dplyr
basicsdplyrDuring ANLY 512 we will be studying the theory and practice of
data visualization. We will be using R and the
packages within R to assemble data and construct many
different types of visualizations. Before we begin studying data
visualizations we need to develop some data wrangling skills. We will
use these skills to wrangle our data into a form that we can use for
visualizations.
The objective of this assignment is to introduce you to R Studio,
Rmarkdown, the tidyverse and more specifically the dplyr
package.
Each question is worth 5 points.
To submit this homework you will create the document in Rstudio, using the knitr package (button included in Rstudio) and then submit the document to your Rpubs account. Once uploaded you will submit the link to that document on Canvas. Please make sure that this link is hyper linked and that I can see the visualization and the code required to create it.
Use the nycflights13 package and the flights data frame
to answer the following questions:
a.What month had the highest proportion of cancelled flights?
Febuary had the highest proportion of cancelled flights
b.What month had the lowest?
October had the lowest proportion
# install.packages("nycflights13")
library(nycflights13)
flight_cancelled <- flights %>%
group_by(month) %>%
summarize(cancelled = sum(is.na(arr_delay)),
total = n(),
prop_cancelled = (cancelled/total) * 100) %>%
arrange(desc(prop_cancelled))
flight_cancelled
## # A tibble: 12 × 4
## month cancelled total prop_cancelled
## <int> <int> <int> <dbl>
## 1 2 1340 24951 5.37
## 2 6 1168 28243 4.14
## 3 12 1115 28135 3.96
## 4 7 1132 29425 3.85
## 5 3 932 28834 3.23
## 6 4 766 28330 2.70
## 7 5 668 28796 2.32
## 8 1 606 27004 2.24
## 9 9 564 27574 2.05
## 10 8 571 29327 1.95
## 11 11 297 27268 1.09
## 12 10 271 28889 0.938
Consider the following pipeline:
# library(tidyverse)
# mtcars %>%
# group_by(cyl) %>%
# summarize(avg_mpg = mean(mpg)) %>%
# filter(am == 1)
What is the problem with this pipeline?
“object ‘am’ not found”, After aggregating mtcars, am is not in the summary result. So we can’t filter by am. To fix it, we can filter by am first and then calculate avg mpg for each cyl.
# fixed version
library(tidyverse)
mtcars %>%
filter(am == 1) %>%
group_by(cyl) %>%
summarize(avg_mpg = mean(mpg))
## # A tibble: 3 × 2
## cyl avg_mpg
## <dbl> <dbl>
## 1 4 28.1
## 2 6 20.6
## 3 8 15.4
Define two new variables in the Teams data frame in the
pkg Lahman() package.
batting average (BA). Batting average is the ratio of hits (H) to at-bats (AB)
slugging percentage (SLG). Slugging percentage is total bases divided by at-bats (AB). To compute total bases, you get 1 for a single, 2 for a double, 3 for a triple, and 4 for a home run.
library(Lahman)
Teams <- Teams %>%
mutate(BA = H/AB) %>%
mutate(SLG = (H+2*X2B+3*X3B+4*HR)/AB)
head(Teams)
## yearID lgID teamID franchID divID Rank G Ghome W L DivWin WCWin LgWin
## 1 1871 NA BS1 BNA <NA> 3 31 NA 20 10 <NA> <NA> N
## 2 1871 NA CH1 CNA <NA> 2 28 NA 19 9 <NA> <NA> N
## 3 1871 NA CL1 CFC <NA> 8 29 NA 10 19 <NA> <NA> N
## 4 1871 NA FW1 KEK <NA> 7 19 NA 7 12 <NA> <NA> N
## 5 1871 NA NY2 NNA <NA> 5 33 NA 16 17 <NA> <NA> N
## 6 1871 NA PH1 PNA <NA> 1 28 NA 21 7 <NA> <NA> Y
## WSWin R AB H X2B X3B HR BB SO SB CS HBP SF RA ER ERA CG SHO SV
## 1 <NA> 401 1372 426 70 37 3 60 19 73 16 NA NA 303 109 3.55 22 1 3
## 2 <NA> 302 1196 323 52 21 10 60 22 69 21 NA NA 241 77 2.76 25 0 1
## 3 <NA> 249 1186 328 35 40 7 26 25 18 8 NA NA 341 116 4.11 23 0 0
## 4 <NA> 137 746 178 19 8 2 33 9 16 4 NA NA 243 97 5.17 19 1 0
## 5 <NA> 302 1404 403 43 21 1 33 15 46 15 NA NA 313 121 3.72 32 1 0
## 6 <NA> 376 1281 410 66 27 9 46 23 56 12 NA NA 266 137 4.95 27 0 0
## IPouts HA HRA BBA SOA E DP FP name
## 1 828 367 2 42 23 243 24 0.834 Boston Red Stockings
## 2 753 308 6 28 22 229 16 0.829 Chicago White Stockings
## 3 762 346 13 53 34 234 15 0.818 Cleveland Forest Citys
## 4 507 261 5 21 17 163 8 0.803 Fort Wayne Kekiongas
## 5 879 373 7 42 22 235 14 0.840 New York Mutuals
## 6 747 329 3 53 16 194 13 0.845 Philadelphia Athletics
## park attendance BPF PPF teamIDBR teamIDlahman45
## 1 South End Grounds I NA 103 98 BOS BS1
## 2 Union Base-Ball Grounds NA 104 102 CHI CH1
## 3 National Association Grounds NA 96 100 CLE CL1
## 4 Hamilton Field NA 101 107 KEK FW1
## 5 Union Grounds (Brooklyn) NA 90 88 NYU NY2
## 6 Jefferson Street Grounds NA 102 98 ATH PH1
## teamIDretro BA SLG
## 1 BS1 0.3104956 0.5021866
## 2 CH1 0.2700669 0.4431438
## 3 CL1 0.2765599 0.4603710
## 4 FW1 0.2386059 0.3324397
## 5 NY2 0.2870370 0.3960114
## 6 PH1 0.3200625 0.5144418
Using the Teams data frame in the
pkg Lahman() package. display the top-5 teams ranked in
terms of slugging percentage (SLG) in Major League Baseball history.
