Key points: (i) Overall effect, (ii) Cross country generalization, not limited to Fox

0. import data sets

~~ DESCRIPTIVE STATS ~~

1. demographics

a. sample size

table(!is.na(d1$participant))
## 
## TRUE 
## 4836
table(!is.na(d1$participant[d1$country_factor == "US"]))
## 
## TRUE 
## 3316
table(!is.na(d1$participant[d1$country_factor == "UK"]))
## 
## TRUE 
## 1520

b. age

describe(d1$age)
describe(d1$age[d1$country_factor == "US"])
describe(d1$age[d1$country_factor == "UK"])

c. gender

(t <- table(d1$gender_factor))
## 
## custom female   male 
##     16   2480   2053
round(prop.table(t), 3)
## 
## custom female   male 
##  0.004  0.545  0.451
(t <- table(d1$gender_factor[d1$country_factor == "US"]))
## 
## custom female   male 
##      6   1564   1477
round(prop.table(t), 3)
## 
## custom female   male 
##  0.002  0.513  0.485
(t <- table(d1$gender_factor[d1$country_factor == "UK"]))
## 
## custom female   male 
##     10    916    576
round(prop.table(t), 3)
## 
## custom female   male 
##  0.007  0.610  0.383

d. party identity

(t <- table(d1$party_factor))
## 
##    Democrat Independent  Republican 
##        2268         916        1470
round(prop.table(t), 3)
## 
##    Democrat Independent  Republican 
##       0.487       0.197       0.316
(t <- table(d1$party_factor[d1$country_factor == "US"]))
## 
##    Democrat Independent  Republican 
##        1402         627        1118
round(prop.table(t), 3)
## 
##    Democrat Independent  Republican 
##       0.446       0.199       0.355
(t <- table(d1$party_factor[d1$country_factor == "UK"]))
## 
##    Democrat Independent  Republican 
##         866         289         352
round(prop.table(t), 3)
## 
##    Democrat Independent  Republican 
##       0.575       0.192       0.234

e. education

describe(d1$education) 
describe(d1$education[d1$country_factor == "US"]) 
describe(d1$education[d1$country_factor == "UK"]) 

2. variables of interest

a. media exposure

Not included here, media exposure asks participants to “Consider each of the media sources below. In general, how much do you get news about Covid-19 from each source?” on a scale from 1 (Not at all) to 3 (Somewhat) to 5 (A great deal).

b. analytical media index

The first step to creating the analytical media index is multiplying individual analytic thinking scores for each media outlet by participant rated exposure to that outlet, Then taking the proportion of each of these products (i.e., dividing by the 12 possible US outlets to be exposed to, or 8 outlets for the UK)

foxAnalyticalIndex = (foxNewsExposure x foxAnalyticalScore) (foxAnalyticalIndex + cnnAnalyticalIndex + msnbcAnalyticalIndex + …) / 12 total outlets

describe(d1$index_ANexp)
describe(d1$index_ANexp[d1$country_factor == "US"])
describe(d1$index_ANexp[d1$country_factor == "UK"])

c. symbolic ideology

symbolic ideology is an average of three items. They ask “How liberal/conservative…” (1) in general, (2) on social issues, and (3) on economic issues. Participants answered on a scale from -3 (Very liberal) to 0 (Moderate) to +3 (Very conservative).

