This is an R Markdown document. Markdown is a simple formatting syntax for authoring HTML, PDF, and MS Word documents. For more details on using R Markdown see http://rmarkdown.rstudio.com.

When you click the Knit button a document will be generated that includes both content as well as the output of any embedded R code chunks within the document. You can embed an R code chunk like this:

 setwd("C:/Users/Navin/Documents/Murali/")
 ncr <- read.csv2("NWTabLong.csv", header = TRUE,sep="," )
 ncrO <- ncr[ncr$Type =="Original",]
 # ncr$Client <- as.factor(ncr$Client)
 library(ggplot2)
 head(ncrO)
##   Month     Date Client     Type  Value
## 1     1 1/1/2013      1 Original   0.98
## 2     2 1/2/2013      1 Original 0.9807
## 3     3 1/3/2013      1 Original 0.9778
## 4     4 1/4/2013      1 Original 0.9781
## 5     5 1/5/2013      1 Original 0.9771
## 6     6 1/6/2013      1 Original 0.9867
 ggplot(ncrO, aes(x = Value)) + geom_dotplot(dotsize = 0.8) + facet_grid(Client ~.)

 ggplot(ncrO, aes(x = Value)) + geom_histogram(binwidth = 0.01)+ facet_grid(Client ~.)

 ggplot(ncrO, aes(x = Value)) + geom_density()+ facet_grid(Client ~.)

 ggplot(ncrO, aes(x = Value, y = Client)) + geom_point() + coord_flip()

ncr1 <- ncr[ncr$Client == 1,]
###
print("Client 1")
## [1] "Client 1"
ggplot(ncrO[ncrO$Client == 1,], aes(Month, Value)) + geom_line() +  xlab("") + ylab("NW-Availability")
## geom_path: Each group consist of only one observation. Do you need to adjust the group aesthetic?

print("Client 2")
## [1] "Client 2"
ggplot(ncrO[ncrO$Client == 2,], aes(Month, Value)) + geom_line() +  xlab("") + ylab("NW-Availability")

print("Client 3")
## [1] "Client 3"
ggplot(ncrO[ncrO$Client == 3,], aes(Month, Value)) + geom_line() +  xlab("") + ylab("NW-Availability")

print("Client 4")
## [1] "Client 4"
ggplot(ncrO[ncrO$Client == 4,], aes(Month, Value)) + geom_line() +  xlab("") + ylab("NW-Availability")

qplot(Month, Value, data = ncrO, colour = Client)

library(qcc)
## Package 'qcc', version 2.6
## Type 'citation("qcc")' for citing this R package in publications.
  head(ncrO)
##   Month     Date Client     Type  Value
## 1     1 1/1/2013      1 Original   0.98
## 2     2 1/2/2013      1 Original 0.9807
## 3     3 1/3/2013      1 Original 0.9778
## 4     4 1/4/2013      1 Original 0.9781
## 5     5 1/5/2013      1 Original 0.9771
## 6     6 1/6/2013      1 Original 0.9867
  x <- (ncrO[ncrO$Client == '1',])
  x
##    Month      Date Client     Type  Value
## 1      1  1/1/2013      1 Original   0.98
## 2      2  1/2/2013      1 Original 0.9807
## 3      3  1/3/2013      1 Original 0.9778
## 4      4  1/4/2013      1 Original 0.9781
## 5      5  1/5/2013      1 Original 0.9771
## 6      6  1/6/2013      1 Original 0.9867
## 7      7  1/7/2013      1 Original 0.9873
## 8      8  1/8/2013      1 Original 0.9862
## 9      9  1/9/2013      1 Original 0.9849
## 10    10 1/10/2013      1 Original 0.9812
## 11    11 1/11/2013      1 Original 0.9855
## 12    12 1/12/2013      1 Original 0.9768
## 13    13  1/1/2014      1 Original 0.9788
## 14    14  1/2/2014      1 Original 0.9823
## 15    15  1/3/2014      1 Original 0.9825
## 16    16  1/4/2014      1 Original 0.9866
## 17    17  1/5/2014      1 Original 0.9838
## 18    18  1/6/2014      1 Original 0.9885
## 19    19  1/7/2014      1 Original 0.9877
## 20    20  1/8/2014      1 Original 0.9892
## 21    21  1/9/2014      1 Original 0.9916
## 22    22 1/10/2014      1 Original 0.9915
## 23    23 1/11/2014      1 Original 0.9898
## 24    24 1/12/2014      1 Original 0.9902
## 25    25  1/1/2015      1 Original 0.9862
## 26    26  1/2/2015      1 Original 0.9872
## 27    27  1/3/2015      1 Original 0.9875
## 28    28  1/4/2015      1 Original 0.9876
## 29    29  1/5/2015      1 Original 0.9875
## 30    30  1/6/2015      1 Original 0.9878
#   my.xmr.raw <- c(5045,4350,4350,3975,4290,4430,4485,4285,3980,3925,3645,3760,3300,3685,3463,5200)
#   ncrO1 <- ncrO[ncrO$Client == 1,][,5]
#   qcc(ncrO1, type = "xbar.one", title = "Individuals Chart\nfor Wheeler sample data",ylab= "NWAvailability", xlab = "Months",digits = 4)
# 
#   as.vector(ncrO1)
 #obj <- qcc((ncrO[ncrO$Client == 1,5]), type = "xbar.one", title = paste("Client", i),ylab= "NWAvailability", xlab = "Months",digits = 4)
 #plot(obj, main = "Client1")
 #process.capability(obj, spec.limits = c(0.95,0.999), digits = 3)

