1 分析說明

本研究將以台灣TIMSS2015及2019年的資料檢驗影響臺灣國中生的學校效能(即:數學成就、學校霸凌程度及學校氣氛)之因素

-IDSCHOOL:學校編碼

學校層級變項
- SCH_ACA_IMP:學校對學業的重視
- SCH_MAT_RES:學校資源
- SCH_DIS:學校紀律和安全
- SCH_ADV:學生背景成分
- COM_N:學校所在地人口

學生層級變項
- STU_ENG:數學學習投入
- STU_CON:數學自信
- STU_LIK:喜歡數學
- STU_RES:家庭資源

依變項:
- MATH_PV1:數學成就
- STU_BUL:學校霸凌
- STU_BEL:學校氣氛

2 虛無模型

2.1 TIMSS 2015

2.1.1 數學成就為依變項

m0a <- lme4::lmer(MATH_PV1 ~ (1 | IDSCHOOL), data=subset(TIMSS, Year == 2015))
sjPlot::tab_model(m0a, digits=3, digits.re=3, show.se = TRUE)
  MATH_PV1
Predictors Estimates std. Error CI p
(Intercept) 596.234 3.427 589.515 – 602.952 <0.001
Random Effects
σ2 7100.259
τ00 IDSCHOOL 1982.896
ICC 0.218
N IDSCHOOL 190
Observations 5617
Marginal R2 / Conditional R2 0.000 / 0.218
lmerTest::ranova(m0a)
ANOVA-like table for random-effects: Single term deletions

Model:
MATH_PV1 ~ (1 | IDSCHOOL)
               npar logLik   AIC  LRT Df Pr(>Chisq)
<none>            3 -33083 66172                   
(1 | IDSCHOOL)    2 -33610 67224 1054  1     <2e-16

2.1.2 學校霸凌為依變項

m0b <- lme4::lmer(STU_BUL ~ (1 | IDSCHOOL), data=subset(TIMSS, Year == 2015))
sjPlot::tab_model(m0b, digits=3, digits.re=3, show.se = TRUE)
  STU_BUL
Predictors Estimates std. Error CI p
(Intercept) 2.849 0.007 2.835 – 2.864 <0.001
Random Effects
σ2 0.146
τ00 IDSCHOOL 0.005
ICC 0.035
N IDSCHOOL 190
Observations 5617
Marginal R2 / Conditional R2 0.000 / 0.035
lmerTest::ranova(m0b)
ANOVA-like table for random-effects: Single term deletions

Model:
STU_BUL ~ (1 | IDSCHOOL)
               npar logLik  AIC   LRT Df Pr(>Chisq)
<none>            3  -2642 5289                    
(1 | IDSCHOOL)    2  -2672 5348 60.78  1   6.38e-15

2.1.3 學校氣氛為依變項

m0c <- lme4::lmer(STU_BEL ~ (1 | IDSCHOOL), data=subset(TIMSS, Year == 2015))
sjPlot::tab_model(m0c, digits=3, digits.re=3, show.se = TRUE)
  STU_BEL
Predictors Estimates std. Error CI p
(Intercept) 2.814 0.010 2.794 – 2.833 <0.001
Random Effects
σ2 0.331
τ00 IDSCHOOL 0.007
ICC 0.020
N IDSCHOOL 190
Observations 5617
Marginal R2 / Conditional R2 0.000 / 0.020
lmerTest::ranova(m0c)
ANOVA-like table for random-effects: Single term deletions

Model:
STU_BEL ~ (1 | IDSCHOOL)
               npar logLik  AIC   LRT Df Pr(>Chisq)
<none>            3  -4913 9833                    
(1 | IDSCHOOL)    2  -4926 9855 24.86  1   6.17e-07

2.2 TIMSS 2019

2.2.1 數學成就為依變項

m0a <- lme4::lmer(MATH_PV1 ~ (1 | IDSCHOOL), data=subset(TIMSS, Year == 2019))
sjPlot::tab_model(m0a, digits=3, digits.re=3, show.se = TRUE)
  MATH_PV1
Predictors Estimates std. Error CI p
(Intercept) 605.457 3.601 598.396 – 612.517 <0.001
Random Effects
σ2 7399.492
τ00 IDSCHOOL 1977.930
ICC 0.211
N IDSCHOOL 178
Observations 4180
Marginal R2 / Conditional R2 0.000 / 0.211
lmerTest::ranova(m0a)
ANOVA-like table for random-effects: Single term deletions