psych::alpha (data.frame(
  d1$symbolic_beliefs_1[d1$country_factor == "US"], 
  d1$symbolic_beliefs_2[d1$country_factor == "US"], 
  d1$symbolic_beliefs_3[d1$country_factor == "US"]), cumulative = F, na.rm = T, delete = T) #alpha = .94 
## 
## Reliability analysis   
## Call: psych::alpha(x = data.frame(d1$symbolic_beliefs_1[d1$country_factor == 
##     "US"], d1$symbolic_beliefs_2[d1$country_factor == "US"], 
##     d1$symbolic_beliefs_3[d1$country_factor == "US"]), cumulative = F, 
##     na.rm = T, delete = T)
## 
##   raw_alpha std.alpha G6(smc) average_r S/N    ase  mean  sd median_r
##       0.94      0.94    0.92      0.85  17 0.0017 0.089 1.6     0.86
## 
##  lower alpha upper     95% confidence boundaries
## 0.94 0.94 0.95 
## 
##  Reliability if an item is dropped:
##                                                  raw_alpha std.alpha G6(smc)
## d1.symbolic_beliefs_1.d1.country_factor.....US..      0.89      0.89    0.80
## d1.symbolic_beliefs_2.d1.country_factor.....US..      0.92      0.92    0.86
## d1.symbolic_beliefs_3.d1.country_factor.....US..      0.94      0.94    0.89
##                                                  average_r S/N alpha se var.r
## d1.symbolic_beliefs_1.d1.country_factor.....US..      0.80   8   0.0039    NA
## d1.symbolic_beliefs_2.d1.country_factor.....US..      0.86  12   0.0027    NA
## d1.symbolic_beliefs_3.d1.country_factor.....US..      0.89  16   0.0020    NA
##                                                  med.r
## d1.symbolic_beliefs_1.d1.country_factor.....US..  0.80
## d1.symbolic_beliefs_2.d1.country_factor.....US..  0.86
## d1.symbolic_beliefs_3.d1.country_factor.....US..  0.89
## 
##  Item statistics 
##                                                     n raw.r std.r r.cor r.drop
## d1.symbolic_beliefs_1.d1.country_factor.....US.. 3162  0.97  0.97  0.95   0.92
## d1.symbolic_beliefs_2.d1.country_factor.....US.. 3163  0.95  0.95  0.91   0.88
## d1.symbolic_beliefs_3.d1.country_factor.....US.. 3163  0.93  0.93  0.88   0.85
##                                                    mean  sd
## d1.symbolic_beliefs_1.d1.country_factor.....US..  0.060 1.7
## d1.symbolic_beliefs_2.d1.country_factor.....US.. -0.067 1.7
## d1.symbolic_beliefs_3.d1.country_factor.....US..  0.272 1.7
## 
## Non missing response frequency for each item
##                                                    -3   -2   -1    0    1    2
## d1.symbolic_beliefs_1.d1.country_factor.....US.. 0.08 0.13 0.09 0.38 0.09 0.13
## d1.symbolic_beliefs_2.d1.country_factor.....US.. 0.10 0.14 0.12 0.33 0.10 0.13
## d1.symbolic_beliefs_3.d1.country_factor.....US.. 0.06 0.11 0.09 0.35 0.13 0.16
##                                                     3 miss
## d1.symbolic_beliefs_1.d1.country_factor.....US.. 0.09 0.05
## d1.symbolic_beliefs_2.d1.country_factor.....US.. 0.09 0.05
## d1.symbolic_beliefs_3.d1.country_factor.....US.. 0.11 0.05
psych::alpha (data.frame(
  d1$symbolic_beliefs_1[d1$country_factor == "UK"], 
  d1$symbolic_beliefs_2[d1$country_factor == "UK"], 
  d1$symbolic_beliefs_3[d1$country_factor == "UK"]), cumulative = F, na.rm = T, delete = T)  
## 
## Reliability analysis   
## Call: psych::alpha(x = data.frame(d1$symbolic_beliefs_1[d1$country_factor == 
##     "UK"], d1$symbolic_beliefs_2[d1$country_factor == "UK"], 
##     d1$symbolic_beliefs_3[d1$country_factor == "UK"]), cumulative = F, 
##     na.rm = T, delete = T)
## 
##   raw_alpha std.alpha G6(smc) average_r S/N    ase  mean  sd median_r
##       0.92      0.92     0.9      0.79  12 0.0037 -0.61 1.4     0.81
## 
##  lower alpha upper     95% confidence boundaries
## 0.91 0.92 0.93 
## 
##  Reliability if an item is dropped:
##                                                  raw_alpha std.alpha G6(smc)
## d1.symbolic_beliefs_1.d1.country_factor.....UK..      0.83      0.83    0.72
## d1.symbolic_beliefs_2.d1.country_factor.....UK..      0.90      0.90    0.81
## d1.symbolic_beliefs_3.d1.country_factor.....UK..      0.92      0.92    0.85
##                                                  average_r  S/N alpha se var.r
## d1.symbolic_beliefs_1.d1.country_factor.....UK..      0.72  5.0   0.0085    NA
## d1.symbolic_beliefs_2.d1.country_factor.....UK..      0.81  8.7   0.0053    NA
## d1.symbolic_beliefs_3.d1.country_factor.....UK..      0.85 11.6   0.0041    NA
##                                                  med.r
## d1.symbolic_beliefs_1.d1.country_factor.....UK..  0.72
## d1.symbolic_beliefs_2.d1.country_factor.....UK..  0.81
## d1.symbolic_beliefs_3.d1.country_factor.....UK..  0.85
## 
##  Item statistics 
##                                                     n raw.r std.r r.cor r.drop
## d1.symbolic_beliefs_1.d1.country_factor.....UK.. 1509  0.96  0.96  0.94   0.90
## d1.symbolic_beliefs_2.d1.country_factor.....UK.. 1509  0.92  0.92  0.87   0.82
## d1.symbolic_beliefs_3.d1.country_factor.....UK.. 1509  0.91  0.91  0.83   0.79
##                                                   mean  sd
## d1.symbolic_beliefs_1.d1.country_factor.....UK.. -0.64 1.4
## d1.symbolic_beliefs_2.d1.country_factor.....UK.. -0.84 1.5
## d1.symbolic_beliefs_3.d1.country_factor.....UK.. -0.35 1.5
## 
## Non missing response frequency for each item
##                                                    -3   -2   -1    0    1    2
## d1.symbolic_beliefs_1.d1.country_factor.....UK.. 0.09 0.24 0.19 0.27 0.12 0.07
## d1.symbolic_beliefs_2.d1.country_factor.....UK.. 0.13 0.25 0.20 0.24 0.10 0.06
## d1.symbolic_beliefs_3.d1.country_factor.....UK.. 0.07 0.18 0.19 0.29 0.16 0.09
##                                                     3 miss
## d1.symbolic_beliefs_1.d1.country_factor.....UK.. 0.01 0.01
## d1.symbolic_beliefs_2.d1.country_factor.....UK.. 0.01 0.01
## d1.symbolic_beliefs_3.d1.country_factor.....UK.. 0.02 0.01
describe(d1$ideology)
describe(d1$ideology[d1$country_factor == "US"])
describe(d1$ideology[d1$country_factor == "UK"])