  attach(ncr)
ncr1 <- ncr[Client==1,]
ncr2 <- ncr[Client==2,]
ncr3 <- ncr[Client==3,]
ncr4 <- ncr[Client==4,]



 detach(ncr)
## For Client 1
# par(mfrow=c(2,2)
#     par(mar=c(0.5, 4.5, 0.5, 0.5))
## Original
ncr1o <- ncr1[ncr1$Type == "Original",]
 Fo <- ts(ncr1o[,5])
 Fots <- ts(Fo, start = 2013, freq= 12)
 hwFo <- HoltWinters(Fots) 
plot(Fots,xlim=c(2013, 2016), ylab = "Original")
lines(predict(hwFo,n.ahead=18),col=2)

### Trend
ncr1t <- ncr1[ncr1$Type == "Trend",]
Ft <- ts(ncr1t[,5])
Ftts <- ts(Ft, start = 2013, freq= 12)
hwFt <- HoltWinters(Ftts) 
plot(Ftts,xlim=c(2013, 2016), ylab = "Trend")
lines(predict(hwFt,n.ahead=18),col=2)

###Seasonal
ncr1s <- ncr1[ncr1$Type == "Seasonal",]
Fs <- ts(ncr1s[,5])
Fsts <- ts(Fs, start = 2013, freq= 12)
hwFs <- HoltWinters(Fsts) 
plot(Fsts,xlim=c(2013, 2016),ylab = "Seasonal")
lines(predict(hwFs,n.ahead=18),col=2)

## Remainder
ncr1r <- ncr1[ncr1$Type == "Remainder",]
Fr <- ts(ncr1r[,5])
Frts <- ts(Fr, start = 2013, freq= 12)
hwFr <- HoltWinters(Frts) 
plot(Frts,xlim=c(2013, 2016),ylab = "Remainder")
lines(predict(hwFr,n.ahead=18),col=2)

## For Client 2

#par(mfrow = c(2,2))
## Original
ncr2o <- ncr2[ncr2$Type == "Original",]
Fo <- ts(ncr2o[,5])
Fots <- ts(Fo, start = 2013, freq= 12)
hwFo <- HoltWinters(Fots) 
plot(Fots,xlim=c(2013, 2016), ylab = "Original")
lines(predict(hwFo,n.ahead=18),col=2)

### Trend
ncr2t <- ncr2[ncr2$Type == "Trend",]
Ft <- ts(ncr2t[,5])
Ftts <- ts(Ft, start = 2013, freq= 12)
hwFt <- HoltWinters(Ftts) 
plot(Ftts,xlim=c(2013, 2016), ylab = "Trend")
lines(predict(hwFt,n.ahead=18),col=2)