Model:
MATH_PV1 ~ (1 | IDSCHOOL)
               npar logLik   AIC   LRT Df Pr(>Chisq)
<none>            3 -24723 49453                    
(1 | IDSCHOOL)    2 -25058 50121 669.6  1     <2e-16

2.2.2 學校霸凌為依變項

m0b <- lme4::lmer(STU_BUL ~ (1 | IDSCHOOL), data=subset(TIMSS, Year == 2019))
sjPlot::tab_model(m0b, digits=3, digits.re=3, show.se = TRUE)
  STU_BUL
Predictors Estimates std. Error CI p
(Intercept) 2.872 0.007 2.858 – 2.886 <0.001
Random Effects
σ2 0.125
τ00 IDSCHOOL 0.004
ICC 0.030
N IDSCHOOL 178
Observations 4180
Marginal R2 / Conditional R2 0.000 / 0.030
lmerTest::ranova(m0b)
ANOVA-like table for random-effects: Single term deletions

Model:
STU_BUL ~ (1 | IDSCHOOL)
               npar logLik  AIC   LRT Df Pr(>Chisq)
<none>            3  -1639 3283                    
(1 | IDSCHOOL)    2  -1654 3313 31.55  1   1.95e-08

2.2.3 學校氣氛為依變項

m0c <- lme4::lmer(STU_BEL ~ (1 | IDSCHOOL), data=subset(TIMSS, Year == 2019))
sjPlot::tab_model(m0c, digits=3, digits.re=3, show.se = TRUE)
  STU_BEL
Predictors Estimates std. Error CI p
(Intercept) 2.057 0.016 2.025 – 2.088 <0.001
Random Effects
σ2 0.369
τ00 IDSCHOOL 0.030
ICC 0.074
N IDSCHOOL 178
Observations 4180
Marginal R2 / Conditional R2 0.000 / 0.074
lmerTest::ranova(m0c)
ANOVA-like table for random-effects: Single term deletions

Model:
STU_BEL ~ (1 | IDSCHOOL)
               npar logLik  AIC   LRT Df Pr(>Chisq)
<none>            3  -3943 7892                    
(1 | IDSCHOOL)    2  -4019 8041 151.3  1     <2e-16

3 完整模型

3.1 TIMSS 2015

3.1.1 數學成就為依變項

m0a <- lme4::lmer(MATH_PV1 ~ STU_ENG+STU_CON+STU_LIK+STU_RES+SCH_ACA_IMP+SCH_MAT_RES+SCH_DIS+SCH_ADV+COM_N+ (1+STU_ENG+STU_CON+STU_LIK+STU_RES|IDSCHOOL), data=subset(TIMSS, Year == 2015),control=lmerControl(optimizer="optimx", 
                                      calc.derivs=FALSE,
                                      optCtrl=list(method="nlminb", 
                                                   starttests=FALSE, 
                                                   kkt=FALSE)))
sjPlot::tab_model(m0a, digits=3, digits.re=3, show.se = TRUE)
  MATH_PV1
Predictors Estimates std. Error CI p
(Intercept) 310.064 15.728 279.231 – 340.897 <0.001
STU ENG 8.303 1.954 4.473 – 12.134 <0.001
STU CON 49.208 2.072 45.145 – 53.270 <0.001
STU LIK 13.879 2.088 9.785 – 17.972 <0.001
STU RES 34.319 2.089 30.224 – 38.415 <0.001
SCH ACA IMP 14.066 3.671 6.869 – 21.263 <0.001
SCH MAT RES -3.210 4.490 -12.011 – 5.592 0.475
SCH DIS 7.694 4.184 -0.509 – 15.897 0.066
SCH ADV 15.345 3.947 7.608 – 23.082 <0.001
COM N 7.906 1.467 5.031 – 10.782 <0.001
Random Effects
σ2 4816.688
τ00 IDSCHOOL 4247.296
τ11 IDSCHOOL.STU_ENG 213.962
τ11 IDSCHOOL.STU_CON 126.025
τ11 IDSCHOOL.STU_LIK 103.034
τ11 IDSCHOOL.STU_RES 88.779
ρ01 -0.670
0.077
-0.565
-0.845
N IDSCHOOL 190
Observations 5617
Marginal R2 / Conditional R2 0.394 / NA
lmerTest::ranova(m0a)
ANOVA-like table for random-effects: Single term deletions