d. trust in experts

trust in experts is an average of 3-items asking about how much participants trust experts, medicine, economics, public health, and science. The trust response scale ranges from -3 (strongly distrust) to 0 (Neither trust nor distrust) to (Strongly trust)

describe(d1$trustExpert)
describe(d1$trustExpert[d1$country_factor == "US"], na.rm = T)
describe(d1$trustExpert[d1$country_factor == "UK"], na.rm = T)

3. LIWC media measures

a. Analytical thinking scales

Media outlet LIWC analytic thinking scores captures the degree to which people use words that suggest formal, logical, and hierarchical thinking patterns. Column two is raw scores, and column three is standardized scores.

i. US

iii. UK

iv. pairwise correlation for LIWC variables

- US

- UK

- both countries

4. outcome measures

Participants were asked “would you get a Covid-19 vaccine?” and answered on a scale from -3 (Definitely would not get it) to 0 (Undecided) to +3 (Definitely would get it).

describe(d1$vaxxIntentions)
describe(d1$vaxxIntentions[d1$country_factor == "US"])
describe(d1$vaxxIntentions[d1$country_factor == "UK"])

5. pairwise correlation table for IVs, DVs, and covariates

a. US

b. UK

~~ ANALYSES ~~

6. Analyses for Study 1 US + UK (July-August November)

a. More favorable vaccine intention among older adults, more educated, and more liberal, difference between US and UK

vaxxIntentions ~ USvUK * (ideology.z + age.z + education.z)

  vaxxIntentions
Predictors Est SE CI t p df
(Intercept) 0.941 0.037 0.869 – 1.013 25.747 <0.001 4461.000
USvUK 0.749 0.073 0.606 – 0.893 10.251 <0.001 4461.000
ideology.z -0.375 0.035 -0.444 – -0.306 -10.634 <0.001 4461.000
age.z 0.220 0.037 0.147 – 0.293 5.913 <0.001 4461.000
education.z 0.082 0.035 0.013 – 0.152 2.324 0.020 4461.000
USvUK * ideology.z 0.143 0.070 0.005 – 0.281 2.028 0.043 4461.000
USvUK * age.z -0.346 0.074 -0.492 – -0.200 -4.650 <0.001 4461.000
USvUK * education.z -0.196 0.071 -0.335 – -0.057 -2.770 0.006 4461.000
Observations 4469
R2 / R2 adjusted 0.094 / 0.093
## Scale for 'y' is already present. Adding another scale for 'y', which will
## replace the existing scale.

