分析說明
本研究將以台灣TIMSS2015及2019年的資料檢驗影響臺灣國中生的學校效能(即:數學成就、學校霸凌程度及學校氣氛)之因素
-IDSCHOOL:學校編碼
學校層級變項
- SCH_ACA_IMP:學校對學業的重視
-
SCH_MAT_RES:學校資源
- SCH_DIS:學校紀律和安全
-
SCH_ADV:學生背景成分
- COM_N:學校所在地人口
學生層級變項
- STU_ENG:數學學習投入
- STU_CON:數學自信
- STU_LIK:喜歡數學
- STU_RES:家庭資源
依變項:
- MATH_PV1:數學成就
- STU_BUL:學校霸凌
-
STU_BEL:學校氣氛
虛無模型
TIMSS 2015
數學成就為依變項
m0a <- lme4::lmer(MATH_PV1 ~ (1 | IDSCHOOL), data=subset(TIMSS, Year == 2015))
sjPlot::tab_model(m0a, digits=3, digits.re=3, show.se = TRUE)
|
|
MATH_PV1
|
|
Predictors
|
Estimates
|
std. Error
|
CI
|
p
|
|
(Intercept)
|
596.234
|
3.427
|
589.515 – 602.952
|
<0.001
|
|
Random Effects
|
|
σ2
|
7100.259
|
|
τ00 IDSCHOOL
|
1982.896
|
|
ICC
|
0.218
|
|
N IDSCHOOL
|
190
|
|
Observations
|
5617
|
|
Marginal R2 / Conditional R2
|
0.000 / 0.218
|
ANOVA-like table for random-effects: Single term deletions
Model:
MATH_PV1 ~ (1 | IDSCHOOL)
npar logLik AIC LRT Df Pr(>Chisq)
<none> 3 -33083 66172
(1 | IDSCHOOL) 2 -33610 67224 1054 1 <2e-16
學校霸凌為依變項
m0b <- lme4::lmer(STU_BUL ~ (1 | IDSCHOOL), data=subset(TIMSS, Year == 2015))
sjPlot::tab_model(m0b, digits=3, digits.re=3, show.se = TRUE)
|
|
STU_BUL
|
|
Predictors
|
Estimates
|
std. Error
|
CI
|
p
|
|
(Intercept)
|
2.849
|
0.007
|
2.835 – 2.864
|
<0.001
|
|
Random Effects
|
|
σ2
|
0.146
|
|
τ00 IDSCHOOL
|
0.005
|
|
ICC
|
0.035
|
|
N IDSCHOOL
|
190
|
|
Observations
|
5617
|
|
Marginal R2 / Conditional R2
|
0.000 / 0.035
|
ANOVA-like table for random-effects: Single term deletions
Model:
STU_BUL ~ (1 | IDSCHOOL)
npar logLik AIC LRT Df Pr(>Chisq)
<none> 3 -2642 5289
(1 | IDSCHOOL) 2 -2672 5348 60.78 1 6.38e-15
學校氣氛為依變項
m0c <- lme4::lmer(STU_BEL ~ (1 | IDSCHOOL), data=subset(TIMSS, Year == 2015))
sjPlot::tab_model(m0c, digits=3, digits.re=3, show.se = TRUE)
|
|
STU_BEL
|
|
Predictors
|
Estimates
|
std. Error
|
CI
|
p
|
|
(Intercept)
|
2.814
|
0.010
|
2.794 – 2.833
|
<0.001
|
|
Random Effects
|
|
σ2
|
0.331
|
|
τ00 IDSCHOOL
|
0.007
|
|
ICC
|
0.020
|
|
N IDSCHOOL
|
190
|
|
Observations
|
5617
|
|
Marginal R2 / Conditional R2
|
0.000 / 0.020
|
ANOVA-like table for random-effects: Single term deletions
Model:
STU_BEL ~ (1 | IDSCHOOL)
npar logLik AIC LRT Df Pr(>Chisq)
<none> 3 -4913 9833
(1 | IDSCHOOL) 2 -4926 9855 24.86 1 6.17e-07
TIMSS 2019
數學成就為依變項
m0a <- lme4::lmer(MATH_PV1 ~ (1 | IDSCHOOL), data=subset(TIMSS, Year == 2019))
sjPlot::tab_model(m0a, digits=3, digits.re=3, show.se = TRUE)
|
|
MATH_PV1
|
|
Predictors
|
Estimates
|
std. Error
|
CI
|
p
|
|
(Intercept)
|
605.457
|
3.601
|
598.396 – 612.517
|
<0.001
|
|
Random Effects
|
|
σ2
|
7399.492
|
|
τ00 IDSCHOOL
|
1977.930
|
|
ICC
|
0.211
|
|
N IDSCHOOL
|
178
|
|
Observations
|
4180
|
|
Marginal R2 / Conditional R2
