
# Hosmer-Lemeshow Goodness-of-Fit Test
hltest(pneumo_SVI4)
The Hosmer-Lemeshow goodness-of-fit test
Statistic = 2.42343
degrees of freedom = 8
p-value = 0.96521
# C-Statistic/AUROC
Cstat(pneumo_SVI4)
[1] 0.5976039
# Model performance
model_performance(pneumo_SVI4)
Warning: prediction from a rank-deficient fit may be misleadingWarning: prediction from a rank-deficient fit may be misleadingWarning: prediction from a rank-deficient fit may be misleadingWarning: prediction from a rank-deficient fit may be misleading
# Indices of model performance
AIC | AICc | BIC | Tjur's R2 | RMSE | Sigma | Log_loss | Score_log | Score_spherical | PCP
-----------------------------------------------------------------------------------------------------------
5323.870 | 5324.181 | 5482.429 | 0.027 | 0.468 | 1.124 | 0.628 | -Inf | 5.835e-04 | 0.562
performance::check_model(pneumo_SVI4)
Variable `Component` is not in your data frame :/

# Margins
cplot(pneumo_SVI4, "RPL_4", what = "prediction", main = "Predicted Likelihood of Pneumococcal Vaccine Given SVI")
Warning: prediction from a rank-deficient fit may be misleadingWarning: prediction from a rank-deficient fit may be misleading

Complete Vaccination + All Themes
pneumo_SVI_themes <- glm(pneumo_2 ~ ibd_3 + age_yrs + gender + race_5 +
ethnic_3 + mstat_5 + relig_affil
+ lang_3 + act_tob + max_ch + IC + insurance
+ pop_dens + RPL_THEME1 + RPL_THEME2 +
RPL_THEME3 + RPL_THEME4,
family = "binomial",
data = pneumo_clean1)
summary(pneumo_SVI_themes )
Call:
glm(formula = pneumo_2 ~ ibd_3 + age_yrs + gender + race_5 +
ethnic_3 + mstat_5 + relig_affil + lang_3 + act_tob + max_ch +
IC + insurance + pop_dens + RPL_THEME1 + RPL_THEME2 + RPL_THEME3 +
RPL_THEME4, family = "binomial", data = pneumo_clean1)
Deviance Residuals:
Min 1Q Median 3Q Max
-1.3177 -0.9351 -0.8003 1.3286 2.0604
Coefficients: (1 not defined because of singularities)
Estimate Std. Error z value
(Intercept) -2.867e-02 3.030e-01 -0.095
ibd_3UC -1.186e-01 6.950e-02 -1.706
ibd_3Unknown -1.291e+01 2.125e+02 -0.061
age_yrs 4.707e-03 2.698e-03 1.744
genderFemale -1.389e-02 6.701e-02 -0.207
race_5Black -4.262e-01 1.468e-01 -2.904
race_5Asian or Pacific Islander 1.462e-01 2.215e-01 0.660
race_5American Indian or Alaska Native 3.460e-01 5.513e-01 0.628
race_5Other -2.774e-01 2.146e-01 -1.293
ethnic_3Non-Hispanic -4.827e-01 2.500e-01 -1.931
mstat_5Single -2.756e-01 8.640e-02 -3.189
mstat_5Divorced/Separated -7.033e-02 1.885e-01 -0.373
mstat_5Widowed -7.787e-01 2.776e-01 -2.805
relig_affilNo -8.785e-02 6.871e-02 -1.279
lang_3Other 7.105e-02 4.692e-01 0.151
act_tobYes -1.311e-01 1.078e-01 -1.216
max_ch 2.185e-02 8.063e-03 2.711
IC NA NA NA
insuranceMedicaid -1.838e-01 1.035e-01 -1.777
insuranceMedicare -1.481e-01 1.138e-01 -1.301
insuranceOther Governmental -8.750e-01 5.609e-01 -1.560
insuranceOther -5.788e-01 5.743e-01 -1.008
pop_dens 2.197e-05 1.622e-05 1.354
RPL_THEME1 1.224e-01 2.059e-01 0.594
RPL_THEME2 -4.378e-01 1.787e-01 -2.450
RPL_THEME3 1.714e-01 1.271e-01 1.348
RPL_THEME4 -2.288e-01 1.416e-01 -1.615
Pr(>|z|)
(Intercept) 0.92461
ibd_3UC 0.08802 .