## Scale for 'y' is already present. Adding another scale for 'y', which will
## replace the existing scale.

## Scale for 'y' is already present. Adding another scale for 'y', which will
## replace the existing scale.

i. country simple slopes

  vaxxIntentions vaxxIntentions
Predictors Est SE CI t p df Est SE CI t p df
(Intercept) 0.566 0.038 0.492 – 0.641 14.915 <0.001 4461.000 1.315 0.062 1.193 – 1.438 21.065 <0.001 4461.000
US_0 0.749 0.073 0.606 – 0.893 10.251 <0.001 4461.000
ideology.z -0.446 0.036 -0.516 – -0.377 -12.553 <0.001 4461.000 -0.303 0.061 -0.423 – -0.184 -4.983 <0.001 4461.000
age.z 0.393 0.038 0.318 – 0.468 10.278 <0.001 4461.000 0.047 0.064 -0.078 – 0.172 0.736 0.462 4461.000
education.z 0.181 0.035 0.112 – 0.250 5.133 <0.001 4461.000 -0.016 0.062 -0.137 – 0.105 -0.257 0.797 4461.000
US_0 * ideology.z 0.143 0.070 0.005 – 0.281 2.028 0.043 4461.000
US_0 * age.z -0.346 0.074 -0.492 – -0.200 -4.650 <0.001 4461.000
US_0 * education.z -0.196 0.071 -0.335 – -0.057 -2.770 0.006 4461.000
UK_0 -0.749 0.073 -0.893 – -0.606 -10.251 <0.001 4461.000
UK_0 * ideology.z -0.143 0.070 -0.281 – -0.005 -2.028 0.043 4461.000
UK_0 * age.z 0.346 0.074 0.200 – 0.492 4.650 <0.001 4461.000
UK_0 * education.z 0.196 0.071 0.057 – 0.335 2.770 0.006 4461.000
Observations 4469 4469
R2 / R2 adjusted 0.094 / 0.093 0.094 / 0.093

b. analytical media interacts with demographics

vaxxIntentions ~ analytical index * (ideology + USvUK + age + education)

  vaxxIntentions
Predictors Est SE CI t p df
(Intercept) 1.013 0.032 0.950 – 1.076 31.732 <0.001 4459.000
index_ANexp.z 0.308 0.035 0.239 – 0.376 8.818 <0.001 4459.000
ideology.z -0.361 0.031 -0.421 – -0.300 -11.664 <0.001 4459.000
USvUK 0.888 0.069 0.752 – 1.023 12.835 <0.001 4459.000
age.z 0.343 0.032 0.280 – 0.407 10.624 <0.001 4459.000
education.z 0.160 0.031 0.101 – 0.220 5.253 <0.001 4459.000
index_ANexp.z *
ideology.z
0.132 0.029 0.076 – 0.188 4.625 <0.001 4459.000
index_ANexp.z * USvUK -0.156 0.073 -0.299 – -0.014 -2.152 0.031 4459.000
index_ANexp.z * age.z -0.059 0.034 -0.126 – 0.008 -1.729 0.084 4459.000
index_ANexp.z *
education.z
-0.063 0.026 -0.114 – -0.012 -2.404 0.016 4459.000
Observations 4469
R2 / R2 adjusted 0.123 / 0.122
## Scale for 'y' is already present. Adding another scale for 'y', which will
## replace the existing scale.
## Scale for 'colour' is already present. Adding another scale for 'colour',
## which will replace the existing scale.

## Scale for 'y' is already present. Adding another scale for 'y', which will
## replace the existing scale.

## Scale for 'y' is already present. Adding another scale for 'y', which will
## replace the existing scale.

## Scale for 'y' is already present. Adding another scale for 'y', which will
## replace the existing scale.

i. country simple slopes

  vaxxIntentions vaxxIntentions
Predictors Est SE CI t p df Est SE CI t p df
(Intercept) 0.569 0.038 0.496 – 0.643 15.162 <0.001 4459.000 1.457 0.055 1.349 – 1.564 26.508 <0.001 4459.000
index_ANexp.z 0.386 0.035 0.316 – 0.455 10.879 <0.001 4459.000 0.229 0.062 0.108 – 0.351 3.714 <0.001 4459.000
ideology.z -0.361 0.031 -0.421 – -0.300 -11.664 <0.001 4459.000 -0.361 0.031 -0.421 – -0.300 -11.664 <0.001 4459.000
US_0 0.888 0.069 0.752 – 1.023 12.835 <0.001 4459.000
age.z 0.343 0.032 0.280 – 0.407 10.624 <0.001 4459.000 0.343 0.032 0.280 – 0.407 10.624 <0.001 4459.000
education.z 0.160 0.031 0.101 – 0.220 5.253 <0.001 4459.000 0.160 0.031 0.101 – 0.220 5.253 <0.001 4459.000
index_ANexp.z *
ideology.z
0.132 0.029 0.076 – 0.188 4.625 <0.001 4459.000 0.132 0.029 0.076 – 0.188 4.625 <0.001 4459.000
index_ANexp.z * US_0 -0.156 0.073 -0.299 – -0.014 -2.152 0.031 4459.000
index_ANexp.z * age.z -0.059 0.034 -0.126 – 0.008 -1.729 0.084 4459.000 -0.059 0.034 -0.126 – 0.008 -1.729 0.084 4459.000
index_ANexp.z *
education.z
-0.063 0.026 -0.114 – -0.012 -2.404 0.016 4459.000 -0.063 0.026 -0.114 – -0.012 -2.404 0.016 4459.000
UK_0 -0.888 0.069 -1.023 – -0.752 -12.835 <0.001 4459.000
index_ANexp.z * UK_0 0.156 0.073 0.014 – 0.299 2.152 0.031 4459.000
Observations 4469 4469
R2 / R2 adjusted 0.123 / 0.122 0.123 / 0.122

