library(conics)
##coefficients
v <- c(2, 2, 2, -20, -28, 10)
conicPlot(v)Determinants
Example from Astronomy
We will see the connection between conics and determinants later.
Determinants
Why determinant?
library(plotly)Loading required package: ggplot2
Warning: package 'ggplot2' was built under R version 4.2.3
Attaching package: 'plotly'
The following object is masked from 'package:ggplot2':
last_plot
The following object is masked from 'package:stats':
filter
The following object is masked from 'package:graphics':
layout
x <- c(4, 1, 3, 0)
y <- c(0, 2, 5, 3)
z <- c(0, 5, 1, 0)
intensity <- c(0, 0.33, 0.66, 1)
p<- plot_ly(x = x, y = y, z = z,
type = "mesh3d",
intensity = intensity,
showscale = TRUE
)
pA <- matrix(c(0, 1, 3, -1, -1, 1, -4, 0, 1, 0, 2, 4, 0, 1, 0, -4),
nrow = 4, ncol = 4, byrow = TRUE)
det(A)[1] 30
## Example 84
A <- matrix(c(0, 1, 3, -1, -1, 1, -4, 0, 1, 0, 2, 4, 0, 1, 0, -4),
nrow = 4, ncol = 4, byrow = TRUE)
det(A)[1] 30
## Example 86
A <- matrix(c(0, 1, 3, -1, -1, 1, -4, 0, 1, 0, 2, 4, 0, 1, 0, -4),
nrow = 4, ncol = 4, byrow = TRUE)
det(t(A))[1] 30
## Example 87
library(pracma)
A <- matrix(c(0, 1, 3, -1, -1, 1, -4, 0, 1, 0, 2, 4, 0, 1, 0, -4),
nrow = 4, ncol = 4, byrow = TRUE)
det(inv(A))[1] 0.03333333
library(matlib)
Attaching package: 'matlib'
The following objects are masked from 'package:pracma':
angle, inv
AI <- rowadd(A, 1, 2, -2)
det(AI)[1] 30
det(AI)/det(A)[1] 1
AI <- rowmult(A, 1, -2)
det(AI)[1] -60
det(AI)/det(A)[1] -2
Exercise
s <-seq(1,100,by=1)
k <-1/sCheck the following:
i. \(det(A \pm B) = det(A) \pm det(B)\),
ii. \(det(AB) = det(A)det(B)\).
Find \(A (\neq I)\) such that \(A^{-1}=A\).
Prove that the determinant of a square triangular matrix is the product of the diagonal elements.
Prove the result related to determinants of elementary matrices.