###Seasonal
ncr2s <- ncr2[ncr2$Type == "Seasonal",]
Fs <- ts(ncr2s[,5])
Fsts <- ts(Fs, start = 2013, freq= 12)
hwFs <- HoltWinters(Fsts) 
## Warning in HoltWinters(Fsts): optimization difficulties: ERROR:
## ABNORMAL_TERMINATION_IN_LNSRCH
plot(Fsts,xlim=c(2013, 2016),ylab = "Seasonal")
lines(predict(hwFs,n.ahead=18),col=2)

## Remainder
ncr2r <- ncr2[ncr2$Type == "Remainder",]
Fr <- ts(ncr2r[,5])
Frts <- ts(Fr, start = 2013, freq= 12)
hwFr <- HoltWinters(Frts) 
plot(Frts,xlim=c(2013, 2016),ylab = "Remainder")
lines(predict(hwFr,n.ahead=18),col=2)

## For Client 3

#par(mfrow = c(2,2))
## Original
ncr3o <- ncr3[ncr3$Type == "Original",]
ncr3o[,5]
##  [1] 0.975  0.9577 0.9573 0.9327 0.9596 0.9523 0.9634 0.9646 0.975  0.9771
## [11] 0.924  0.8741 0.941  0.9364 0.9436 0.9453 0.9673 0.9669 0.9516 0.9624
## [21] 0.9726 0.9718 0.9644 0.9524 0.9379 0.9589 0.959  0.956  0.9424 0.9664
## 362 Levels: -0.00016 -0.00019 -0.00023 -0.00026 -0.00027 ... 0.9948
Fo <- ts(ncr3o[,5])
Fots <- ts(Fo, start = 2013, freq= 12)
hwFo <- HoltWinters(Fots) 
plot(Fots,xlim=c(2013, 2016), ylab = "Original")
lines(predict(hwFo,n.ahead=18),col=2)

### Trend
ncr3t <- ncr3[ncr3$Type == "Trend",]
Ft <- ts(ncr3t[,5])
Ftts <- ts(Ft, start = 2013, freq= 12)
hwFt <- HoltWinters(Ftts) 
plot(Ftts,xlim=c(2013, 2016), ylab = "Trend")
lines(predict(hwFt,n.ahead=18),col=2)

###Seasonal
ncr3s <- ncr3[ncr3$Type == "Seasonal",]
ncr3s
##     Month      Date Client     Type    Value
## 301  null  1/1/2013      3 Seasonal -0.00484
## 302  null  1/2/2013      3 Seasonal -0.00452
## 303  null  1/3/2013      3 Seasonal  -0.0016
## 304  null  1/4/2013      3 Seasonal -0.00998
## 305  null  1/5/2013      3 Seasonal  0.00203
## 306  null  1/6/2013      3 Seasonal  0.00742
## 307  null  1/7/2013      3 Seasonal  0.00446
## 308  null  1/8/2013      3 Seasonal  0.01061
## 309  null  1/9/2013      3 Seasonal  0.02106
## 310  null 1/10/2013      3 Seasonal  0.02206
## 311  null 1/11/2013      3 Seasonal -0.00783
## 312  null 1/12/2013      3 Seasonal -0.03885
## 313  null  1/1/2014      3 Seasonal -0.00484
## 314  null  1/2/2014      3 Seasonal -0.00452
## 315  null  1/3/2014      3 Seasonal  -0.0016
## 316  null  1/4/2014      3 Seasonal -0.00998
## 317  null  1/5/2014      3 Seasonal  0.00203
## 318  null  1/6/2014      3 Seasonal  0.00742
## 319  null  1/7/2014      3 Seasonal  0.00446
## 320  null  1/8/2014      3 Seasonal  0.01061
## 321  null  1/9/2014      3 Seasonal  0.02106
## 322  null 1/10/2014      3 Seasonal  0.02206
## 323  null 1/11/2014      3 Seasonal -0.00783
## 324  null 1/12/2014      3 Seasonal -0.03885
## 325  null  1/1/2015      3 Seasonal -0.00484
## 326  null  1/2/2015      3 Seasonal -0.00452
## 327  null  1/3/2015      3 Seasonal  -0.0016
## 328  null  1/4/2015      3 Seasonal -0.00998
## 329  null  1/5/2015      3 Seasonal  0.00203
## 330  null  1/6/2015      3 Seasonal  0.00742
Fs <- ts(ncr3s[,5])
Fsts <- ts(Fs, start = 2013, freq= 12)
hwFs <- HoltWinters(Fsts) 
## Warning in HoltWinters(Fsts): optimization difficulties: ERROR:
## ABNORMAL_TERMINATION_IN_LNSRCH
plot(Fsts,xlim=c(2013, 2016),ylab = "Seasonal")
lines(predict(hwFs,n.ahead=18),col=2)

