Directions

During ANLY 512 we will be studying the theory and practice of data visualization. We will be using R and the packages within R to assemble data and construct many different types of visualizations. Before we begin studying data visualizations we need to develop some data wrangling skills. We will use these skills to wrangle our data into a form that we can use for visualizations.

The objective of this assignment is to introduce you to R Studio, Rmarkdown, the tidyverse and more specifically the dplyr package.

Each question is worth 5 points.

To submit this homework you will create the document in Rstudio, using the knitr package (button included in Rstudio) and then submit the document to your Rpubs account. Once uploaded you will submit the link to that document on Canvas. Please make sure that this link is hyper linked and that I can see the visualization and the code required to create it.

Question #1

Use the nycflights13 package and the flights data frame to answer the following questions:
a.What month had the highest proportion of cancelled flights?
Febuary had the highest proportion of cancelled flights
b.What month had the lowest?
October had the lowest proportion

# install.packages("nycflights13")
library(nycflights13)
flight_cancelled <- flights %>%
  group_by(month) %>%
  summarize(cancelled =  sum(is.na(arr_delay)),
            total = n(),
            prop_cancelled = (cancelled/total) * 100)  %>%
  arrange(desc(prop_cancelled)) 

flight_cancelled
## # A tibble: 12 × 4
##    month cancelled total prop_cancelled
##    <int>     <int> <int>          <dbl>
##  1     2      1340 24951          5.37 
##  2     6      1168 28243          4.14 
##  3    12      1115 28135          3.96 
##  4     7      1132 29425          3.85 
##  5     3       932 28834          3.23 
##  6     4       766 28330          2.70 
##  7     5       668 28796          2.32 
##  8     1       606 27004          2.24 
##  9     9       564 27574          2.05 
## 10     8       571 29327          1.95 
## 11    11       297 27268          1.09 
## 12    10       271 28889          0.938

Question #2

Consider the following pipeline:

# library(tidyverse)
# mtcars %>%
#    group_by(cyl) %>%
#    summarize(avg_mpg = mean(mpg)) %>%
#    filter(am == 1)

What is the problem with this pipeline?

“object ‘am’ not found”, After aggregating mtcars, am is not in the summary result. So we can’t filter by am. To fix it, we can filter by am first and then calculate avg mpg for each cyl.

# fixed version
library(tidyverse)
mtcars %>%
  filter(am == 1) %>%
  group_by(cyl) %>%
  summarize(avg_mpg = mean(mpg))
## # A tibble: 3 × 2
##     cyl avg_mpg
##   <dbl>   <dbl>
## 1     4    28.1
## 2     6    20.6
## 3     8    15.4

Question #3

Define two new variables in the Teams data frame in the pkg Lahman() package.

  1. batting average (BA). Batting average is the ratio of hits (H) to at-bats (AB)

  2. slugging percentage (SLG). Slugging percentage is total bases divided by at-bats (AB). To compute total bases, you get 1 for a single, 2 for a double, 3 for a triple, and 4 for a home run.

library(Lahman)
Teams <- Teams %>%
  mutate(BA = H/AB) %>%
  mutate(SLG = (H+2*X2B+3*X3B+4*HR)/AB)
  