|
0.000 / 0.211
|
ANOVA-like table for random-effects: Single term deletions
Model:
MATH_PV1 ~ (1 | IDSCHOOL)
npar logLik AIC LRT Df Pr(>Chisq)
<none> 3 -24723 49453
(1 | IDSCHOOL) 2 -25058 50121 669.6 1 <2e-16
學校霸凌為依變項
m0b <- lme4::lmer(STU_BUL ~ (1 | IDSCHOOL), data=subset(TIMSS, Year == 2019))
sjPlot::tab_model(m0b, digits=3, digits.re=3, show.se = TRUE)
|
|
STU_BUL
|
|
Predictors
|
Estimates
|
std. Error
|
CI
|
p
|
|
(Intercept)
|
2.872
|
0.007
|
2.858 – 2.886
|
<0.001
|
|
Random Effects
|
|
σ2
|
0.125
|
|
τ00 IDSCHOOL
|
0.004
|
|
ICC
|
0.030
|
|
N IDSCHOOL
|
178
|
|
Observations
|
4180
|
|
Marginal R2 / Conditional R2
|
0.000 / 0.030
|
ANOVA-like table for random-effects: Single term deletions
Model:
STU_BUL ~ (1 | IDSCHOOL)
npar logLik AIC LRT Df Pr(>Chisq)
<none> 3 -1639 3283
(1 | IDSCHOOL) 2 -1654 3313 31.55 1 1.95e-08
學校氣氛為依變項
m0c <- lme4::lmer(STU_BEL ~ (1 | IDSCHOOL), data=subset(TIMSS, Year == 2019))
sjPlot::tab_model(m0c, digits=3, digits.re=3, show.se = TRUE)
|
|
STU_BEL
|
|
Predictors
|
Estimates
|
std. Error
|
CI
|
p
|
|
(Intercept)
|
2.057
|
0.016
|
2.025 – 2.088
|
<0.001
|
|
Random Effects
|
|
σ2
|
0.369
|
|
τ00 IDSCHOOL
|
0.030
|
|
ICC
|
0.074
|
|
N IDSCHOOL
|
178
|
|
Observations
|
4180
|
|
Marginal R2 / Conditional R2
|
0.000 / 0.074
|
ANOVA-like table for random-effects: Single term deletions
Model:
STU_BEL ~ (1 | IDSCHOOL)
npar logLik AIC LRT Df Pr(>Chisq)
<none> 3 -3943 7892
(1 | IDSCHOOL) 2 -4019 8041 151.3 1 <2e-16
完整模型
TIMSS 2015
數學成就為依變項
m0a <- lme4::lmer(MATH_PV1 ~ STU_ENG+STU_CON+STU_LIK+STU_RES+SCH_ACA_IMP+SCH_MAT_RES+SCH_DIS+SCH_ADV+COM_N+ (1+STU_ENG+STU_CON+STU_LIK+STU_RES|IDSCHOOL), data=subset(TIMSS, Year == 2015),control=lmerControl(optimizer="optimx",
calc.derivs=FALSE,
optCtrl=list(method="nlminb",
starttests=FALSE,
kkt=FALSE)))
sjPlot::tab_model(m0a, digits=3, digits.re=3, show.se = TRUE)
|
|
MATH_PV1
|
|
Predictors
|
Estimates
|
std. Error
|
CI
|
p
|
|
(Intercept)
|
310.064
|
15.728
|
279.231 – 340.897
|
<0.001
|
|
STU ENG
|
8.303
|
1.954
|
4.473 – 12.134
|
<0.001
|
|
STU CON
|
49.208
|
2.072
|
45.145 – 53.270
|
<0.001
|
|
STU LIK
|
13.879
|
2.088
|
9.785 – 17.972
|
<0.001
|
|
STU RES
|
34.319
|
2.089
|
30.224 – 38.415
|
<0.001
|
|
SCH ACA IMP
|
14.066
|
3.671
|
6.869 – 21.263
|
<0.001
|
|
SCH MAT RES
|
-3.210
|
4.490
|
-12.011 – 5.592
|
0.475
|
|
SCH DIS
|
7.694
|
4.184
|
-0.509 – 15.897
|
0.066
|
|
SCH ADV
|
15.345
|
3.947
|
7.608 – 23.082
|
<0.001
|
|
COM N
|
7.906
|
1.467
|
5.031 – 10.782
|
<0.001
|
|
Random Effects
|
|
σ2
|
4816.688
|
|
τ00 IDSCHOOL
|
4247.296
|
|
τ11 IDSCHOOL.STU_ENG
|
213.962
|
|
τ11 IDSCHOOL.STU_CON
|
126.025
|
|
τ11 IDSCHOOL.STU_LIK
|
103.034