ibd_3Unknown 0.95154
age_yrs 0.08109 .
genderFemale 0.83577
race_5Black 0.00369 **
race_5Asian or Pacific Islander 0.50929
race_5American Indian or Alaska Native 0.53023
race_5Other 0.19615
ethnic_3Non-Hispanic 0.05348 .
mstat_5Single 0.00143 **
mstat_5Divorced/Separated 0.70909
mstat_5Widowed 0.00503 **
relig_affilNo 0.20102
lang_3Other 0.87962
act_tobYes 0.22397
max_ch 0.00672 **
IC NA
insuranceMedicaid 0.07564 .
insuranceMedicare 0.19329
insuranceOther Governmental 0.11875
insuranceOther 0.31357
pop_dens 0.17573
RPL_THEME1 0.55231
RPL_THEME2 0.01428 *
RPL_THEME3 0.17772
RPL_THEME4 0.10628
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
(Dispersion parameter for binomial family taken to be 1)
Null deviance: 5359.9 on 4174 degrees of freedom
Residual deviance: 5238.9 on 4149 degrees of freedom
(1600 observations deleted due to missingness)
AIC: 5290.9
Number of Fisher Scoring iterations: 12
broom::glance(pneumo_SVI_themes )
broom::tidy(pneumo_SVI_themes , exponentiate = TRUE)
tbl_regression(pneumo_SVI_themes, exponentiate = TRUE)
Warning: glm.fit: fitted probabilities numerically 0 or 1 occurredWarning: glm.fit: fitted probabilities numerically 0 or 1 occurredWarning: glm.fit: fitted probabilities numerically 0 or 1 occurredWarning: glm.fit: fitted probabilities numerically 0 or 1 occurredWarning: glm.fit: fitted probabilities numerically 0 or 1 occurredWarning: glm.fit: fitted probabilities numerically 0 or 1 occurredWarning: glm.fit: fitted probabilities numerically 0 or 1 occurredWarning: glm.fit: fitted probabilities numerically 0 or 1 occurredWarning: glm.fit: fitted probabilities numerically 0 or 1 occurredWarning: glm.fit: fitted probabilities numerically 0 or 1 occurred
| Characteristic |
OR |
95% CI |
p-value |
| IBD Diagnosis |
|
|
|
| Â Â Â Â CD |
— |
— |
|
| Â Â Â Â UC |
0.89 |
0.77, 1.02 |
0.088 |
| Â Â Â Â Unknown |
0.00 |
|
>0.9 |
| Age |
1.00 |
1.00, 1.01 |
0.081 |
| Gender |
|
|
|
| Â Â Â Â Male |
— |
— |
|
| Â Â Â Â Female |
0.99 |
0.86, 1.12 |
0.8 |
| Race |
|
|
|
| Â Â Â Â White |
— |
— |
|
| Â Â Â Â Black |
0.65 |
0.49, 0.87 |
0.004 |
| Â Â Â Â Asian or Pacific Islander |