Model:
MATH_PV1 ~ STU_ENG + STU_CON + STU_LIK + STU_RES + SCH_ACA_IMP + SCH_MAT_RES + SCH_DIS + SCH_ADV + COM_N + (1 + STU_ENG + STU_CON + STU_LIK + STU_RES | IDSCHOOL)
                                                                  npar logLik
<none>                                                              26 -31983
STU_ENG in (1 + STU_ENG + STU_CON + STU_LIK + STU_RES | IDSCHOOL)   21 -31996
STU_CON in (1 + STU_ENG + STU_CON + STU_LIK + STU_RES | IDSCHOOL)   21 -31988
STU_LIK in (1 + STU_ENG + STU_CON + STU_LIK + STU_RES | IDSCHOOL)   21 -31988
STU_RES in (1 + STU_ENG + STU_CON + STU_LIK + STU_RES | IDSCHOOL)   21 -31989
                                                                    AIC    LRT
<none>                                                            64019       
STU_ENG in (1 + STU_ENG + STU_CON + STU_LIK + STU_RES | IDSCHOOL) 64035 25.979
STU_CON in (1 + STU_ENG + STU_CON + STU_LIK + STU_RES | IDSCHOOL) 64019  9.667
STU_LIK in (1 + STU_ENG + STU_CON + STU_LIK + STU_RES | IDSCHOOL) 64019  9.594
STU_RES in (1 + STU_ENG + STU_CON + STU_LIK + STU_RES | IDSCHOOL) 64019 10.518
                                                                  Df Pr(>Chisq)
<none>                                                                         
STU_ENG in (1 + STU_ENG + STU_CON + STU_LIK + STU_RES | IDSCHOOL)  5   9.01e-05
STU_CON in (1 + STU_ENG + STU_CON + STU_LIK + STU_RES | IDSCHOOL)  5     0.0852
STU_LIK in (1 + STU_ENG + STU_CON + STU_LIK + STU_RES | IDSCHOOL)  5     0.0876
STU_RES in (1 + STU_ENG + STU_CON + STU_LIK + STU_RES | IDSCHOOL)  5     0.0618
# ICC
r.squaredGLMM(m0a)[2]
[1] 0.454317

3.1.2 學校霸凌為依變項

m0b <- lme4::lmer(STU_BUL ~ STU_ENG+STU_CON+STU_LIK+STU_RES+SCH_ACA_IMP+SCH_MAT_RES+SCH_DIS+SCH_ADV+COM_N+ (1+STU_ENG+STU_CON+STU_LIK+STU_RES|IDSCHOOL), data=subset(TIMSS, Year == 2015),control=lmerControl(optimizer="optimx", 
                                      calc.derivs=FALSE,
                                      optCtrl=list(method="nlminb", 
                                                   starttests=FALSE, 
                                                   kkt=FALSE)))
sjPlot::tab_model(m0b, digits=3, digits.re=3, show.se = TRUE)
  STU_BUL
Predictors Estimates std. Error CI p
(Intercept) 2.699 0.056 2.589 – 2.809 <0.001
STU ENG 0.059 0.009 0.040 – 0.077 <0.001
STU CON 0.003 0.011 -0.018 – 0.025 0.763
STU LIK -0.009 0.012 -0.031 – 0.014 0.452
STU RES 0.002 0.011 -0.019 – 0.023 0.833
SCH ACA IMP -0.005 0.013 -0.031 – 0.020 0.683
SCH MAT RES -0.006 0.016 -0.037 – 0.025 0.700
SCH DIS 0.019 0.015 -0.010 – 0.049 0.195
SCH ADV 0.018 0.014 -0.009 – 0.045 0.203
COM N -0.005 0.005 -0.015 – 0.005 0.348
Random Effects
σ2 0.142
τ00 IDSCHOOL 0.042
τ11 IDSCHOOL.STU_ENG 0.003
τ11 IDSCHOOL.STU_CON 0.002
τ11 IDSCHOOL.STU_LIK 0.004
τ11 IDSCHOOL.STU_RES 0.001
ρ01 -0.834
-0.054
0.099
-0.860
N IDSCHOOL 190
Observations 5617
Marginal R2 / Conditional R2 0.012 / NA
lmerTest::ranova(m0b)
ANOVA-like table for random-effects: Single term deletions