|
|
τ11 IDSCHOOL.STU_RES
|
88.779
|
|
ρ01
|
-0.670
|
|
|
0.077
|
|
|
-0.565
|
|
|
-0.845
|
|
N IDSCHOOL
|
190
|
|
Observations
|
5617
|
|
Marginal R2 / Conditional R2
|
0.394 / NA
|
ANOVA-like table for random-effects: Single term deletions
Model:
MATH_PV1 ~ STU_ENG + STU_CON + STU_LIK + STU_RES + SCH_ACA_IMP + SCH_MAT_RES + SCH_DIS + SCH_ADV + COM_N + (1 + STU_ENG + STU_CON + STU_LIK + STU_RES | IDSCHOOL)
npar logLik
<none> 26 -31983
STU_ENG in (1 + STU_ENG + STU_CON + STU_LIK + STU_RES | IDSCHOOL) 21 -31996
STU_CON in (1 + STU_ENG + STU_CON + STU_LIK + STU_RES | IDSCHOOL) 21 -31988
STU_LIK in (1 + STU_ENG + STU_CON + STU_LIK + STU_RES | IDSCHOOL) 21 -31988
STU_RES in (1 + STU_ENG + STU_CON + STU_LIK + STU_RES | IDSCHOOL) 21 -31989
AIC LRT
<none> 64019
STU_ENG in (1 + STU_ENG + STU_CON + STU_LIK + STU_RES | IDSCHOOL) 64035 25.979
STU_CON in (1 + STU_ENG + STU_CON + STU_LIK + STU_RES | IDSCHOOL) 64019 9.667
STU_LIK in (1 + STU_ENG + STU_CON + STU_LIK + STU_RES | IDSCHOOL) 64019 9.594
STU_RES in (1 + STU_ENG + STU_CON + STU_LIK + STU_RES | IDSCHOOL) 64019 10.518
Df Pr(>Chisq)
<none>
STU_ENG in (1 + STU_ENG + STU_CON + STU_LIK + STU_RES | IDSCHOOL) 5 9.01e-05
STU_CON in (1 + STU_ENG + STU_CON + STU_LIK + STU_RES | IDSCHOOL) 5 0.0852
STU_LIK in (1 + STU_ENG + STU_CON + STU_LIK + STU_RES | IDSCHOOL) 5 0.0876
STU_RES in (1 + STU_ENG + STU_CON + STU_LIK + STU_RES | IDSCHOOL) 5 0.0618
# ICC
r.squaredGLMM(m0a)[2]
[1] 0.454317
學校霸凌為依變項
m0b <- lme4::lmer(STU_BUL ~ STU_ENG+STU_CON+STU_LIK+STU_RES+SCH_ACA_IMP+SCH_MAT_RES+SCH_DIS+SCH_ADV+COM_N+ (1+STU_ENG+STU_CON+STU_LIK+STU_RES|IDSCHOOL), data=subset(TIMSS, Year == 2015),control=lmerControl(optimizer="optimx",
calc.derivs=FALSE,
optCtrl=list(method="nlminb",
starttests=FALSE,
kkt=FALSE)))
sjPlot::tab_model(m0b, digits=3, digits.re=3, show.se = TRUE)
|
|
STU_BUL
|
|
Predictors
|
Estimates
|
std. Error
|
CI
|
p
|
|
(Intercept)
|
2.699
|
0.056
|
2.589 – 2.809
|
<0.001
|
|
STU ENG
|
0.059
|
0.009
|
0.040 – 0.077
|
<0.001
|
|
STU CON
|
0.003
|
0.011
|
-0.018 – 0.025
|
0.763
|
|
STU LIK
|
-0.009
|
0.012
|
-0.031 – 0.014
|
0.452
|
|
STU RES
|
0.002
|
0.011
|
-0.019 – 0.023
|
0.833
|
|
SCH ACA IMP
|
-0.005
|
0.013
|
-0.031 – 0.020
|
0.683
|
|
SCH MAT RES
|
-0.006
|
0.016
|
-0.037 – 0.025
|
0.700
|
|
SCH DIS
|
0.019
|
0.015
|
-0.010 – 0.049
|
0.195
|
|
SCH ADV
|
0.018
|
0.014
|
-0.009 – 0.045
|
0.203
|
|
COM N
|
-0.005
|
0.005
|
-0.015 – 0.005
|
0.348
|
|
Random Effects
|
|
σ2
|
0.142
|
|
τ00 IDSCHOOL
|
0.042
|
|
τ11 IDSCHOOL.STU_ENG
|
0.003
|
|
τ11 IDSCHOOL.STU_CON
|
0.002
|
|
τ11 IDSCHOOL.STU_LIK
|
0.004
|
|
τ11 IDSCHOOL.STU_RES
|
0.001
|
|
ρ01
|
-0.834
|
|
|
-0.054
|
|
|
0.099