1.16 |
0.75, 1.78 |
0.5 |
| Â Â Â Â American Indian or Alaska Native |
1.41 |
0.46, 4.16 |
0.5 |
| Â Â Â Â Other |
0.76 |
0.49, 1.14 |
0.2 |
| Ethnicity |
|
|
|
| Â Â Â Â Hispanic |
— |
— |
|
| Â Â Â Â Non-Hispanic |
0.62 |
0.38, 1.01 |
0.053 |
| Marital Status |
|
|
|
| Â Â Â Â Married |
— |
— |
|
| Â Â Â Â Single |
0.76 |
0.64, 0.90 |
0.001 |
| Â Â Â Â Divorced/Separated |
0.93 |
0.64, 1.34 |
0.7 |
| Â Â Â Â Widowed |
0.46 |
0.26, 0.78 |
0.005 |
| Any Religious Affiliation |
|
|
|
| Â Â Â Â Yes |
— |
— |
|
| Â Â Â Â No |
0.92 |
0.80, 1.05 |
0.2 |
| Preferred Language |
|
|
|
| Â Â Â Â English |
— |
— |
|
| Â Â Â Â Other |
1.07 |
0.41, 2.65 |
0.9 |
| Active Tobacco Use |
|
|
|
| Â Â Â Â No |
— |
— |
|
| Â Â Â Â Yes |
0.88 |
0.71, 1.08 |
0.2 |
| Charlson Comorbidity Index |
1.02 |
1.01, 1.04 |
0.007 |
| Immunocompromised |
|
|
|
| Insurance Type |
|
|
|
| Â Â Â Â Private Insurance |
— |
— |
|
| Â Â Â Â Medicaid |
0.83 |
0.68, 1.02 |
0.076 |
| Â Â Â Â Medicare |
0.86 |
0.69, 1.08 |
0.2 |
| Â Â Â Â Other Governmental |
0.42 |
0.12, 1.14 |
0.12 |
| Â Â Â Â Other |
0.56 |
0.16, 1.59 |
0.3 |
| Population Density of Census Tract |
1.00 |
1.00, 1.00 |
0.2 |
| Socioeconomic Status |
1.13 |
0.75, 1.69 |
0.6 |
| Household Composition |
0.65 |
0.45, 0.92 |
0.014 |
| Minority and Language Status |
1.19 |
0.93, 1.52 |
0.2 |
| Housing and Transportation |
0.80 |
0.60, 1.05 |
0.11 |
# Hosmer-Lemeshow Goodness-of-Fit Test
hltest(pneumo_SVI_themes)
The Hosmer-Lemeshow goodness-of-fit test
Statistic = 5.74428
degrees of freedom = 8
p-value = 0.67585
# C-Statistic/AUROC
Cstat(pneumo_SVI_themes)
[1] 0.6015217
# Model performance
model_performance(pneumo_SVI_themes)
Warning: prediction from a rank-deficient fit may be misleadingWarning: prediction from a rank-deficient fit may be misleadingWarning: prediction from a rank-deficient fit may be misleadingWarning: prediction from a rank-deficient fit may be misleading
# Indices of model performance
AIC | AICc | BIC | Tjur's R2 | RMSE | Sigma | Log_loss | Score_log | Score_spherical | PCP
-----------------------------------------------------------------------------------------------------------
