Erosion

Aca se analiza como se distribuye la erosion para las piezas 17 15 21 acumulando para cada pieza la cara V,P,I

library(survey)
## Attaching package: 'survey'
## 
## The following object(s) are masked from 'package:graphics':
## 
## dotchart
options(OutDec = ",")
library(car)
## Loading required package: MASS Loading required package: nnet
load("~/Dropbox/odontologia/maestria licet/octubre 2013/datos_licet_16102013.RData")
erosion <- read.csv("erosion.csv")

diseniopost1$variables <- cbind(diseniopost1$variables, erosion[, c(2:29)])
names(diseniopost1$variables[, 456:483])
##  [1] "Eros17" "Eros16" "Eros15" "Eros14" "Eros13" "Eros12" "Eros11"
##  [8] "Eros21" "Eros22" "Eros23" "Eros24" "Eros25" "Eros26" "Eros27"
## [15] "Eros37" "Eros36" "Eros35" "Eros34" "Eros33" "Eros32" "Eros31"
## [22] "Eros41" "Eros42" "Eros43" "Eros44" "Eros45" "Eros46" "Eros47"

Recodifica y pasa a Factores

diseniopost1$variables$Eros17 <- as.factor(diseniopost1$variables$Eros17)
diseniopost1$variables$Eros16 <- as.factor(diseniopost1$variables$Eros16)
diseniopost1$variables$Eros15 <- as.factor(diseniopost1$variables$Eros15)
diseniopost1$variables$Eros14 <- as.factor(diseniopost1$variables$Eros14)
diseniopost1$variables$Eros13 <- as.factor(diseniopost1$variables$Eros13)
diseniopost1$variables$Eros12 <- as.factor(diseniopost1$variables$Eros12)
diseniopost1$variables$Eros11 <- as.factor(diseniopost1$variables$Eros11)
diseniopost1$variables$Eros21 <- as.factor(diseniopost1$variables$Eros21)
diseniopost1$variables$Eros22 <- as.factor(diseniopost1$variables$Eros22)
diseniopost1$variables$Eros23 <- as.factor(diseniopost1$variables$Eros23)
diseniopost1$variables$Eros24 <- as.factor(diseniopost1$variables$Eros24)
diseniopost1$variables$Eros25 <- as.factor(diseniopost1$variables$Eros25)
diseniopost1$variables$Eros26 <- as.factor(diseniopost1$variables$Eros26)
diseniopost1$variables$Eros27 <- as.factor(diseniopost1$variables$Eros27)
diseniopost1$variables$Eros37 <- as.factor(diseniopost1$variables$Eros37)
diseniopost1$variables$Eros36 <- as.factor(diseniopost1$variables$Eros36)
diseniopost1$variables$Eros35 <- as.factor(diseniopost1$variables$Eros35)
diseniopost1$variables$Eros34 <- as.factor(diseniopost1$variables$Eros34)
diseniopost1$variables$Eros33 <- as.factor(diseniopost1$variables$Eros33)
diseniopost1$variables$Eros32 <- as.factor(diseniopost1$variables$Eros32)
diseniopost1$variables$Eros31 <- as.factor(diseniopost1$variables$Eros31)
diseniopost1$variables$Eros41 <- as.factor(diseniopost1$variables$Eros41)
diseniopost1$variables$Eros42 <- as.factor(diseniopost1$variables$Eros42)
diseniopost1$variables$Eros43 <- as.factor(diseniopost1$variables$Eros43)
diseniopost1$variables$Eros44 <- as.factor(diseniopost1$variables$Eros44)
diseniopost1$variables$Eros45 <- as.factor(diseniopost1$variables$Eros45)
diseniopost1$variables$Eros46 <- as.factor(diseniopost1$variables$Eros46)
diseniopost1$variables$Eros47 <- as.factor(diseniopost1$variables$Eros47)

save.image("~/Dropbox/odontologia/maestria licet/octubre 2013/datos_licet_20102013.RData")

