The pdf of the order statistic can be written as
g(y1,y2,...,yn)={n!f(y1)f(y2)...f(yn)a<y1<y2<...yn0elsewhere
The marginal pdf of any order statistic, say Yk can be calculated by the following formula
gk(yk)=∫y2a∫y3a...∫yka∫byk∫byk+1...∫byn−1n!f(y1)f(y2)...f(yk−1)f(yk)f(yk+1)...f(yn)dyn...dyk−1dyk+1...dy2dy1=n!f(yk)∫y2af(y1)dy1...∫yka∫byk∫byk+1...∫byn−1n!f(y1)f(y2)f(yn)dyn...dyk−1dyk+1...dy2=n!f(yk)∫y3aF(y2)f(y2)dy2...∫yka∫byk∫byk+1...∫byn−1n!f(y1)f(y2)f(yn)dyn...dyk−1dyk+1...dy3=...=n!(k−1)!(n−k)![F(yk)]k−1[1−F(yk)]n−kf(yk)
For above calculations we need to use the following calculations:
∫y2af(y1)dy1=∫y2adF(y1)=F(y2)−F(a)=F(y2), since F(a)=0 ∫y3aF(y2)f(y2)dy2=∫y3aF(y2)dF(y2)=12F(y3)2 We continue this process until f(yk−1) and we get 1(k−1)![F(yk)]k−1
(2)For yk+1,yk+2,...yn we have the following calculations:
∫byn−1f(yn)dyn=∫byn−1dF(yn)=F(b)−F(yn−1)=1−F(yn−1), since F(b)=1 ∫byn−2[1−F(yn−1)]f(yn−1)dyn−1=∫byn−2[1−F(yn−1)]dF(yn−1)=12[1−F(yn−2)]2 We continue this process until f(yk+1) and we get 1(n−k)![1−F(yk)]n−k
Combine (2) and (3) we can get (1)◼