Model:
STU_BUL ~ STU_ENG + STU_CON + STU_LIK + STU_RES + SCH_ACA_IMP + SCH_MAT_RES + SCH_DIS + SCH_ADV + COM_N + (1 + STU_ENG + STU_CON + STU_LIK + STU_RES | IDSCHOOL)
                                                                  npar logLik
<none>                                                              26  -2634
STU_ENG in (1 + STU_ENG + STU_CON + STU_LIK + STU_RES | IDSCHOOL)   21  -2645
STU_CON in (1 + STU_ENG + STU_CON + STU_LIK + STU_RES | IDSCHOOL)   21  -2635
STU_LIK in (1 + STU_ENG + STU_CON + STU_LIK + STU_RES | IDSCHOOL)   21  -2637
STU_RES in (1 + STU_ENG + STU_CON + STU_LIK + STU_RES | IDSCHOOL)   21  -2636
                                                                   AIC    LRT
<none>                                                            5321       
STU_ENG in (1 + STU_ENG + STU_CON + STU_LIK + STU_RES | IDSCHOOL) 5333 22.005
STU_CON in (1 + STU_ENG + STU_CON + STU_LIK + STU_RES | IDSCHOOL) 5312  1.700
STU_LIK in (1 + STU_ENG + STU_CON + STU_LIK + STU_RES | IDSCHOOL) 5316  5.466
STU_RES in (1 + STU_ENG + STU_CON + STU_LIK + STU_RES | IDSCHOOL) 5313  2.599
                                                                  Df Pr(>Chisq)
<none>                                                                         
STU_ENG in (1 + STU_ENG + STU_CON + STU_LIK + STU_RES | IDSCHOOL)  5   0.000522
STU_CON in (1 + STU_ENG + STU_CON + STU_LIK + STU_RES | IDSCHOOL)  5   0.888940
STU_LIK in (1 + STU_ENG + STU_CON + STU_LIK + STU_RES | IDSCHOOL)  5   0.361742
STU_RES in (1 + STU_ENG + STU_CON + STU_LIK + STU_RES | IDSCHOOL)  5   0.761535
# ICC
r.squaredGLMM(m0b)[2]
[1] 0.0642393

3.1.3 學校氣氛為依變項

m0c <- lme4::lmer(STU_BEL ~ STU_ENG+STU_CON+STU_LIK+STU_RES+SCH_ACA_IMP+SCH_MAT_RES+SCH_DIS+SCH_ADV+COM_N+ (1+STU_ENG+STU_CON+STU_LIK+STU_RES|IDSCHOOL), data=subset(TIMSS, Year == 2015),control=lmerControl(optimizer="optimx", 
                                      calc.derivs=FALSE,
                                      optCtrl=list(method="nlminb", 
                                                   starttests=FALSE, 
                                                   kkt=FALSE)))
sjPlot::tab_model(m0c, digits=3, digits.re=3, show.se = TRUE)
  STU_BEL
Predictors Estimates std. Error CI p
(Intercept) 2.503 0.079 2.349 – 2.657 <0.001
STU ENG 0.171 0.015 0.142 – 0.200 <0.001
STU CON -0.034 0.015 -0.063 – -0.005 0.021
STU LIK 0.055 0.016 0.025 – 0.085 <0.001
STU RES 0.035 0.016 0.003 – 0.067 0.034
SCH ACA IMP 0.008 0.017 -0.024 – 0.041 0.611
SCH MAT RES -0.039 0.020 -0.078 – -0.000 0.050
SCH DIS 0.009 0.019 -0.029 – 0.047 0.639
SCH ADV -0.012 0.017 -0.047 – 0.022 0.478
COM N -0.011 0.007 -0.024 – 0.002 0.090
Random Effects
σ2 0.302
τ00 IDSCHOOL 0.251
τ11 IDSCHOOL.STU_ENG 0.012
τ11 IDSCHOOL.STU_CON 0.000
τ11 IDSCHOOL.STU_LIK 0.002
τ11 IDSCHOOL.STU_RES 0.008
ρ01 -0.952
0.997
-0.900
-0.959
N IDSCHOOL 190
Observations 5617
Marginal R2 / Conditional R2 0.057 / NA
lmerTest::ranova(m0c)
ANOVA-like table for random-effects: Single term deletions