summary(diseniopost1$variables[, 456:483])
##   Eros17      Eros16     Eros15     Eros14     Eros13     Eros12   
##  0   :1032   0   :841   0   :996   0   :916   0   :898   0   :607  
##  1   :   3   1   :271   1   : 37   1   :112   1   : 79   1   :111  
##  NA's: 119   2   : 22   2   :  2   2   :  7   2   : 54   2   :212  
##              3   :  2   NA's:119   NA's:119   3   :  4   3   :206  
##              NA's: 18                         NA's:119   NA's: 18  
##   Eros11     Eros21     Eros22     Eros23     Eros24     Eros25    
##  0   :560   0   :561   0   :601   0   :912   0   :943   0   :1007  
##  1   : 64   1   : 73   1   :122   1   : 76   1   : 88   1   :  26  
##  2   :235   2   :236   2   :212   2   : 38   2   :  4   2   :   2  
##  3   :277   3   :266   3   :201   3   :  8   NA's:119   NA's: 119  
##  NA's: 18   NA's: 18   NA's: 18   NA's:120                         
##   Eros26     Eros27      Eros37      Eros36     Eros35      Eros34    
##  0   :889   0   :1034   0   :1032   0   :911   0   :1011   0   :1009  
##  1   :225   1   :   1   1   :   2   1   :208   1   :  24   1   :  25  
##  2   : 19   NA's: 119   2   :   1   2   : 16   NA's: 119   2   :   1  
##  3   :  3               NA's: 119   3   :  1               NA's: 119  
##  NA's: 18                           NA's: 18                          
##   Eros33     Eros32     Eros31     Eros41     Eros42     Eros43   
##  0   :943   0   :735   0   :684   0   :677   0   :734   0   :945  
##  1   : 73   1   :221   1   :200   1   :194   1   :208   1   : 66  
##  2   : 16   2   :133   2   :199   2   :212   2   :145   2   : 20  
##  3   :  3   3   : 47   3   : 53   3   : 53   3   : 49   3   :  4  
##  NA's:119   NA's: 18   NA's: 18   NA's: 18   NA's: 18   NA's:119  
##   Eros44      Eros45      Eros46     Eros47    
##  0   :1004   0   :1016   0   :884   0   :1029  
##  1   :  29   1   :  18   1   :237   1   :   5  
##  2   :   2   3   :   1   2   : 15   3   :   1  
##  NA's: 119   NA's: 119   NA's: 18   NA's: 119  
## 
ero17 <- svymean(~Eros17, diseniopost1, na.rm = TRUE, deff = TRUE)
round(ero17 * 100, 1)
##             mean       SE DEff
## Eros170 9,99e+01 6,06e-04 0,43
## Eros171 1,00e-01 6,06e-04 0,43
ero16 <- svymean(~Eros16, diseniopost1, na.rm = TRUE, deff = TRUE)
round(ero16 * 100, 1)
##             mean       SE DEff
## Eros160 75,50000  0,02623 4,40
## Eros161 22,00000  0,02361 3,85
## Eros162  2,50000  0,00822 3,34
## Eros163  0,10000  0,00104 1,23
ero15 <- svymean(~Eros15, diseniopost1, na.rm = TRUE, deff = TRUE)
round(ero15 * 100, 1)
##             mean       SE DEff
## Eros150 95,50000  0,00709 1,27
## Eros151  3,90000  0,00740 1,57
## Eros152  0,60000  0,00410 3,17
ero14 <- svymean(~Eros14, diseniopost1, na.rm = TRUE, deff = TRUE)
round(ero14 * 100, 1)
##             mean       SE DEff
## Eros140 88,50000  0,01471 2,30
## Eros141 10,10000  0,01130 1,52
## Eros142  1,40000  0,00871 5,91
ero13 <- svymean(~Eros13, diseniopost1, na.rm = TRUE, deff = TRUE)
round(ero13 * 100, 1)
##             mean       SE DEff
## Eros130 86,30000  0,02753 6,91
## Eros131  7,10000  0,01148 2,16
## Eros132  5,80000  0,01692 5,66
## Eros133  0,80000  0,00344 1,52
ero12 <- svymean(~Eros12, diseniopost1, na.rm = TRUE, deff = TRUE)
round(ero12 * 100, 1)
##            mean      SE  DEff
## Eros120 53,6000  0,0404  7,76
## Eros121  9,3000  0,0140  2,76
## Eros122 15,8000  0,0176  2,75
## Eros123 21,2000  0,0435 13,41
ero11 <- svymean(~Eros11, diseniopost1, na.rm = TRUE, deff = TRUE)
round(ero11 * 100, 1)
##            mean      SE DEff
## Eros110 49,4000  0,0398 7,52
## Eros111  6,1000  0,0107 2,37
## Eros112 17,9000  0,0189 2,88
## Eros113 26,6000  0,0392 9,33


