Processing math: 100%

The pdf of the order statistic can be written as

g(y1,y2,...,yn)={n!f(y1)f(y2)...f(yn)a<y1<y2<...yn0elsewhere

The marginal pdf of any order statistic, say Yk can be calculated by the following formula

gk(yk)=y2ay3a...ykabykbyk+1...byn1n!f(y1)f(y2)...f(yk1)f(yk)f(yk+1)...f(yn)dyn...dyk1dyk+1...dy2dy1=n!f(yk)y2af(y1)dy1...ykabykbyk+1...byn1n!f(y1)f(y2)f(yn)dyn...dyk1dyk+1...dy2=n!f(yk)y3aF(y2)f(y2)dy2...ykabykbyk+1...byn1n!f(y1)f(y2)f(yn)dyn...dyk1dyk+1...dy3=...=n!(k1)!(nk)![F(yk)]k1[1F(yk)]nkf(yk)

For above calculations we need to use the following calculations:

  1. for y1,y2,...yk1

y2af(y1)dy1=y2adF(y1=F(y2)F(a)=F(y2), since F(a)=0 y3aF(y2)f(y2)dy2=y3aF(y2)dF(y2)=12F(y3)2 We continue this process until f(yk1) and we get 1(k1)![F(yk)]k1

(2)For yk+1,yk+2,...yn we have the following calculations:

byn1f(yn)dyn=byn1dF(yn)=F(b)F(yn1)=1F(yn1), since F(b)=1 byn2[1F(yn1)]f(yn1)dyn1=byn2[1F(yn1)]dF(yn1)=12[1F(yn2)]2 We continue this process until f(yk+1) and we get 1(nk)![1F(yk)]nk

Combine (2) and (3) we can get (1)