Model:
STU_BEL ~ STU_ENG + STU_CON + STU_LIK + STU_RES + SCH_ACA_IMP + SCH_MAT_RES + SCH_DIS + SCH_ADV + COM_N + (1 + STU_ENG + STU_CON + STU_LIK + STU_RES | IDSCHOOL)
                                                                  npar logLik
<none>                                                              26  -4736
STU_ENG in (1 + STU_ENG + STU_CON + STU_LIK + STU_RES | IDSCHOOL)   21  -4759
STU_CON in (1 + STU_ENG + STU_CON + STU_LIK + STU_RES | IDSCHOOL)   21  -4736
STU_LIK in (1 + STU_ENG + STU_CON + STU_LIK + STU_RES | IDSCHOOL)   21  -4738
STU_RES in (1 + STU_ENG + STU_CON + STU_LIK + STU_RES | IDSCHOOL)   21  -4746
                                                                   AIC   LRT Df
<none>                                                            9523         
STU_ENG in (1 + STU_ENG + STU_CON + STU_LIK + STU_RES | IDSCHOOL) 9559 46.21  5
STU_CON in (1 + STU_ENG + STU_CON + STU_LIK + STU_RES | IDSCHOOL) 9515  1.41  5
STU_LIK in (1 + STU_ENG + STU_CON + STU_LIK + STU_RES | IDSCHOOL) 9518  4.49  5
STU_RES in (1 + STU_ENG + STU_CON + STU_LIK + STU_RES | IDSCHOOL) 9533 19.80  5
                                                                  Pr(>Chisq)
<none>                                                                      
STU_ENG in (1 + STU_ENG + STU_CON + STU_LIK + STU_RES | IDSCHOOL)   8.22e-09
STU_CON in (1 + STU_ENG + STU_CON + STU_LIK + STU_RES | IDSCHOOL)    0.92316
STU_LIK in (1 + STU_ENG + STU_CON + STU_LIK + STU_RES | IDSCHOOL)    0.48077
STU_RES in (1 + STU_ENG + STU_CON + STU_LIK + STU_RES | IDSCHOOL)    0.00136
# ICC
r.squaredGLMM(m0c)[2]
[1] 0.109513

3.2 TIMSS 2019

3.2.1 數學成就為依變項

m0a <- lme4::lmer(MATH_PV1 ~ STU_ENG+STU_CON+STU_LIK+STU_RES+SCH_ACA_IMP+SCH_MAT_RES+SCH_DIS+SCH_ADV+COM_N+ (1+STU_ENG+STU_CON+STU_LIK+STU_RES|IDSCHOOL), data=subset(TIMSS, Year == 2019),control=lmerControl(optimizer="optimx", 
                                      calc.derivs=FALSE,
                                      optCtrl=list(method="nlminb", 
                                                   starttests=FALSE, 
                                                   kkt=FALSE)))
summary(m0a)
Linear mixed model fit by REML ['lmerMod']
Formula: MATH_PV1 ~ STU_ENG + STU_CON + STU_LIK + STU_RES + SCH_ACA_IMP +  
    SCH_MAT_RES + SCH_DIS + SCH_ADV + COM_N + (1 + STU_ENG +  
    STU_CON + STU_LIK + STU_RES | IDSCHOOL)
   Data: subset(TIMSS, Year == 2019)
Control: 
lmerControl(optimizer = "optimx", calc.derivs = FALSE, optCtrl = list(method = "nlminb",  
    starttests = FALSE, kkt = FALSE))

REML criterion at convergence: 47886.6

Scaled residuals: 
   Min     1Q Median     3Q    Max 
-4.883 -0.612  0.057  0.652  2.898 

Random effects:
 Groups   Name        Variance Std.Dev. Corr                   
 IDSCHOOL (Intercept) 3347.4   57.86                           
          STU_ENG      131.5   11.47    -0.82                  
          STU_CON       21.5    4.63    -0.03 -0.23            
          STU_LIK       21.1    4.60    -0.98  0.73  0.05      
          STU_RES      155.5   12.47    -0.48  0.29 -0.62  0.50
 Residual             5214.0   72.21                           
Number of obs: 4180, groups:  IDSCHOOL, 178

Fixed effects:
            Estimate Std. Error t value
(Intercept)   313.62      18.03   17.39
STU_ENG        13.13       2.15    6.12
STU_CON        47.82       2.29   20.89
STU_LIK        15.07       2.28    6.62
STU_RES        31.18       2.47   12.60
SCH_ACA_IMP    12.78       3.98    3.21
SCH_MAT_RES    -3.66       4.70   -0.78
SCH_DIS         8.17       4.66    1.75
SCH_ADV        20.41       3.91    5.22
COM_N           6.37       1.47    4.33