ero21 <- svymean(~Eros21, diseniopost1, na.rm = TRUE, deff = TRUE)
round(ero21 * 100, 1)
##            mean      SE DEff
## Eros210 49,9000  0,0353 5,89
## Eros211  6,8000  0,0123 2,82
## Eros212 18,2000  0,0227 4,11
## Eros213 25,1000  0,0386 9,36
ero22 <- svymean(~Eros22, diseniopost1, na.rm = TRUE, deff = TRUE)
round(ero22 * 100, 1)
##            mean      SE  DEff
## Eros220 53,0000  0,0346  5,68
## Eros221 10,8000  0,0191  4,47
## Eros222 16,3000  0,0164  2,33
## Eros223 19,9000  0,0378 10,62
ero23 <- svymean(~Eros23, diseniopost1, na.rm = TRUE, deff = TRUE)
round(ero23 * 100, 1)
##             mean       SE DEff
## Eros230 88,60000  0,02367 6,00
## Eros231  5,80000  0,00797 1,26
## Eros232  4,30000  0,01809 8,54
## Eros233  1,30000  0,00397 1,36
ero24 <- svymean(~Eros24, diseniopost1, na.rm = TRUE, deff = TRUE)
round(ero24 * 100, 1)
##             mean       SE DEff
## Eros240 92,50000  0,01401 3,04
## Eros241  6,30000  0,01430 3,75
## Eros242  1,30000  0,00986 8,43
ero25 <- svymean(~Eros25, diseniopost1, na.rm = TRUE, deff = TRUE)
round(ero25 * 100, 1)
##             mean       SE DEff
## Eros250 97,20000  0,00936 3,42
## Eros251  2,30000  0,00587 1,67
## Eros252  0,60000  0,00410 3,17
ero26 <- svymean(~Eros26, diseniopost1, na.rm = TRUE, deff = TRUE)
round(ero26 * 100, 1)
##             mean       SE DEff
## Eros260 79,70000  0,02580 4,87
## Eros261 18,10000  0,02285 4,18
## Eros262  2,00000  0,00818 3,99
## Eros263  0,20000  0,00136 1,11
ero27 <- svymean(~Eros27, diseniopost1, na.rm = TRUE, deff = TRUE)
round(ero27 * 100, 1)
##             mean       SE DEff
## Eros270 1,00e+02 2,06e-04 0,23
## Eros271 0,00e+00 2,06e-04 0,23