head(Teams) 
##   yearID lgID teamID franchID divID Rank  G Ghome  W  L DivWin WCWin LgWin
## 1   1871   NA    BS1      BNA  <NA>    3 31    NA 20 10   <NA>  <NA>     N
## 2   1871   NA    CH1      CNA  <NA>    2 28    NA 19  9   <NA>  <NA>     N
## 3   1871   NA    CL1      CFC  <NA>    8 29    NA 10 19   <NA>  <NA>     N
## 4   1871   NA    FW1      KEK  <NA>    7 19    NA  7 12   <NA>  <NA>     N
## 5   1871   NA    NY2      NNA  <NA>    5 33    NA 16 17   <NA>  <NA>     N
## 6   1871   NA    PH1      PNA  <NA>    1 28    NA 21  7   <NA>  <NA>     Y
##   WSWin   R   AB   H X2B X3B HR BB SO SB CS HBP SF  RA  ER  ERA CG SHO SV
## 1  <NA> 401 1372 426  70  37  3 60 19 73 16  NA NA 303 109 3.55 22   1  3
## 2  <NA> 302 1196 323  52  21 10 60 22 69 21  NA NA 241  77 2.76 25   0  1
## 3  <NA> 249 1186 328  35  40  7 26 25 18  8  NA NA 341 116 4.11 23   0  0
## 4  <NA> 137  746 178  19   8  2 33  9 16  4  NA NA 243  97 5.17 19   1  0
## 5  <NA> 302 1404 403  43  21  1 33 15 46 15  NA NA 313 121 3.72 32   1  0
## 6  <NA> 376 1281 410  66  27  9 46 23 56 12  NA NA 266 137 4.95 27   0  0
##   IPouts  HA HRA BBA SOA   E DP    FP                    name
## 1    828 367   2  42  23 243 24 0.834    Boston Red Stockings
## 2    753 308   6  28  22 229 16 0.829 Chicago White Stockings
## 3    762 346  13  53  34 234 15 0.818  Cleveland Forest Citys
## 4    507 261   5  21  17 163  8 0.803    Fort Wayne Kekiongas
## 5    879 373   7  42  22 235 14 0.840        New York Mutuals
## 6    747 329   3  53  16 194 13 0.845  Philadelphia Athletics
##                           park attendance BPF PPF teamIDBR teamIDlahman45
## 1          South End Grounds I         NA 103  98      BOS            BS1
## 2      Union Base-Ball Grounds         NA 104 102      CHI            CH1
## 3 National Association Grounds         NA  96 100      CLE            CL1
## 4               Hamilton Field         NA 101 107      KEK            FW1
## 5     Union Grounds (Brooklyn)         NA  90  88      NYU            NY2
## 6     Jefferson Street Grounds         NA 102  98      ATH            PH1
##   teamIDretro        BA       SLG
## 1         BS1 0.3104956 0.5021866
## 2         CH1 0.2700669 0.4431438
## 3         CL1 0.2765599 0.4603710
## 4         FW1 0.2386059 0.3324397
## 5         NY2 0.2870370 0.3960114
## 6         PH1 0.3200625 0.5144418

Question #4

Using the Teams data frame in the pkg Lahman() package. display the top-5 teams ranked in terms of slugging percentage (SLG) in Major League Baseball history. Repeat this using teams since 1969. Slugging percentage is total bases divided by at-bats.To compute total bases, you get 1 for a single, 2 for a double, 3 for a triple, and 4 for a home run.

library(Lahman)
Teams %>%
  select(yearID,teamID, SLG) %>%
  arrange(desc(SLG)) %>%
  head(5)
##   yearID teamID       SLG
## 1   2019    HOU 0.6092998
## 2   2019    MIN 0.6071179
## 3   2003    BOS 0.6033975
## 4   2019    NYA 0.5996776
## 5   2020    ATL 0.5964320
# teams since 1969
Teams %>%
  select(yearID,teamID, SLG) %>%
  filter(yearID >= 1969) %>%
  arrange(desc(SLG)) %>%
  head(5)
##   yearID teamID       SLG
## 1   2019    HOU 0.6092998
## 2   2019    MIN 0.6071179
## 3   2003    BOS 0.6033975
## 4   2019    NYA 0.5996776
## 5   2020    ATL 0.5964320

Question #5

Use the Batting, Pitching, and People tables in the pkg Lahman() package to answer the following questions.

a.Name every player in baseball history who has accumulated at least 300 home runs (HR) and at least 300 stolen bases (SB). You can find the first and last name of the player in the Master data frame. Join this to your result along with the total home runs and total bases stolen for each of these elite players.

  1. Similarly, name every pitcher in baseball history who has accumulated at least 300 wins (W) and at least 3,000 strikeouts (SO).