Correlation of Fixed Effects:
            (Intr) STU_EN STU_CO STU_LI STU_RE SCH_AC SCH_MA SCH_DI SCH_AD
STU_ENG     -0.226                                                        
STU_CON     -0.015 -0.042                                                 
STU_LIK     -0.068 -0.185 -0.589                                          
STU_RES     -0.185 -0.018 -0.113  0.020                                   
SCH_ACA_IMP  0.049  0.011 -0.022 -0.004 -0.043                            
SCH_MAT_RES -0.436 -0.006  0.003  0.004  0.021 -0.240                     
SCH_DIS     -0.644 -0.018 -0.012  0.020  0.002 -0.091 -0.080              
SCH_ADV     -0.134 -0.001 -0.002 -0.020 -0.068 -0.304  0.008 -0.037       
 [ 達到了 getOption("max.print") -- 省略最後 1 列 ]]
optimizer (optimx) convergence code: 1 (none)
sjPlot::tab_model(m0a, digits=3, digits.re=3, show.se = TRUE)
  MATH_PV1
Predictors Estimates std. Error CI p
(Intercept) 313.621 18.031 278.270 – 348.972 <0.001
STU ENG 13.131 2.147 8.922 – 17.341 <0.001
STU CON 47.822 2.290 43.333 – 52.311 <0.001
STU LIK 15.070 2.277 10.606 – 19.534 <0.001
STU RES 31.184 2.474 26.333 – 36.035 <0.001
SCH ACA IMP 12.776 3.981 4.972 – 20.580 0.001
SCH MAT RES -3.658 4.699 -12.869 – 5.554 0.436
SCH DIS 8.174 4.662 -0.966 – 17.313 0.080
SCH ADV 20.414 3.910 12.748 – 28.081 <0.001
COM N 6.374 1.473 3.486 – 9.262 <0.001
Random Effects
σ2 5214.005
τ00 IDSCHOOL 3347.375
τ11 IDSCHOOL.STU_ENG 131.466
τ11 IDSCHOOL.STU_CON 21.457
τ11 IDSCHOOL.STU_LIK 21.129
τ11 IDSCHOOL.STU_RES 155.456
ρ01 -0.825
-0.033
-0.979
-0.476
ICC 0.122
N IDSCHOOL 178
Observations 4180
Marginal R2 / Conditional R2 0.352 / 0.431
lmerTest::ranova(m0a)
ANOVA-like table for random-effects: Single term deletions

Model:
MATH_PV1 ~ STU_ENG + STU_CON + STU_LIK + STU_RES + SCH_ACA_IMP + SCH_MAT_RES + SCH_DIS + SCH_ADV + COM_N + (1 + STU_ENG + STU_CON + STU_LIK + STU_RES | IDSCHOOL)
                                                                  npar logLik
<none>                                                              26 -23943
STU_ENG in (1 + STU_ENG + STU_CON + STU_LIK + STU_RES | IDSCHOOL)   21 -23948
STU_CON in (1 + STU_ENG + STU_CON + STU_LIK + STU_RES | IDSCHOOL)   21 -23944
STU_LIK in (1 + STU_ENG + STU_CON + STU_LIK + STU_RES | IDSCHOOL)   21 -23945
STU_RES in (1 + STU_ENG + STU_CON + STU_LIK + STU_RES | IDSCHOOL)   21 -23946
                                                                    AIC   LRT
<none>                                                            47939      
STU_ENG in (1 + STU_ENG + STU_CON + STU_LIK + STU_RES | IDSCHOOL) 47938 9.238
STU_CON in (1 + STU_ENG + STU_CON + STU_LIK + STU_RES | IDSCHOOL) 47930 1.551
STU_LIK in (1 + STU_ENG + STU_CON + STU_LIK + STU_RES | IDSCHOOL) 47931 2.609
STU_RES in (1 + STU_ENG + STU_CON + STU_LIK + STU_RES | IDSCHOOL) 47933 4.594
                                                                  Df Pr(>Chisq)
<none>                                                                         
STU_ENG in (1 + STU_ENG + STU_CON + STU_LIK + STU_RES | IDSCHOOL)  5     0.0999
STU_CON in (1 + STU_ENG + STU_CON + STU_LIK + STU_RES | IDSCHOOL)  5     0.9071
STU_LIK in (1 + STU_ENG + STU_CON + STU_LIK + STU_RES | IDSCHOOL)  5     0.7600
STU_RES in (1 + STU_ENG + STU_CON + STU_LIK + STU_RES | IDSCHOOL)  5     0.4674
# ICC
r.squaredGLMM(m0a)[2]
[1] 0.430879