c. analytical index * ideology + country

vaxxIntentions ~ analytic index * ideology + USvUK + age + education

  vaxxIntentions
Predictors Est SE CI t p df
(Intercept) 1.025 0.032 0.963 – 1.087 32.462 <0.001 4462.000
index_ANexp.z 0.356 0.030 0.297 – 0.414 11.944 <0.001 4462.000
ideology.z -0.359 0.031 -0.419 – -0.299 -11.724 <0.001 4462.000
USvUK 0.902 0.069 0.767 – 1.038 13.073 <0.001 4462.000
age.z 0.346 0.032 0.282 – 0.409 10.693 <0.001 4462.000
education.z 0.142 0.030 0.084 – 0.201 4.748 <0.001 4462.000
index_ANexp.z *
ideology.z
0.135 0.028 0.080 – 0.191 4.788 <0.001 4462.000
Observations 4469
R2 / R2 adjusted 0.121 / 0.120
## Scale for 'y' is already present. Adding another scale for 'y', which will
## replace the existing scale.

d. mediation path: analytical index -> expert trust -> vaccine intentions

i. interaction between analytic index and ideology

Model 1: vaxxIntentions ~ analytic.index.z * ideology.z + USvsUK + age.z + edu.z

Model 2: expertTrust ~ analytic.index.z * ideology.z + USvsUK + age.z + edu.z

Model 3: vaxxIntentions ~ ideology.z * (analytic.index.z + expertTrust.z) + USvsUK + age.z + edu.z

  vaxxIntentions trustExpert vaxxIntentions
Predictors Est SE CI t p df Est SE CI t p df Est SE CI t p df
(Intercept) 1.025 0.032 0.963 – 1.087 32.462 <0.001 4462.000 1.705 0.022 1.662 – 1.748 77.411 <0.001 4462.000 0.945 0.030 0.886 – 1.004 31.399 <0.001 4460.000
index_ANexp.z 0.356 0.030 0.297 – 0.414 11.944 <0.001 4462.000 0.191 0.021 0.151 – 0.232 9.208 <0.001 4462.000 0.256 0.028 0.201 – 0.311 9.135 <0.001 4460.000
ideology.z -0.359 0.031 -0.419 – -0.299 -11.724 <0.001 4462.000 -0.313 0.021 -0.355 – -0.271 -14.668 <0.001 4462.000 -0.192 0.029 -0.250 – -0.135 -6.589 <0.001 4460.000
USvUK 0.902 0.069 0.767 – 1.038 13.073 <0.001 4462.000 0.564 0.048 0.469 – 0.658 11.710 <0.001 4462.000 0.605 0.065 0.478 – 0.733 9.288 <0.001 4460.000
age.z 0.346 0.032 0.282 – 0.409 10.693 <0.001 4462.000 0.153 0.023 0.109 – 0.197 6.798 <0.001 4462.000 0.265 0.030 0.206 – 0.324 8.771 <0.001 4460.000
education.z 0.142 0.030 0.084 – 0.201 4.748 <0.001 4462.000 0.141 0.021 0.100 – 0.182 6.749 <0.001 4462.000 0.067 0.028 0.012 – 0.122 2.395 0.017 4460.000
index_ANexp.z *
ideology.z
0.135 0.028 0.080 – 0.191 4.788 <0.001 4462.000 0.096 0.020 0.058 – 0.135 4.895 <0.001 4462.000 0.088 0.027 0.035 – 0.141 3.260 0.001 4460.000
trustExpert.z 0.780 0.030 0.722 – 0.838 26.354 <0.001 4460.000
trustExpert.z *
ideology.z
-0.016 0.027 -0.069 – 0.036 -0.609 0.542 4460.000
Observations 4469 4469 4469
R2 / R2 adjusted 0.121 / 0.120 0.126 / 0.125 0.240 / 0.238