Repeat this using teams since 1969. Slugging percentage is total bases
divided by at-bats.To compute total bases, you get 1 for a single, 2 for
a double, 3 for a triple, and 4 for a home run.
library(Lahman)
Teams %>%
select(yearID,teamID, SLG) %>%
arrange(desc(SLG)) %>%
head(5)
## yearID teamID SLG
## 1 2019 HOU 0.6092998
## 2 2019 MIN 0.6071179
## 3 2003 BOS 0.6033975
## 4 2019 NYA 0.5996776
## 5 2020 ATL 0.5964320
# teams since 1969
Teams %>%
select(yearID,teamID, SLG) %>%
filter(yearID >= 1969) %>%
arrange(desc(SLG)) %>%
head(5)
## yearID teamID SLG
## 1 2019 HOU 0.6092998
## 2 2019 MIN 0.6071179
## 3 2003 BOS 0.6033975
## 4 2019 NYA 0.5996776
## 5 2020 ATL 0.5964320
Use the Batting, Pitching, and
People tables in the pkg Lahman() package to
answer the following questions.
a.Name every player in baseball history who has accumulated at least 300 home runs (HR) and at least 300 stolen bases (SB). You can find the first and last name of the player in the Master data frame. Join this to your result along with the total home runs and total bases stolen for each of these elite players.
Similarly, name every pitcher in baseball history who has accumulated at least 300 wins (W) and at least 3,000 strikeouts (SO).
Identify the name and year of every player who has hit at least 50 home runs in a single season. Which player had the lowest batting average in that season?
# a:
library(Lahman)
Batting %>%
group_by(playerID) %>%
summarize(home_runs = sum(HR), stolen_bases = sum (SB)) %>%
filter(home_runs >= 300 & stolen_bases >= 300) %>%
inner_join(People, by = c("playerID" = "playerID")) %>%
select(nameFirst, nameLast, nameGiven, home_runs, stolen_bases)
## # A tibble: 8 × 5
## nameFirst nameLast nameGiven home_runs stolen_bases
## <chr> <chr> <chr> <int> <int>
## 1 Carlos Beltran Carlos Ivan 435 312
## 2 Barry Bonds Barry Lamar 762 514
## 3 Bobby Bonds Bobby Lee 332 461
## 4 Andre Dawson Andre Nolan 438 314
## 5 Steve Finley Steven Allen 304 320
## 6 Willie Mays Willie Howard 660 338
## 7 Alex Rodriguez Alexander Enmanuel 696 329
## 8 Reggie Sanders Reginald Laverne 305 304
# b:
Pitching %>%
group_by(playerID) %>%
summarize(wins = sum(W), strikeouts = sum(SO)) %>%
filter(wins >= 300 & strikeouts >= 3000) %>%
inner_join(People, by = c("playerID" = "playerID")) %>%
select(nameFirst, nameLast, nameGiven, wins, strikeouts)
## # A tibble: 10 × 5
## nameFirst nameLast nameGiven wins strikeouts
## <chr> <chr> <chr> <int> <int>
## 1 Steve Carlton Steven Norman 329 4136
## 2 Roger Clemens William Roger 354 4672
## 3 Randy Johnson Randall David 303 4875
## 4 Walter Johnson Walter Perry 417 3509
## 5 Greg Maddux Gregory Alan 355 3371
## 6 Phil Niekro Philip Henry 318 3342
## 7 Gaylord Perry Gaylord Jackson 314 3534
## 8 Nolan Ryan Lynn Nolan 324 5714
## 9 Tom Seaver George Thomas 311 3640
## 10 Don Sutton Donald Howard 324 3574
# c:
Batting %>%
group_by(playerID, yearID) %>%
summarize(home_runs = sum(HR), batting_avg = sum(H)/sum(AB)) %>%
filter(home_runs >= 50) %>%
inner_join(People, by = c("playerID" = "playerID")) %>%
select(yearID, nameFirst, nameLast, nameGiven, home_runs, batting_avg) %>%
arrange(batting_avg)
## # A tibble: 46 × 7
## # Groups: playerID [30]
## playerID yearID nameFirst nameLast nameGiven home_runs battin…¹
## <chr> <int> <chr> <chr> <chr> <int> <dbl>
## 1 alonspe01 2019 Pete Alonso Peter Morgan 53 0.260
## 2 bautijo02 2010 Jose Bautista Jose Antonio 54 0.260
## 3 jonesan01 2005 Andruw Jones Andruw Rudolf 51 0.263
## 4 marisro01 1961 Roger Maris Roger Eugene 61 0.269
## 5 vaughgr01 1998 Greg Vaughn Gregory Lamont 50 0.272
## 6 mcgwima01 1997 Mark McGwire Mark David 58 0.274
## 7 fieldce01 1990 Cecil Fielder Cecil Grant 51 0.277
## 8 mcgwima01 1999 Mark McGwire Mark David 65 0.278
## 9 stantmi03 2017 Giancarlo Stanton Giancarlo Cruz-Michael 59 0.281
## 10 judgeaa01 2017 Aaron Judge Aaron James 52 0.284
## # … with 36 more rows, and abbreviated variable name ¹batting_avg