3.2.2 學校霸凌為依變項

m0b <- lme4::lmer(STU_BUL ~ STU_ENG+STU_CON+STU_LIK+STU_RES+SCH_ACA_IMP+SCH_MAT_RES+SCH_DIS+SCH_ADV+COM_N+ (1+STU_ENG+STU_CON+STU_LIK+STU_RES|IDSCHOOL), data=subset(TIMSS, Year == 2019),control=lmerControl(optimizer="optimx", 
                                      calc.derivs=FALSE,
                                      optCtrl=list(method="nlminb", 
                                                   starttests=FALSE, 
                                                   kkt=FALSE)))
sjPlot::tab_model(m0b, digits=3, digits.re=3, show.se = TRUE)
  STU_BUL
Predictors Estimates std. Error CI p
(Intercept) 2.777 0.063 2.652 – 2.901 <0.001
STU ENG 0.031 0.010 0.011 – 0.052 0.002
STU CON -0.015 0.011 -0.037 – 0.007 0.173
STU LIK -0.001 0.011 -0.022 – 0.021 0.932
STU RES 0.011 0.011 -0.011 – 0.033 0.334
SCH ACA IMP -0.015 0.013 -0.042 – 0.011 0.251
SCH MAT RES 0.003 0.016 -0.028 – 0.035 0.827
SCH DIS 0.014 0.016 -0.017 – 0.045 0.367
SCH ADV 0.011 0.013 -0.015 – 0.036 0.413
COM N -0.003 0.005 -0.013 – 0.007 0.607
Random Effects
σ2 0.123
τ00 IDSCHOOL 0.041
τ11 IDSCHOOL.STU_ENG 0.003
τ11 IDSCHOOL.STU_CON 0.001
τ11 IDSCHOOL.STU_LIK 0.000
τ11 IDSCHOOL.STU_RES 0.002
ρ01 -0.845
-0.419
0.806
-0.597
N IDSCHOOL 178
Observations 4180
Marginal R2 / Conditional R2 0.005 / NA
lmerTest::ranova(m0b)
ANOVA-like table for random-effects: Single term deletions

Model:
STU_BUL ~ STU_ENG + STU_CON + STU_LIK + STU_RES + SCH_ACA_IMP + SCH_MAT_RES + SCH_DIS + SCH_ADV + COM_N + (1 + STU_ENG + STU_CON + STU_LIK + STU_RES | IDSCHOOL)
                                                                  npar logLik
<none>                                                              26  -1654
STU_ENG in (1 + STU_ENG + STU_CON + STU_LIK + STU_RES | IDSCHOOL)   21  -1660
STU_CON in (1 + STU_ENG + STU_CON + STU_LIK + STU_RES | IDSCHOOL)   21  -1655
STU_LIK in (1 + STU_ENG + STU_CON + STU_LIK + STU_RES | IDSCHOOL)   21  -1654
STU_RES in (1 + STU_ENG + STU_CON + STU_LIK + STU_RES | IDSCHOOL)   21  -1656
                                                                   AIC    LRT
<none>                                                            3360       
STU_ENG in (1 + STU_ENG + STU_CON + STU_LIK + STU_RES | IDSCHOOL) 3362 11.840
STU_CON in (1 + STU_ENG + STU_CON + STU_LIK + STU_RES | IDSCHOOL) 3351  0.852
STU_LIK in (1 + STU_ENG + STU_CON + STU_LIK + STU_RES | IDSCHOOL) 3351  0.742
STU_RES in (1 + STU_ENG + STU_CON + STU_LIK + STU_RES | IDSCHOOL) 3353  2.683
                                                                  Df Pr(>Chisq)
<none>                                                                         
STU_ENG in (1 + STU_ENG + STU_CON + STU_LIK + STU_RES | IDSCHOOL)  5      0.037
STU_CON in (1 + STU_ENG + STU_CON + STU_LIK + STU_RES | IDSCHOOL)  5      0.974
STU_LIK in (1 + STU_ENG + STU_CON + STU_LIK + STU_RES | IDSCHOOL)  5      0.981
STU_RES in (1 + STU_ENG + STU_CON + STU_LIK + STU_RES | IDSCHOOL)  5      0.749
# ICC
r.squaredGLMM(m0b)[2]
[1] 0.0482729