|
|
|
-0.860
|
|
N IDSCHOOL
|
190
|
|
Observations
|
5617
|
|
Marginal R2 / Conditional R2
|
0.012 / NA
|
ANOVA-like table for random-effects: Single term deletions
Model:
STU_BUL ~ STU_ENG + STU_CON + STU_LIK + STU_RES + SCH_ACA_IMP + SCH_MAT_RES + SCH_DIS + SCH_ADV + COM_N + (1 + STU_ENG + STU_CON + STU_LIK + STU_RES | IDSCHOOL)
npar logLik
<none> 26 -2634
STU_ENG in (1 + STU_ENG + STU_CON + STU_LIK + STU_RES | IDSCHOOL) 21 -2645
STU_CON in (1 + STU_ENG + STU_CON + STU_LIK + STU_RES | IDSCHOOL) 21 -2635
STU_LIK in (1 + STU_ENG + STU_CON + STU_LIK + STU_RES | IDSCHOOL) 21 -2637
STU_RES in (1 + STU_ENG + STU_CON + STU_LIK + STU_RES | IDSCHOOL) 21 -2636
AIC LRT
<none> 5321
STU_ENG in (1 + STU_ENG + STU_CON + STU_LIK + STU_RES | IDSCHOOL) 5333 22.005
STU_CON in (1 + STU_ENG + STU_CON + STU_LIK + STU_RES | IDSCHOOL) 5312 1.700
STU_LIK in (1 + STU_ENG + STU_CON + STU_LIK + STU_RES | IDSCHOOL) 5316 5.466
STU_RES in (1 + STU_ENG + STU_CON + STU_LIK + STU_RES | IDSCHOOL) 5313 2.599
Df Pr(>Chisq)
<none>
STU_ENG in (1 + STU_ENG + STU_CON + STU_LIK + STU_RES | IDSCHOOL) 5 0.000522
STU_CON in (1 + STU_ENG + STU_CON + STU_LIK + STU_RES | IDSCHOOL) 5 0.888940
STU_LIK in (1 + STU_ENG + STU_CON + STU_LIK + STU_RES | IDSCHOOL) 5 0.361742
STU_RES in (1 + STU_ENG + STU_CON + STU_LIK + STU_RES | IDSCHOOL) 5 0.761535
# ICC
r.squaredGLMM(m0b)[2]
[1] 0.0642393
學校氣氛為依變項
m0c <- lme4::lmer(STU_BEL ~ STU_ENG+STU_CON+STU_LIK+STU_RES+SCH_ACA_IMP+SCH_MAT_RES+SCH_DIS+SCH_ADV+COM_N+ (1+STU_ENG+STU_CON+STU_LIK+STU_RES|IDSCHOOL), data=subset(TIMSS, Year == 2015),control=lmerControl(optimizer="optimx",
calc.derivs=FALSE,
optCtrl=list(method="nlminb",
starttests=FALSE,
kkt=FALSE)))
sjPlot::tab_model(m0c, digits=3, digits.re=3, show.se = TRUE)
|
|
STU_BEL
|
|
Predictors
|
Estimates
|
std. Error
|
CI
|
p
|
|
(Intercept)
|
2.503
|
0.079
|
2.349 – 2.657
|
<0.001
|
|
STU ENG
|
0.171
|
0.015
|
0.142 – 0.200
|
<0.001
|
|
STU CON
|
-0.034
|
0.015
|
-0.063 – -0.005
|
0.021
|
|
STU LIK
|
0.055
|
0.016
|
0.025 – 0.085
|
<0.001
|
|
STU RES
|
0.035
|
0.016
|
0.003 – 0.067
|
0.034
|
|
SCH ACA IMP
|
0.008
|
0.017
|
-0.024 – 0.041
|
0.611
|
|
SCH MAT RES
|
-0.039
|
0.020
|
-0.078 – -0.000
|
0.050
|
|
SCH DIS
|
0.009
|
0.019
|
-0.029 – 0.047
|
0.639
|
|
SCH ADV
|
-0.012
|
0.017
|
-0.047 – 0.022
|
0.478
|
|
COM N
|
-0.011
|
0.007
|
-0.024 – 0.002
|
0.090
|
|
Random Effects
|
|
σ2
|
0.302
|
|
τ00 IDSCHOOL
|
0.251
|
|
τ11 IDSCHOOL.STU_ENG
|
0.012
|
|
τ11 IDSCHOOL.STU_CON
|
0.000
|
|
τ11 IDSCHOOL.STU_LIK
|
0.002
|
|
τ11 IDSCHOOL.STU_RES
|
0.008
|
|
ρ01
|
-0.952
|
|
|
0.997
|
|
|
-0.900
|
|
|
-0.959
|
|
N IDSCHOOL
|
190
|
|
Observations
|
5617
|
|
Marginal R2 / Conditional R2