5290.864 | 5291.203 | 5455.623 | 0.028 | 0.467 | 1.124 | 0.627 | -Inf | 5.867e-04 | 0.563
performance::check_model(pneumo_SVI_themes)
Variable `Component` is not in your data frame :/

# Margins
cplot(pneumo_SVI_themes, "RPL_THEME1", what = "prediction", main = "Predicted Likelihood of Pneumococcal Vaccine Given Theme1")
Warning: prediction from a rank-deficient fit may be misleadingWarning: prediction from a rank-deficient fit may be misleading

cplot(pneumo_SVI_themes, "RPL_THEME2", what = "prediction", main = "Predicted Likelihood of Pneumococcal Vaccine Given Theme2")
Warning: prediction from a rank-deficient fit may be misleadingWarning: prediction from a rank-deficient fit may be misleading

cplot(pneumo_SVI_themes, "RPL_THEME3", what = "prediction", main = "Predicted Likelihood of Pneumococcal Vaccine Given Theme3")
Warning: prediction from a rank-deficient fit may be misleadingWarning: prediction from a rank-deficient fit may be misleading

cplot(pneumo_SVI_themes, "RPL_THEME4", what = "prediction", main = "Predicted Likelihood of Pneumococcal Vaccine Given Theme4")
Warning: prediction from a rank-deficient fit may be misleadingWarning: prediction from a rank-deficient fit may be misleading

LS0tCnRpdGxlOiAiUG5ldW1vY29jY2FsIE1vZGVscyIKb3V0cHV0OgogIGh0bWxfbm90ZWJvb2s6CiAgICB0aGVtZXM6IHBhcGVyCiAgICB0b2M6IHllcwogICAgdG9jX2Zsb2F0OiB5ZXMKZWRpdG9yX29wdGlvbnM6CiAgY2h1bmtfb3V0cHV0X3R5cGU6IGlubGluZQpkYXRlOiAiMjAyMy0wMS0wOSIKLS0tCgojIExvYWQgUGFja2FnZXMgCmBgYHtyfQpsaWJyYXJ5KHRpZHl2ZXJzZSkKbGlicmFyeShjb2RlYm9va3IpCmxpYnJhcnkoc3VtbWFyeXRvb2xzKQpsaWJyYXJ5KGJyb29tKSAKbGlicmFyeShwZXJmb3JtYW5jZSkKbGlicmFyeShndCkKbGlicmFyeShndHN1bW1hcnkpCmxpYnJhcnkoamFuaXRvcikKbGlicmFyeShmb3JjYXRzKQpsaWJyYXJ5KG1hcmdpbnMpCmxpYnJhcnkoZ2dwbG90MikKbGlicmFyeShleHBzcykKbGlicmFyeShnbG10b29sYm94KQpsaWJyYXJ5KERlc2NUb29scykKYGBgCgojIEltcG9ydCBkYXRhIApgYGB7cn0KbG9hZCgifi9EZXNrdG9wL1ItQ29kZS9TRE9IX0FMTC9TRE9IX2RhdGFfMDEuMDguMjAyMy5yZGEiKQpgYGAKCiMgRGF0YSBDbGVhbmluZyB7LnRhYnNldH0KCiMjIEluY2x1ZGUgb25seSBpbW11bm9jb21wcm9taXNlZCBjb2hvcnQgYW5kIHBlb3BsZSBmcm9tIE1pY2hpZ2FuIApgYGB7cn0KcG5ldW1vX01JIDwtIFNET0hfZGF0YV8wMS4wOC4yMDIzWyB3aGljaChTRE9IX2RhdGFfMDEuMDguMjAyMyRQQVRJRU5UX1NUQVRFX0NEPT0nTUknKSwgXQoKcG5ldW1vX01JX0lDIDwtIHBuZXVtb19NSVsgd2hpY2gocG5ldW1vX01JJElDPT0xKSwgXQpgYGAKCiMjIEluY2x1ZGUgb25seSBwYXRpZW50cyB3aXRoIGF0IGxlYXN0IDEgeWVhciBvZiBkYXRhIApgYGB7cn0KcG5ldW1vX01JX0lDX3llYXIgPC0gcG5ldW1vX01JX0lDWyB3aGljaChwbmV1bW9fTUlfSUMkcHllYXJzID4gMSksIF0KYGBgCgojIyBNYWtlIHZhcmlhYmxlcyBmb3IgcHJldm5hciwgcHZheCwgYW5kIHRvdGFsIHBuZXVtb25pYSB2YWNjaW5lIApgYGB7cn0KcG5ldW1vX01JX0lDX3llYXIgJT4lIAptdXRhdGUocHZheF8yID0gY2FzZV93aGVuKHB2YXg+PSAxIH4gJzEnLFRSVUUgfiAiMCIpKSAlPiUgCiAgbXV0YXRlKHByZXZuYXJfMiA9IGNhc2Vfd2hlbihwcmV2bmFyPj0gMSB+ICcxJyxUUlVFIH4gIjAiKSkgLT4gcG5ldW1vXzEKCnBuZXVtb18xJHB2YXhfMiA9IGFzLm51bWVyaWMocG5ldW1vXzEkcHZheF8yKQpwbmV1bW9fMSRwcmV2bmFyXzIgPSBhcy5udW1lcmljKHBuZXVtb18xJHByZXZuYXJfMikKCnBuZXVtb18xICU+JSAKICBtdXRhdGUocG5ldW1vX2NvdW50ID0gcHZheF8yICsgcHJldm5hcl8yKSAtPiBwbmV1bW9fY2xlYW4KCnBuZXVtb19jbGVhbiAlPiUgCiAgbXV0YXRlKHBuZXVtb18yID0gY2FzZV93aGVuKHBuZXVtb19jb3VudD49IDIgfiAnMScsVFJVRSB+ICIwIikpIC0+IHBuZXVtb19jbGVhbjEKCnBuZXVtb19jbGVhbjEkcG5ldW1vXzIgPSBhcy5udW1lcmljKHBuZXVtb19jbGVhbjEkcG5ldW1vXzIpCmBgYAoKIyBCYXNlbGluZSBjaGFyYWN0ZXJpc3RpY3MgCmBgYHtyfQpwbmV1bW9fY2xlYW4xICU+JSAKICBkcGx5cjo6c2VsZWN0KGliZF8zLCBhZ2VfeXJzLCBnZW5kZXIsIHJhY2VfNSwgZXRobmljXzMsIGxhbmdfMywgcmVsaWdfYWZmaWwsIG1zdGF0XzUsIGFjdF90b2IsIG1heF9jaCwgaW5zdXJhbmNlLCBJQywgaW5zdXJhbmNlLCBwb3BfZGVucyxyX3BjdCwgUlBMX1RIRU1FUywgUlBMXzQsIFJQTF9USEVNRTEsIFJQTF9USEVNRTIsIFJQTF9USEVNRTMsIFJQTF9USEVNRTQsIHB2YXhfMiwgcHJldm5hcl8yLCBwbmV1bW9fMikgLT4gcG5ldW1vX2Jhc2VsaW5lCnBuZXVtb19iYXNlbGluZSAlPiUgdGJsX3N1bW1hcnkoCiAgICAgICAgc3RhdGlzdGljID0gbGlzdChhbGxfY29udGludW91cygpIH4gInttZWFufSAoe3NkfSkiKSwKICAgICAgICBtaXNzaW5nX3RleHQgPSAiKE1pc3NpbmcpIikKYGBgCgojIEJpdmFyaWF0ZSBBbmFseXNpcyAKYGBge3J9CnRibF9wbmV1bW9fYml2IDwtCiAgdGJsX3V2cmVncmVzc2lvbigKICAgIHBuZXVtb19jbGVhbjFbYygicG5ldW1vXzIiLCAiaWJkXzMiLCAiYWdlX3lycyIsICJnZW5kZXIiLCAicmFjZV81IiwgImV0aG5pY18zIiwgImxhbmdfMyIsICJtc3RhdF81IiwgInJlbGlnX2FmZmlsIiwgImFjdF90b2IiLCAibWF4X2NoIiwgIklDIiwgImluc3VyYW5jZSIsICJwb3BfZGVucyIsICJSUExfVEhFTUVTIiwgIlJQTF9USEVNRTEiLCAiUlBMX1RIRU1FMiIsICJSUExfVEhFTUUzIiwgIlJQTF9USEVNRTQiKV0sCiAgICBtZXRob2QgPSBnbG0sCiAgICB5ID0gcG5ldW1vXzIsCiAgICBtZXRob2QuYXJncyA9IGxpc3QoZmFtaWx5ID0gYmlub21pYWwpLAogICAgZXhwb25lbnRpYXRlID0gVFJVRSkKcHJpbnQodGJsX3BuZXVtb19iaXYsIG1ldGhvZCA9IHJlbmRlcikKYGBgCgojIE11bHRpdmFyaWFibGUgTW9kZWxzOiBGdWxsIFBuZXVtb25pYSBWYWNjaW5lIAojIyBDb21wbGV0ZSBWYWNjaW5hdGlvbiArIFNWSSBDb250aW51b3VzIApgYGB7cn0KcG5ldW1vX1NWSSA8LSBnbG0ocG5ldW1vXzIgfiBpYmRfMyArIGFnZV95cnMgKyBnZW5kZXIgKyByYWNlXzUgKyAKICAgICAgICAgICAgICAgICAgICBldGhuaWNfMyArIG1zdGF0XzUgKyByZWxpZ19hZmZpbAogICAgICAgICAgICAgICAgICAgICAgKyBsYW5nXzMgKyBhY3RfdG9iICsgbWF4X2NoICsgSUMgKyBpbnN1cmFuY2UKICAgICAgICAgICAgICAgICAgICAgICsgcG9wX2RlbnMgKyBSUExfVEhFTUVTLAogICAgICAgICAgICAgIGZhbWlseSA9ICJiaW5vbWlhbCIsIAogICAgICAgICAgICAgIGRhdGEgPSBwbmV1bW9fY2xlYW4xKQpzdW1tYXJ5KHBuZXVtb19TVkkgKQpicm9vbTo6Z2xhbmNlKHBuZXVtb19TVkkgKQpicm9vbTo6dGlkeShwbmV1bW9fU1ZJICwgZXhwb25lbnRpYXRlID0gVFJVRSkKdGJsX3JlZ3Jlc3Npb24ocG5ldW1vX1NWSSwgZXhwb25lbnRpYXRlID0gVFJVRSkKCiMgSG9zbWVyLUxlbWVzaG93IEdvb2RuZXNzLW9mLUZpdCBUZXN0CmhsdGVzdChwbmV1bW9fU1ZJKQoKIyBDLVN0YXRpc3RpYy9BVVJPQyAKQ3N0YXQocG5ldW1vX1NWSSkKCiMgTW9kZWwgcGVyZm9ybWFuY2UgCm1vZGVsX3BlcmZvcm1hbmNlKHBuZXVtb19TVkkpCnBlcmZvcm1hbmNlOjpjaGVja19tb2RlbChwbmV1bW9fU1ZJKQoKIyBNYXJnaW5zIAoKY3Bsb3QocG5ldW1vX1NWSSwgIlJQTF9USEVNRVMiLCB3aGF0ID0gInByZWRpY3Rpb24iLCBtYWluID0gIlByZWRpY3RlZCBMaWtlbGlob29kIG9mIFBuZXVtb2NvY2NhbCBWYWNjaW5lIEdpdmVuIFNWSSIpCmBgYAoKIyBDb21wbGV0ZSBWYWNjaW5hdGlvbiArIFNWSSBRdWFydGlsZXMgCmBgYHtyfQpwbmV1bW9fU1ZJNCA8LSBnbG0ocG5ldW1vXzIgfiBpYmRfMyArIGFnZV95cnMgKyBnZW5kZXIgKyByYWNlXzUgKyAKICAgICAgICAgICAgICAgICAgICBldGhuaWNfMyArIG1zdGF0XzUgKyByZWxpZ19hZmZpbAogICAgICAgICAgICAgICAgICAgICAgKyBsYW5nXzMgKyBhY3RfdG9iICsgbWF4X2NoICsgSUMgKyBpbnN1cmFuY2UKICAgICAgICAgICAgICAgICAgICAgICsgcG9wX2RlbnMgKyBSUExfNCwKICAgICAgICAgICAgICBmYW1pbHkgPSAiYmlub21pYWwiLCAKICAgICAgICAgICAgICBkYXRhID0gcG5ldW1vX2NsZWFuMSkKc3VtbWFyeShwbmV1bW9fU1ZJNCApCmJyb29tOjpnbGFuY2UocG5ldW1vX1NWSTQgKQpicm9vbTo6dGlkeShwbmV1bW9fU1ZJNCAsIGV4cG9uZW50aWF0ZSA9IFRSVUUpCnRibF9yZWdyZXNzaW9uKHBuZXVtb19TVkk0LCBleHBvbmVudGlhdGUgPSBUUlVFKQoKIyBIb3NtZXItTGVtZXNob3cgR29vZG5lc3Mtb2YtRml0IFRlc3QKaGx0ZXN0KHBuZXVtb19TVkk0KQoKIyBDLVN0YXRpc3RpYy9BVVJPQyAKQ3N0YXQocG5ldW1vX1NWSTQpCgojIE1vZGVsIHBlcmZvcm1hbmNlIAptb2RlbF9wZXJmb3JtYW5jZShwbmV1bW9fU1ZJNCkKcGVyZm9ybWFuY2U6OmNoZWNrX21vZGVsKHBuZXVtb19TVkk0KQoKIyBNYXJnaW5zIApjcGxvdChwbmV1bW9fU1ZJNCwgIlJQTF80Iiwgd2hhdCA9ICJwcmVkaWN0aW9uIiwgbWFpbiA9ICJQcmVkaWN0ZWQgTGlrZWxpaG9vZCBvZiBQbmV1bW9jb2NjYWwgVmFjY2luZSBHaXZlbiBTVkkiKQpgYGAKCiMjIENvbXBsZXRlIFZhY2NpbmF0aW9uICsgQWxsIFRoZW1lcyAKYGBge3J9CnBuZXVtb19TVklfdGhlbWVzIDwtIGdsbShwbmV1bW9fMiB+IGliZF8zICsgYWdlX3lycyArIGdlbmRlciArIHJhY2VfNSArIAogICAgICAgICAgICAgICAgICAgIGV0aG5pY18zICsgbXN0YXRfNSArIHJlbGlnX2FmZmlsCiAgICAgICAgICAgICAgICAgICAgICArIGxhbmdfMyArIGFjdF90b2IgKyBtYXhfY2ggKyBJQyArIGluc3VyYW5jZQogICAgICAgICAgICAgICAgICAgICAgKyBwb3BfZGVucyArIFJQTF9USEVNRTEgKyBSUExfVEhFTUUyICsgCiAgICAgICAgICAgICAgICAgICAgIFJQTF9USEVNRTMgKyBSUExfVEhFTUU0LCAKICAgICAgICAgICAgICBmYW1pbHkgPSAiYmlub21pYWwiLCAKICAgICAgICAgICAgICBkYXRhID0gcG5ldW1vX2NsZWFuMSkKc3VtbWFyeShwbmV1bW9fU1ZJX3RoZW1lcyApCmJyb29tOjpnbGFuY2UocG5ldW1vX1NWSV90aGVtZXMgKQpicm9vbTo6dGlkeShwbmV1bW9fU1ZJX3RoZW1lcyAsIGV4cG9uZW50aWF0ZSA9IFRSVUUpCnRibF9yZWdyZXNzaW9uKHBuZXVtb19TVklfdGhlbWVzLCBleHBvbmVudGlhdGUgPSBUUlVFKQoKIyBIb3NtZXItTGVtZXNob3cgR29vZG5lc3Mtb2YtRml0IFRlc3QKaGx0ZXN0KHBuZXVtb19TVklfdGhlbWVzKQoKIyBDLVN0YXRpc3RpYy9BVVJPQyAKQ3N0YXQocG5ldW1vX1NWSV90aGVtZXMpCgojIE1vZGVsIHBlcmZvcm1hbmNlIAptb2RlbF9wZXJmb3JtYW5jZShwbmV1bW9fU1ZJX3RoZW1lcykKcGVyZm9ybWFuY2U6OmNoZWNrX21vZGVsKHBuZXVtb19TVklfdGhlbWVzKQoKIyBNYXJnaW5zIApjcGxvdChwbmV1bW9fU1ZJX3RoZW1lcywgIlJQTF9USEVNRTEiLCB3aGF0ID0gInByZWRpY3Rpb24iLCBtYWluID0gIlByZWRpY3RlZCBMaWtlbGlob29kIG9mIFBuZXVtb2NvY2NhbCBWYWNjaW5lIEdpdmVuIFRoZW1lMSIpCmNwbG90KHBuZXVtb19TVklfdGhlbWVzLCAiUlBMX1RIRU1FMiIsIHdoYXQgPSAicHJlZGljdGlvbiIsIG1haW4gPSAiUHJlZGljdGVkIExpa2VsaWhvb2Qgb2YgUG5ldW1vY29jY2FsIFZhY2NpbmUgR2l2ZW4gVGhlbWUyIikKY3Bsb3QocG5ldW1vX1NWSV90aGVtZXMsICJSUExfVEhFTUUzIiwgd2hhdCA9ICJwcmVkaWN0aW9uIiwgbWFpbiA9ICJQcmVkaWN0ZWQgTGlrZWxpaG9vZCBvZiBQbmV1bW9jb2NjYWwgVmFjY2luZSBHaXZlbiBUaGVtZTMiKQpjcGxvdChwbmV1bW9fU1ZJX3RoZW1lcywgIlJQTF9USEVNRTQiLCB3aGF0ID0gInByZWRpY3Rpb24iLCBtYWluID0gIlByZWRpY3RlZCBMaWtlbGlob29kIG9mIFBuZXVtb2NvY2NhbCBWYWNjaW5lIEdpdmVuIFRoZW1lNCIpCmBgYAoK