3.2.3 學校氣氛為依變項

m0c <- lme4::lmer(STU_BEL ~ STU_ENG+STU_CON+STU_LIK+STU_RES+SCH_ACA_IMP+SCH_MAT_RES+SCH_DIS+SCH_ADV+COM_N+ (1+STU_ENG+STU_CON+STU_LIK+STU_RES|IDSCHOOL), data=subset(TIMSS, Year == 2019),control=lmerControl(optimizer="optimx", 
                                      calc.derivs=FALSE,
                                      optCtrl=list(method="nlminb", 
                                                   starttests=FALSE, 
                                                   kkt=FALSE)))
sjPlot::tab_model(m0c, digits=3, digits.re=3, show.se = TRUE)
  STU_BEL
Predictors Estimates std. Error CI p
(Intercept) 1.095 0.127 0.847 – 1.344 <0.001
STU ENG 0.261 0.017 0.228 – 0.294 <0.001
STU CON -0.113 0.018 -0.149 – -0.077 <0.001
STU LIK 0.167 0.019 0.129 – 0.204 <0.001
STU RES 0.029 0.018 -0.006 – 0.064 0.109
SCH ACA IMP 0.002 0.028 -0.054 – 0.057 0.954
SCH MAT RES 0.014 0.033 -0.051 – 0.079 0.675
SCH DIS 0.042 0.033 -0.022 – 0.107 0.201
SCH ADV 0.044 0.028 -0.010 – 0.098 0.113
COM N -0.002 0.011 -0.023 – 0.019 0.880
Random Effects
σ2 0.322
τ00 IDSCHOOL 0.023
τ11 IDSCHOOL.STU_ENG 0.009
τ11 IDSCHOOL.STU_CON 0.003
τ11 IDSCHOOL.STU_LIK 0.009
τ11 IDSCHOOL.STU_RES 0.002
ρ01 -0.616
-0.358
0.217
0.696
ICC 0.087
N IDSCHOOL 178
Observations 4180
Marginal R2 / Conditional R2 0.119 / 0.196
lmerTest::ranova(m0c)
ANOVA-like table for random-effects: Single term deletions

Model:
STU_BEL ~ STU_ENG + STU_CON + STU_LIK + STU_RES + SCH_ACA_IMP + SCH_MAT_RES + SCH_DIS + SCH_ADV + COM_N + (1 + STU_ENG + STU_CON + STU_LIK + STU_RES | IDSCHOOL)
                                                                  npar logLik
<none>                                                              26  -3711
STU_ENG in (1 + STU_ENG + STU_CON + STU_LIK + STU_RES | IDSCHOOL)   21  -3714
STU_CON in (1 + STU_ENG + STU_CON + STU_LIK + STU_RES | IDSCHOOL)   21  -3712
STU_LIK in (1 + STU_ENG + STU_CON + STU_LIK + STU_RES | IDSCHOOL)   21  -3712
STU_RES in (1 + STU_ENG + STU_CON + STU_LIK + STU_RES | IDSCHOOL)   21  -3711
                                                                   AIC   LRT Df
<none>                                                            7473         
STU_ENG in (1 + STU_ENG + STU_CON + STU_LIK + STU_RES | IDSCHOOL) 7470 6.964  5
STU_CON in (1 + STU_ENG + STU_CON + STU_LIK + STU_RES | IDSCHOOL) 7467 3.511  5
STU_LIK in (1 + STU_ENG + STU_CON + STU_LIK + STU_RES | IDSCHOOL) 7466 3.078  5
STU_RES in (1 + STU_ENG + STU_CON + STU_LIK + STU_RES | IDSCHOOL) 7465 1.678  5
                                                                  Pr(>Chisq)
<none>                                                                      
STU_ENG in (1 + STU_ENG + STU_CON + STU_LIK + STU_RES | IDSCHOOL)      0.223
STU_CON in (1 + STU_ENG + STU_CON + STU_LIK + STU_RES | IDSCHOOL)      0.622
STU_LIK in (1 + STU_ENG + STU_CON + STU_LIK + STU_RES | IDSCHOOL)      0.688
STU_RES in (1 + STU_ENG + STU_CON + STU_LIK + STU_RES | IDSCHOOL)      0.892
# ICC
r.squaredGLMM(m0c)[2]
[1] 0.195793