ii. interaction between analytic index, ideology, and country

Model 1: vaxxIntentions ~ analytic.index.z * ideology.z * USvsUK + age.z + edu.z

Model 2: expertTrust ~ analytic.index.z * ideology.z * USvsUK + age.z + edu.z

Model 3: vaxxIntentions ~ ideology.z * (analytic.index.z + expertTrust.z) * USvsUK + age.z + edu.z

  vaxxIntentions trustExpert vaxxIntentions
Predictors Est SE CI t p df Est SE CI t p df Est SE CI t p df
(Intercept) 1.020 0.033 0.955 – 1.085 30.841 <0.001 4459.000 1.704 0.023 1.659 – 1.749 73.979 <0.001 4459.000 0.918 0.032 0.856 – 0.981 28.858 <0.001 4455.000
index_ANexp.z 0.326 0.034 0.260 – 0.393 9.605 <0.001 4459.000 0.151 0.024 0.105 – 0.197 6.374 <0.001 4459.000 0.248 0.032 0.185 – 0.310 7.795 <0.001 4455.000
ideology.z -0.351 0.035 -0.419 – -0.283 -10.137 <0.001 4459.000 -0.293 0.024 -0.340 – -0.246 -12.146 <0.001 4459.000 -0.198 0.035 -0.267 – -0.129 -5.605 <0.001 4455.000
USvUK 0.896 0.070 0.759 – 1.033 12.802 <0.001 4459.000 0.562 0.049 0.466 – 0.658 11.521 <0.001 4459.000 0.568 0.067 0.437 – 0.700 8.461 <0.001 4455.000
age.z 0.343 0.032 0.280 – 0.407 10.599 <0.001 4459.000 0.149 0.023 0.105 – 0.193 6.610 <0.001 4459.000 0.276 0.030 0.217 – 0.336 9.088 <0.001 4455.000
education.z 0.144 0.030 0.085 – 0.203 4.799 <0.001 4459.000 0.144 0.021 0.103 – 0.185 6.889 <0.001 4459.000 0.071 0.028 0.016 – 0.126 2.526 0.012 4455.000
index_ANexp.z *
ideology.z
0.123 0.035 0.055 – 0.191 3.564 <0.001 4459.000 0.079 0.024 0.032 – 0.126 3.281 0.001 4459.000 0.080 0.033 0.016 – 0.144 2.459 0.014 4455.000
index_ANexp.z * USvUK -0.125 0.068 -0.258 – 0.008 -1.848 0.065 4459.000 -0.161 0.047 -0.254 – -0.068 -3.404 0.001 4459.000 -0.060 0.063 -0.184 – 0.064 -0.949 0.343 4455.000
ideology.z * USvUK 0.010 0.068 -0.124 – 0.144 0.146 0.884 4459.000 0.057 0.048 -0.036 – 0.151 1.207 0.228 4459.000 0.007 0.070 -0.130 – 0.143 0.095 0.924 4455.000
(index_ANexp.z
ideology.z)
USvUK
-0.018 0.069 -0.153 – 0.117 -0.264 0.792 4459.000 -0.033 0.048 -0.127 – 0.061 -0.687 0.492 4459.000 -0.020 0.065 -0.147 – 0.107 -0.304 0.761 4455.000
trustExpert.z 0.849 0.035 0.781 – 0.918 24.273 <0.001 4455.000
trustExpert.z *
ideology.z
0.016 0.036 -0.055 – 0.088 0.441 0.659 4455.000
trustExpert.z * USvUK 0.263 0.070 0.125 – 0.400 3.745 <0.001 4455.000
(trustExpert.z
ideology.z)
USvUK
0.061 0.073 -0.082 – 0.204 0.834 0.404 4455.000
Observations 4469 4469 4469
R2 / R2 adjusted 0.121 / 0.120 0.129 / 0.127 0.242 / 0.240

iii. demographics

Model 1: vaxxIntentions ~ ideology.z + USvUK + age.z + education.z

Model 2: expertTrust ~ index.z + ideology.z + USvUK + age.z + education.z

Model 3: vaxxIntentions ~ expertTrust.z + ideology.z + USvUK + age.z + education.z