  2. Identify the name and year of every player who has hit at least 50 home runs in a single season. Which player had the lowest batting average in that season?

# a:
library(Lahman)
Batting %>%
  group_by(playerID) %>%
  summarize(home_runs = sum(HR), stolen_bases = sum (SB)) %>%
  filter(home_runs >= 300 & stolen_bases >= 300) %>%
  inner_join(People, by = c("playerID" = "playerID")) %>%
  select(nameFirst, nameLast, nameGiven, home_runs, stolen_bases)
## # A tibble: 8 × 5
##   nameFirst nameLast  nameGiven          home_runs stolen_bases
##   <chr>     <chr>     <chr>                  <int>        <int>
## 1 Carlos    Beltran   Carlos Ivan              435          312
## 2 Barry     Bonds     Barry Lamar              762          514
## 3 Bobby     Bonds     Bobby Lee                332          461
## 4 Andre     Dawson    Andre Nolan              438          314
## 5 Steve     Finley    Steven Allen             304          320
## 6 Willie    Mays      Willie Howard            660          338
## 7 Alex      Rodriguez Alexander Enmanuel       696          329
## 8 Reggie    Sanders   Reginald Laverne         305          304
# b:
Pitching %>%
  group_by(playerID) %>%
  summarize(wins = sum(W), strikeouts = sum(SO)) %>%
  filter(wins >= 300 & strikeouts >= 3000) %>%
  inner_join(People, by =  c("playerID" = "playerID")) %>%
  select(nameFirst, nameLast, nameGiven, wins, strikeouts)
## # A tibble: 10 × 5
##    nameFirst nameLast nameGiven        wins strikeouts
##    <chr>     <chr>    <chr>           <int>      <int>
##  1 Steve     Carlton  Steven Norman     329       4136
##  2 Roger     Clemens  William Roger     354       4672
##  3 Randy     Johnson  Randall David     303       4875
##  4 Walter    Johnson  Walter Perry      417       3509
##  5 Greg      Maddux   Gregory Alan      355       3371
##  6 Phil      Niekro   Philip Henry      318       3342
##  7 Gaylord   Perry    Gaylord Jackson   314       3534
##  8 Nolan     Ryan     Lynn Nolan        324       5714
##  9 Tom       Seaver   George Thomas     311       3640
## 10 Don       Sutton   Donald Howard     324       3574
# c:
Batting %>%
  group_by(playerID, yearID) %>%
  summarize(home_runs = sum(HR), batting_avg = sum(H)/sum(AB)) %>%
  filter(home_runs >= 50) %>%
  inner_join(People, by = c("playerID" = "playerID")) %>%
  select(yearID, nameFirst, nameLast, nameGiven, home_runs, batting_avg) %>%
  arrange(batting_avg)
## # A tibble: 46 × 7
## # Groups:   playerID [30]
##    playerID  yearID nameFirst nameLast nameGiven              home_runs battin…¹
##    <chr>      <int> <chr>     <chr>    <chr>                      <int>    <dbl>
##  1 alonspe01   2019 Pete      Alonso   Peter Morgan                  53    0.260
##  2 bautijo02   2010 Jose      Bautista Jose Antonio                  54    0.260
##  3 jonesan01   2005 Andruw    Jones    Andruw Rudolf                 51    0.263
##  4 marisro01   1961 Roger     Maris    Roger Eugene                  61    0.269
##  5 vaughgr01   1998 Greg      Vaughn   Gregory Lamont                50    0.272
##  6 mcgwima01   1997 Mark      McGwire  Mark David                    58    0.274
##  7 fieldce01   1990 Cecil     Fielder  Cecil Grant                   51    0.277
##  8 mcgwima01   1999 Mark      McGwire  Mark David                    65    0.278
##  9 stantmi03   2017 Giancarlo Stanton  Giancarlo Cruz-Michael        59    0.281
## 10 judgeaa01   2017 Aaron     Judge    Aaron James                   52    0.284
## # … with 36 more rows, and abbreviated variable name ¹​batting_avg