|
0.057 / NA
|
ANOVA-like table for random-effects: Single term deletions
Model:
STU_BEL ~ STU_ENG + STU_CON + STU_LIK + STU_RES + SCH_ACA_IMP + SCH_MAT_RES + SCH_DIS + SCH_ADV + COM_N + (1 + STU_ENG + STU_CON + STU_LIK + STU_RES | IDSCHOOL)
npar logLik
<none> 26 -4736
STU_ENG in (1 + STU_ENG + STU_CON + STU_LIK + STU_RES | IDSCHOOL) 21 -4759
STU_CON in (1 + STU_ENG + STU_CON + STU_LIK + STU_RES | IDSCHOOL) 21 -4736
STU_LIK in (1 + STU_ENG + STU_CON + STU_LIK + STU_RES | IDSCHOOL) 21 -4738
STU_RES in (1 + STU_ENG + STU_CON + STU_LIK + STU_RES | IDSCHOOL) 21 -4746
AIC LRT Df
<none> 9523
STU_ENG in (1 + STU_ENG + STU_CON + STU_LIK + STU_RES | IDSCHOOL) 9559 46.21 5
STU_CON in (1 + STU_ENG + STU_CON + STU_LIK + STU_RES | IDSCHOOL) 9515 1.41 5
STU_LIK in (1 + STU_ENG + STU_CON + STU_LIK + STU_RES | IDSCHOOL) 9518 4.49 5
STU_RES in (1 + STU_ENG + STU_CON + STU_LIK + STU_RES | IDSCHOOL) 9533 19.80 5
Pr(>Chisq)
<none>
STU_ENG in (1 + STU_ENG + STU_CON + STU_LIK + STU_RES | IDSCHOOL) 8.22e-09
STU_CON in (1 + STU_ENG + STU_CON + STU_LIK + STU_RES | IDSCHOOL) 0.92316
STU_LIK in (1 + STU_ENG + STU_CON + STU_LIK + STU_RES | IDSCHOOL) 0.48077
STU_RES in (1 + STU_ENG + STU_CON + STU_LIK + STU_RES | IDSCHOOL) 0.00136
# ICC
r.squaredGLMM(m0c)[2]
[1] 0.109513
TIMSS 2019
數學成就為依變項
m0a <- lme4::lmer(MATH_PV1 ~ STU_ENG+STU_CON+STU_LIK+STU_RES+SCH_ACA_IMP+SCH_MAT_RES+SCH_DIS+SCH_ADV+COM_N+ (1+STU_ENG+STU_CON+STU_LIK+STU_RES|IDSCHOOL), data=subset(TIMSS, Year == 2019),control=lmerControl(optimizer="optimx",
calc.derivs=FALSE,
optCtrl=list(method="nlminb",
starttests=FALSE,
kkt=FALSE)))
summary(m0a)
Linear mixed model fit by REML ['lmerMod']
Formula: MATH_PV1 ~ STU_ENG + STU_CON + STU_LIK + STU_RES + SCH_ACA_IMP +
SCH_MAT_RES + SCH_DIS + SCH_ADV + COM_N + (1 + STU_ENG +
STU_CON + STU_LIK + STU_RES | IDSCHOOL)
Data: subset(TIMSS, Year == 2019)
Control:
lmerControl(optimizer = "optimx", calc.derivs = FALSE, optCtrl = list(method = "nlminb",
starttests = FALSE, kkt = FALSE))
REML criterion at convergence: 47886.6
Scaled residuals:
Min 1Q Median 3Q Max
-4.883 -0.612 0.057 0.652 2.898
Random effects:
Groups Name Variance Std.Dev. Corr
IDSCHOOL (Intercept) 3347.4 57.86
STU_ENG 131.5 11.47 -0.82
STU_CON 21.5 4.63 -0.03 -0.23
STU_LIK 21.1 4.60 -0.98 0.73 0.05
STU_RES 155.5 12.47 -0.48 0.29 -0.62 0.50
Residual 5214.0 72.21
Number of obs: 4180, groups: IDSCHOOL, 178
Fixed effects:
Estimate Std. Error t value
(Intercept) 313.62 18.03 17.39
STU_ENG 13.13 2.15 6.12
STU_CON 47.82 2.29 20.89
STU_LIK 15.07 2.28 6.62
STU_RES 31.18 2.47 12.60
SCH_ACA_IMP 12.78 3.98 3.21
SCH_MAT_RES -3.66 4.70 -0.78
SCH_DIS 8.17 4.66 1.75
SCH_ADV 20.41 3.91 5.22