  vaxxIntentions trustExpert vaxxIntentions
Predictors Est SE CI t p df Est SE CI t p df Est SE CI t p df
(Intercept) 1.020 0.033 0.955 – 1.085 30.841 <0.001 4459.000 1.684 0.022 1.641 – 1.728 76.011 <0.001 4464.000 0.922 0.030 0.864 – 0.980 31.164 <0.001 4463.000
index_ANexp.z 0.326 0.034 0.260 – 0.393 9.605 <0.001 4459.000
ideology.z -0.351 0.035 -0.419 – -0.283 -10.137 <0.001 4459.000 -0.342 0.021 -0.384 – -0.301 -16.055 <0.001 4464.000 -0.223 0.029 -0.280 – -0.166 -7.645 <0.001 4463.000
USvUK 0.896 0.070 0.759 – 1.033 12.802 <0.001 4459.000 0.524 0.048 0.430 – 0.618 10.891 <0.001 4464.000 0.528 0.065 0.401 – 0.655 8.133 <0.001 4463.000
age.z 0.343 0.032 0.280 – 0.407 10.599 <0.001 4459.000 0.132 0.023 0.088 – 0.177 5.835 <0.001 4464.000 0.237 0.030 0.178 – 0.297 7.819 <0.001 4463.000
education.z 0.144 0.030 0.085 – 0.203 4.799 <0.001 4459.000 0.141 0.021 0.099 – 0.182 6.642 <0.001 4464.000 0.064 0.028 0.008 – 0.119 2.251 0.024 4463.000
index_ANexp.z *
ideology.z
0.123 0.035 0.055 – 0.191 3.564 <0.001 4459.000
index_ANexp.z * USvUK -0.125 0.068 -0.258 – 0.008 -1.848 0.065 4459.000
ideology.z * USvUK 0.010 0.068 -0.124 – 0.144 0.146 0.884 4459.000
(index_ANexp.z
ideology.z)
USvUK
-0.018 0.069 -0.153 – 0.117 -0.264 0.792 4459.000
trustExpert.z 0.822 0.029 0.764 – 0.879 27.967 <0.001 4463.000
Observations 4469 4469 4469
R2 / R2 adjusted 0.121 / 0.120 0.104 / 0.104 0.224 / 0.223

e. robustness checks

i. summary LIWC variables

vaxxIntentions ~ [XXXX index] * (ideology + USvUK + age + education)

AN = analytical (main model)

AUTH = authentic

AF = affect

CL = clout

NE = negative emotion

PE = positive emotion

  vaxxIntentions vaxxIntentions vaxxIntentions vaxxIntentions vaxxIntentions
Predictors Est CI p Est CI p Est CI p Est CI p Est CI p
(Intercept) 1.019 0.955 – 1.083 <0.001 1.012 0.949 – 1.074 <0.001 1.025 0.960 – 1.090 <0.001 1.019 0.955 – 1.083 <0.001 1.020 0.955 – 1.084 <0.001
ideology.z -0.362 -0.423 – -0.302 <0.001 -0.368 -0.428 – -0.308 <0.001 -0.362 -0.423 – -0.302 <0.001 -0.364 -0.425 – -0.304 <0.001 -0.360 -0.420 – -0.299 <0.001
USvUK 0.935 0.796 – 1.074 <0.001 0.865 0.730 – 1.000 <0.001 0.956 0.816 – 1.096 <0.001 0.932 0.793 – 1.071 <0.001 0.939 0.800 – 1.079 <0.001
age.z 0.338 0.274 – 0.401 <0.001 0.345 0.282 – 0.408 <0.001 0.342 0.278 – 0.405 <0.001 0.339 0.275 – 0.402 <0.001 0.336 0.273 – 0.399 <0.001
education.z 0.162 0.102 – 0.222 <0.001 0.160 0.100 – 0.220 <0.001 0.160 0.100 – 0.220 <0.001 0.163 0.103 – 0.223 <0.001 0.161 0.101 – 0.221 <0.001
index_AFexp.z 0.325 0.252 – 0.398 <0.001
index_AFexp.z *
ideology.z
0.144 0.088 – 0.200 <0.001
index_AFexp.z * USvUK -0.105 -0.256 – 0.047 0.175
index_AFexp.z * age.z -0.040 -0.107 – 0.026 0.231
index_AFexp.z *
education.z
-0.059 -0.111 – -0.008 0.023
index_AUTHexp.z 0.319 0.250 – 0.388 <0.001
index_AUTHexp.z *
ideology.z
0.136 0.080 – 0.192 <0.001
index_AUTHexp.z * USvUK -0.109 -0.252 – 0.034 0.136
index_AUTHexp.z * age.z -0.058 -0.125 – 0.009 0.089
index_AUTHexp.z *
education.z
-0.065 -0.116 – -0.015 0.011
index_CLexp.z 0.336 0.260 – 0.413 <0.001
index_CLexp.z *
ideology.z
0.138 0.082 – 0.194 <0.001
index_CLexp.z * USvUK -0.069 -0.226 – 0.088 0.388
index_CLexp.z * age.z -0.042 -0.108 – 0.024 0.210
index_CLexp.z *
education.z
-0.057 -0.108 – -0.007 0.027
index_PEexp.z 0.324 0.251 – 0.397 <0.001
index_PEexp.z *
ideology.z
0.145 0.089 – 0.201 <0.001
index_PEexp.z * USvUK -0.098 -0.249 – 0.053 0.204
index_PEexp.z * age.z -0.041 -0.107 – 0.026 0.230
index_PEexp.z *
education.z
-0.060 -0.112 – -0.009 0.021
index_NEexp.z 0.326 0.254 – 0.399 <0.001
index_NEexp.z *
ideology.z
0.143 0.087 – 0.199 <0.001
index_NEexp.z * USvUK -0.113 -0.265 – 0.039 0.145
index_NEexp.z * age.z -0.041 -0.107 – 0.025 0.227
index_NEexp.z *
education.z
-0.058 -0.110 – -0.006 0.027
Observations 4469 4469 4469 4469 4469
R2 / R2 adjusted 0.124 / 0.122 0.124 / 0.122 0.123 / 0.122 0.124 / 0.122 0.124 / 0.122