ero31 <- svymean(~Eros31, diseniopost1, na.rm = TRUE, deff = TRUE)
round(ero31 * 100, 1)
##            mean      SE  DEff
## Eros310 62,1000  0,0349  6,12
## Eros311 14,9000  0,0199  3,70
## Eros312 15,5000  0,0194  3,41
## Eros313  7,5000  0,0253 10,88
ero32 <- svymean(~Eros32, diseniopost1, na.rm = TRUE, deff = TRUE)
round(ero32 * 100, 1)
##            mean      SE  DEff
## Eros320 65,6000  0,0336  5,93
## Eros321 17,0000  0,0182  2,77
## Eros322 10,0000  0,0122  1,97
## Eros323  7,4000  0,0283 13,81
ero33 <- svymean(~Eros33, diseniopost1, na.rm = TRUE, deff = TRUE)
round(ero33 * 100, 1)
##             mean       SE DEff
## Eros330 89,20000  0,02873 9,26
## Eros331  7,40000  0,01341 2,82
## Eros332  2,60000  0,01429 8,60
## Eros333  0,70000  0,00303 1,37
ero34 <- svymean(~Eros34, diseniopost1, na.rm = TRUE, deff = TRUE)
round(ero34 * 100, 1)
##             mean       SE DEff
## Eros340 96,40000  0,01475 6,68
## Eros341  3,30000  0,01222 5,04
## Eros342  0,30000  0,00296 2,77
ero35 <- svymean(~Eros35, diseniopost1, na.rm = TRUE, deff = TRUE)
round(ero35 * 100, 1)
##            mean      SE DEff
## Eros350 96,8000  0,0126 5,45
## Eros351  3,2000  0,0126 5,45
ero36 <- svymean(~Eros36, diseniopost1, na.rm = TRUE, deff = TRUE)
round(ero36 * 100, 1)
##             mean       SE DEff
## Eros360 8,28e+01 2,06e-02 3,53
## Eros361 1,56e+01 1,93e-02 3,34
## Eros362 1,50e+00 6,42e-03 3,26
## Eros363 1,00e-01 6,59e-04 0,78
ero37 <- svymean(~Eros37, diseniopost1, na.rm = TRUE, deff = TRUE)
round(ero37 * 100, 1)
##             mean       SE DEff
## Eros370 9,96e+01 2,94e-03 2,29
## Eros371 1,00e-01 4,87e-04 0,39
## Eros372 3,00e-01 2,96e-03 2,77


ero41 <- svymean(~Eros41, diseniopost1, na.rm = TRUE, deff = TRUE)
round(ero41 * 100, 1)
##            mean      SE  DEff
## Eros410 61,4000  0,0364  6,61
## Eros411 14,9000  0,0194  3,53
## Eros412 16,0000  0,0203  3,63
## Eros413  7,6000  0,0254 10,83
ero42 <- svymean(~Eros42, diseniopost1, na.rm = TRUE, deff = TRUE)
round(ero42 * 100, 1)
##            mean      SE  DEff
## Eros420 64,9000  0,0356  6,58
## Eros421 17,3000  0,0155  2,00
## Eros422 10,2000  0,0129  2,16
## Eros423  7,6000  0,0284 13,67
ero43 <- svymean(~Eros43, diseniopost1, na.rm = TRUE, deff = TRUE)
round(ero43 * 100, 1)
##             mean       SE  DEff
## Eros430 88,70000  0,02905  9,10
## Eros431  7,30000  0,01360  2,96
## Eros432  3,40000  0,01888 11,56
## Eros433  0,60000  0,00339  2,23
ero44 <- svymean(~Eros44, diseniopost1, na.rm = TRUE, deff = TRUE)
round(ero44 * 100, 1)
##             mean       SE DEff
## Eros440 96,00000  0,01332 5,03
## Eros441  3,50000  0,01061 3,62
## Eros442  0,50000  0,00323 2,35
ero45 <- svymean(~Eros45, diseniopost1, na.rm = TRUE, deff = TRUE)
round(ero45 * 100, 1)
##             mean       SE DEff
## Eros450 97,80000  0,00690 2,40
## Eros451  2,00000  0,00652 2,29
## Eros453  0,10000  0,00133 1,39
ero46 <- svymean(~Eros46, diseniopost1, na.rm = TRUE, deff = TRUE)
round(ero46 * 100, 1)
##             mean       SE DEff
## Eros460 79,90000  0,02424 4,34
## Eros461 18,20000  0,02303 4,22
## Eros462  1,90000  0,00507 1,65
ero47 <- svymean(~Eros47, diseniopost1, na.rm = TRUE, deff = TRUE)
round(ero47 * 100, 1)
##             mean       SE DEff
## Eros470 99,10000  0,00623 4,78
## Eros471  0,70000  0,00609 5,41
## Eros473  0,10000  0,00133 1,39


svychisq(~Eros21 + Sexo.rec, diseniopost1, statistic = "Wald")
## 
##  Design-based Wald test of association
## 
## data:  svychisq(~Eros21 + Sexo.rec, diseniopost1, statistic = "Wald") 
## F = 0,6561, ndf = 3, ddf = 39, p-value = 0,584