COM_N 6.37 1.47 4.33
Correlation of Fixed Effects:
(Intr) STU_EN STU_CO STU_LI STU_RE SCH_AC SCH_MA SCH_DI SCH_AD
STU_ENG -0.226
STU_CON -0.015 -0.042
STU_LIK -0.068 -0.185 -0.589
STU_RES -0.185 -0.018 -0.113 0.020
SCH_ACA_IMP 0.049 0.011 -0.022 -0.004 -0.043
SCH_MAT_RES -0.436 -0.006 0.003 0.004 0.021 -0.240
SCH_DIS -0.644 -0.018 -0.012 0.020 0.002 -0.091 -0.080
SCH_ADV -0.134 -0.001 -0.002 -0.020 -0.068 -0.304 0.008 -0.037
[ 達到了 getOption("max.print") -- 省略最後 1 列 ]]
optimizer (optimx) convergence code: 1 (none)
sjPlot::tab_model(m0a, digits=3, digits.re=3, show.se = TRUE)
|
|
MATH_PV1
|
|
Predictors
|
Estimates
|
std. Error
|
CI
|
p
|
|
(Intercept)
|
313.621
|
18.031
|
278.270 – 348.972
|
<0.001
|
|
STU ENG
|
13.131
|
2.147
|
8.922 – 17.341
|
<0.001
|
|
STU CON
|
47.822
|
2.290
|
43.333 – 52.311
|
<0.001
|
|
STU LIK
|
15.070
|
2.277
|
10.606 – 19.534
|
<0.001
|
|
STU RES
|
31.184
|
2.474
|
26.333 – 36.035
|
<0.001
|
|
SCH ACA IMP
|
12.776
|
3.981
|
4.972 – 20.580
|
0.001
|
|
SCH MAT RES
|
-3.658
|
4.699
|
-12.869 – 5.554
|
0.436
|
|
SCH DIS
|
8.174
|
4.662
|
-0.966 – 17.313
|
0.080
|
|
SCH ADV
|
20.414
|
3.910
|
12.748 – 28.081
|
<0.001
|
|
COM N
|
6.374
|
1.473
|
3.486 – 9.262
|
<0.001
|
|
Random Effects
|
|
σ2
|
5214.005
|
|
τ00 IDSCHOOL
|
3347.375
|
|
τ11 IDSCHOOL.STU_ENG
|
131.466
|
|
τ11 IDSCHOOL.STU_CON
|
21.457
|
|
τ11 IDSCHOOL.STU_LIK
|
21.129
|
|
τ11 IDSCHOOL.STU_RES
|
155.456
|
|
ρ01
|
-0.825
|
|
|
-0.033
|
|
|
-0.979
|
|
|
-0.476
|
|
ICC
|
0.122
|
|
N IDSCHOOL
|
178
|
|
Observations
|
4180
|
|
Marginal R2 / Conditional R2
|
0.352 / 0.431
|
ANOVA-like table for random-effects: Single term deletions
Model:
MATH_PV1 ~ STU_ENG + STU_CON + STU_LIK + STU_RES + SCH_ACA_IMP + SCH_MAT_RES + SCH_DIS + SCH_ADV + COM_N + (1 + STU_ENG + STU_CON + STU_LIK + STU_RES | IDSCHOOL)
npar logLik
<none> 26 -23943
STU_ENG in (1 + STU_ENG + STU_CON + STU_LIK + STU_RES | IDSCHOOL) 21 -23948
STU_CON in (1 + STU_ENG + STU_CON + STU_LIK + STU_RES | IDSCHOOL) 21 -23944
STU_LIK in (1 + STU_ENG + STU_CON + STU_LIK + STU_RES | IDSCHOOL) 21 -23945
STU_RES in (1 + STU_ENG + STU_CON + STU_LIK + STU_RES | IDSCHOOL) 21 -23946
AIC LRT
<none> 47939
STU_ENG in (1 + STU_ENG + STU_CON + STU_LIK + STU_RES | IDSCHOOL) 47938 9.238
STU_CON in (1 + STU_ENG + STU_CON + STU_LIK + STU_RES | IDSCHOOL) 47930 1.551
STU_LIK in (1 + STU_ENG + STU_CON + STU_LIK + STU_RES | IDSCHOOL) 47931 2.609
STU_RES in (1 + STU_ENG + STU_CON + STU_LIK + STU_RES | IDSCHOOL) 47933 4.594
Df Pr(>Chisq)
<none>
STU_ENG in (1 + STU_ENG + STU_CON + STU_LIK + STU_RES | IDSCHOOL) 5 0.0999
STU_CON in (1 + STU_ENG + STU_CON + STU_LIK + STU_RES | IDSCHOOL) 5 0.9071