## Remainder
ncr3r <- ncr3[ncr3$Type == "Remainder",]
Fr <- ts(ncr3r[,5])
Frts <- ts(Fr, start = 2013, freq= 12)
hwFr <- HoltWinters(Frts) 
plot(Frts,xlim=c(2013, 2016),ylab = "Remainder")
lines(predict(hwFr,n.ahead=18),col=2)

## For Client 4

#par(mfrow = c(2,2))
## Original
ncr4o <- ncr4[ncr4$Type == "Original",]
Fo <- ts(ncr4o[,5])
Fots <- ts(Fo, start = 2013, freq= 12)
hwFo <- HoltWinters(Fots) 
plot(Fots,xlim=c(2013, 2016), ylab ="Original" )
lines(predict(hwFo,n.ahead=18),col=2)

### Trend
ncr4t <- ncr4[ncr4$Type == "Trend",]
Ft <- ts(ncr4t[,5])
Ftts <- ts(Ft, start = 2013, freq= 12)
hwFt <- HoltWinters(Ftts) 
plot(Ftts,xlim=c(2013, 2016), ylab = "Trend")
lines(predict(hwFt,n.ahead=18),col=2)

###Seasonal
ncr4s <- ncr4[ncr4$Type == "Seasonal",]
Fs <- ts(ncr4s[,5])
Fsts <- ts(Fs, start = 2013, freq= 12)
hwFs <- HoltWinters(Fsts) 
## Warning in HoltWinters(Fsts): optimization difficulties: ERROR:
## ABNORMAL_TERMINATION_IN_LNSRCH
plot(Fsts,xlim=c(2013, 2016),ylab = "Seasonal")
lines(predict(hwFs,n.ahead=18),col=2)

## Remainder
ncr4r <- ncr4[ncr4$Type == "Remainder",]
Fr <- ts(ncr4r[,5])
Frts <- ts(Fr, start = 2013, freq= 12)
hwFr <- HoltWinters(Frts) 
plot(Frts,xlim=c(2013, 2016),ylab = "Remainder")
lines(predict(hwFr,n.ahead=18),col=2)

####
kpi <-  read.csv("kpi4.csv")
print("Correlation plot of various KPIs")
## [1] "Correlation plot of various KPIs"
kpiC <- kpi[,c(2,3,15:18)]
names(kpiC) <- gsub("..CLIENT1", "", names(kpiC))

# install.packages("corrplot")
library(corrplot)
M <- cor(kpiC)
corrplot(M, method = "circle")

#par(mfrow = c(1,1))

# getwd()
# 
# install.packages("qcc")
library(qcc)
pare1 <- c(44,16,12,12,9,3,3,2)
names(pare1)<-c("HardFau","CashOut", "Comms", "DailyBalan","Host", "Vandalism","SuppliesOut","PM")
pareto.chart(pare1, ylab= "Hours", main = "Pareto Chart for Client A ( in hours)", col = "blue")

##              
## Pareto chart analysis for pare1
##               Frequency Cum.Freq. Percentage Cum.Percent.
##   HardFau            44        44  43.564356     43.56436
##   CashOut            16        60  15.841584     59.40594
##   Comms              12        72  11.881188     71.28713
##   DailyBalan         12        84  11.881188     83.16832
##   Host                9        93   8.910891     92.07921
##   Vandalism           3        96   2.970297     95.04950
##   SuppliesOut         3        99   2.970297     98.01980
##   PM                  2       101   1.980198    100.00000
library(rCharts)
r1 <- rPlot(Value ~ Month | Client, data = ncrO, color = 'Client', type = 'point')

```

You can also embed plots, for example:

Note that the echo = FALSE parameter was added to the code chunk to prevent printing of the R code that generated the plot.