STU_LIK in (1 + STU_ENG + STU_CON + STU_LIK + STU_RES | IDSCHOOL) 5 0.7600
STU_RES in (1 + STU_ENG + STU_CON + STU_LIK + STU_RES | IDSCHOOL) 5 0.4674
# ICC
r.squaredGLMM(m0a)[2]
[1] 0.430879
學校霸凌為依變項
m0b <- lme4::lmer(STU_BUL ~ STU_ENG+STU_CON+STU_LIK+STU_RES+SCH_ACA_IMP+SCH_MAT_RES+SCH_DIS+SCH_ADV+COM_N+ (1+STU_ENG+STU_CON+STU_LIK+STU_RES|IDSCHOOL), data=subset(TIMSS, Year == 2019),control=lmerControl(optimizer="optimx",
calc.derivs=FALSE,
optCtrl=list(method="nlminb",
starttests=FALSE,
kkt=FALSE)))
sjPlot::tab_model(m0b, digits=3, digits.re=3, show.se = TRUE)
|
|
STU_BUL
|
|
Predictors
|
Estimates
|
std. Error
|
CI
|
p
|
|
(Intercept)
|
2.777
|
0.063
|
2.652 – 2.901
|
<0.001
|
|
STU ENG
|
0.031
|
0.010
|
0.011 – 0.052
|
0.002
|
|
STU CON
|
-0.015
|
0.011
|
-0.037 – 0.007
|
0.173
|
|
STU LIK
|
-0.001
|
0.011
|
-0.022 – 0.021
|
0.932
|
|
STU RES
|
0.011
|
0.011
|
-0.011 – 0.033
|
0.334
|
|
SCH ACA IMP
|
-0.015
|
0.013
|
-0.042 – 0.011
|
0.251
|
|
SCH MAT RES
|
0.003
|
0.016
|
-0.028 – 0.035
|
0.827
|
|
SCH DIS
|
0.014
|
0.016
|
-0.017 – 0.045
|
0.367
|
|
SCH ADV
|
0.011
|
0.013
|
-0.015 – 0.036
|
0.413
|
|
COM N
|
-0.003
|
0.005
|
-0.013 – 0.007
|
0.607
|
|
Random Effects
|
|
σ2
|
0.123
|
|
τ00 IDSCHOOL
|
0.041
|
|
τ11 IDSCHOOL.STU_ENG
|
0.003
|
|
τ11 IDSCHOOL.STU_CON
|
0.001
|
|
τ11 IDSCHOOL.STU_LIK
|
0.000
|
|
τ11 IDSCHOOL.STU_RES
|
0.002
|
|
ρ01
|
-0.845
|
|
|
-0.419
|
|
|
0.806
|
|
|
-0.597
|
|
N IDSCHOOL
|
178
|
|
Observations
|
4180
|
|
Marginal R2 / Conditional R2
|
0.005 / NA
|
ANOVA-like table for random-effects: Single term deletions
Model:
STU_BUL ~ STU_ENG + STU_CON + STU_LIK + STU_RES + SCH_ACA_IMP + SCH_MAT_RES + SCH_DIS + SCH_ADV + COM_N + (1 + STU_ENG + STU_CON + STU_LIK + STU_RES | IDSCHOOL)
npar logLik
<none> 26 -1654
STU_ENG in (1 + STU_ENG + STU_CON + STU_LIK + STU_RES | IDSCHOOL) 21 -1660
STU_CON in (1 + STU_ENG + STU_CON + STU_LIK + STU_RES | IDSCHOOL) 21 -1655
STU_LIK in (1 + STU_ENG + STU_CON + STU_LIK + STU_RES | IDSCHOOL) 21 -1654
STU_RES in (1 + STU_ENG + STU_CON + STU_LIK + STU_RES | IDSCHOOL) 21 -1656
AIC LRT
<none> 3360
STU_ENG in (1 + STU_ENG + STU_CON + STU_LIK + STU_RES | IDSCHOOL) 3362 11.840
STU_CON in (1 + STU_ENG + STU_CON + STU_LIK + STU_RES | IDSCHOOL) 3351 0.852
STU_LIK in (1 + STU_ENG + STU_CON + STU_LIK + STU_RES | IDSCHOOL) 3351 0.742
STU_RES in (1 + STU_ENG + STU_CON + STU_LIK + STU_RES | IDSCHOOL) 3353 2.683
Df Pr(>Chisq)
<none>
STU_ENG in (1 + STU_ENG + STU_CON + STU_LIK + STU_RES | IDSCHOOL) 5 0.037
STU_CON in (1 + STU_ENG + STU_CON + STU_LIK + STU_RES | IDSCHOOL) 5 0.974
STU_LIK in (1 + STU_ENG + STU_CON + STU_LIK + STU_RES | IDSCHOOL) 5 0.981
STU_RES in (1 + STU_ENG + STU_CON + STU_LIK + STU_RES | IDSCHOOL) 5 0.749
# ICC
r.squaredGLMM(m0b)[2]
[1] 0.0482729
學校氣氛為依變項
m0c <- lme4::lmer(STU_BEL ~ STU_ENG+STU_CON+STU_LIK+STU_RES+SCH_ACA_IMP+SCH_MAT_RES+SCH_DIS+SCH_ADV+COM_N+ (1+STU_ENG+STU_CON+STU_LIK+STU_RES|IDSCHOOL), data=subset(TIMSS, Year == 2019),control=lmerControl(optimizer="optimx",
calc.derivs=FALSE,
optCtrl=list(method="nlminb",
starttests=FALSE,
kkt=FALSE)))
sjPlot::tab_model(m0c, digits=3, digits.re=3, show.se = TRUE)
|
|
STU_BEL
|
|
Predictors
|
Estimates
|
std. Error
|
CI
|
p
|
|
(Intercept)
|
1.095
|
0.127
|
0.847 – 1.344
|
<0.001
|
|
STU ENG
|
0.261
|
0.017
|
0.228 – 0.294
|
<0.001
|
|
STU CON
|
-0.113
|
0.018
|
-0.149 – -0.077
|
<0.001
|
|
STU LIK
|
0.167
|
0.019
|
0.129 – 0.204
|
<0.001
|
|
STU RES
|
0.029
|
0.018
|
-0.006 – 0.064
|
0.109
|
|
SCH ACA IMP
|
0.002
|
0.028
|
-0.054 – 0.057
|
0.954
|
|
SCH MAT RES
|
0.014
|
0.033
|
-0.051 – 0.079
|
0.675
|
|
SCH DIS
|
0.042
|
0.033
|
-0.022 – 0.107
|
0.201
|
|
SCH ADV
|
0.044
|
0.028
|
-0.010 – 0.098
|
0.113
|
|
COM N
|
-0.002
|
0.011
|
-0.023 – 0.019
|
0.880
|
|
Random Effects
|
|
σ2
|
0.322
|
|
τ00 IDSCHOOL
|
0.023
|
|
τ11 IDSCHOOL.STU_ENG
|
0.009
|
|
τ11 IDSCHOOL.STU_CON
|
0.003
|
|
τ11 IDSCHOOL.STU_LIK
|
0.009
|
|
τ11 IDSCHOOL.STU_RES
|
0.002
|
|
ρ01
|
-0.616
|
|
|
-0.358
|
|
|
0.217
|
|
|
0.696
|
|
ICC
|
0.087
|
|
N IDSCHOOL
|
178
|
|
Observations
|
4180
|
|
Marginal R2 / Conditional R2
|
0.119 / 0.196
|
ANOVA-like table for random-effects: Single term deletions
Model:
STU_BEL ~ STU_ENG + STU_CON + STU_LIK + STU_RES + SCH_ACA_IMP + SCH_MAT_RES + SCH_DIS + SCH_ADV + COM_N + (1 + STU_ENG + STU_CON + STU_LIK + STU_RES | IDSCHOOL)
npar logLik
<none> 26 -3711
STU_ENG in (1 + STU_ENG + STU_CON + STU_LIK + STU_RES | IDSCHOOL) 21 -3714
STU_CON in (1 + STU_ENG + STU_CON + STU_LIK + STU_RES | IDSCHOOL) 21 -3712
STU_LIK in (1 + STU_ENG + STU_CON + STU_LIK + STU_RES | IDSCHOOL) 21 -3712
STU_RES in (1 + STU_ENG + STU_CON + STU_LIK + STU_RES | IDSCHOOL) 21 -3711
AIC LRT Df
<none> 7473
STU_ENG in (1 + STU_ENG + STU_CON + STU_LIK + STU_RES | IDSCHOOL) 7470 6.964 5
STU_CON in (1 + STU_ENG + STU_CON + STU_LIK + STU_RES | IDSCHOOL) 7467 3.511 5
STU_LIK in (1 + STU_ENG + STU_CON + STU_LIK + STU_RES | IDSCHOOL) 7466 3.078 5
STU_RES in (1 + STU_ENG + STU_CON + STU_LIK + STU_RES | IDSCHOOL) 7465 1.678 5
Pr(>Chisq)
<none>
STU_ENG in (1 + STU_ENG + STU_CON + STU_LIK + STU_RES | IDSCHOOL) 0.223
STU_CON in (1 + STU_ENG + STU_CON + STU_LIK + STU_RES | IDSCHOOL) 0.622
STU_LIK in (1 + STU_ENG + STU_CON + STU_LIK + STU_RES | IDSCHOOL) 0.688
STU_RES in (1 + STU_ENG + STU_CON + STU_LIK + STU_RES | IDSCHOOL) 0.892
# ICC
r.squaredGLMM(m0c)[2]
[1] 0.195793