ii. difference score: analytical-[XXXX] index * ideology + age + education

vaxxIntentions ~ difference score index * ideology * USvUK + age + education

model 1 = analytic - authenticity

model 2 = analytic - clout

model 3 = main model

  vaxxIntentions vaxxIntentions vaxxIntentions
Predictors Est CI t p Est CI t p Est CI t p
(Intercept) 1.020 0.955 – 1.085 30.655 <0.001 1.049 0.977 – 1.122 28.472 <0.001 1.020 0.955 – 1.085 30.841 <0.001
USvUK 0.908 0.770 – 1.046 12.892 <0.001 0.596 0.447 – 0.745 7.863 <0.001 0.896 0.759 – 1.033 12.802 <0.001
age.z 0.341 0.278 – 0.405 10.531 <0.001 0.365 0.300 – 0.430 11.062 <0.001 0.343 0.280 – 0.407 10.599 <0.001
education.z 0.145 0.086 – 0.204 4.827 <0.001 0.133 0.073 – 0.192 4.384 <0.001 0.144 0.085 – 0.203 4.799 <0.001
ideology.z -0.346 -0.415 – -0.278 -9.975 <0.001 -0.381 -0.458 – -0.304 -9.681 <0.001 -0.351 -0.419 – -0.283 -10.137 <0.001
ideology.z * USvUK 0.011 -0.123 – 0.146 0.167 0.867 -0.047 -0.200 – 0.106 -0.601 0.548 0.010 -0.124 – 0.144 0.146 0.884
index_AN_AUTH_exp.z 0.318 0.251 – 0.384 9.389 <0.001
index_AN_AUTH_exp.z *
ideology.z
0.117 0.050 – 0.184 3.415 0.001
index_AN_AUTH_exp.z *
USvUK
-0.154 -0.286 – -0.021 -2.274 0.023
(index_AN_AUTH_exp.z
ideology.z)
USvUK
-0.031 -0.165 – 0.103 -0.455 0.649
index_AN_CL_exp.z 0.359 0.285 – 0.433 9.494 <0.001
index_AN_CL_exp.z *
ideology.z
0.053 -0.017 – 0.122 1.484 0.138
index_AN_CL_exp.z * USvUK -0.413 -0.560 – -0.266 -5.514 <0.001
(index_AN_CL_exp.z
ideology.z)
USvUK
0.021 -0.117 – 0.160 0.302 0.763
index_ANexp.z 0.326 0.260 – 0.393 9.605 <0.001
index_ANexp.z *
ideology.z
0.123 0.055 – 0.191 3.564 <0.001
index_ANexp.z * USvUK -0.125 -0.258 – 0.008 -1.848 0.065
(index_ANexp.z
ideology.z)
USvUK
-0.018 -0.153 – 0.117 -0.264 0.792
Observations 4469 4469 4469
R2 / R2 adjusted 0.121 / 0.119 0.107 / 0.105 0.121 / 0.120

iii. sum of media index

vaxxIntentions ~ sum media consumption * ideology * USvUK + age + education

vs. main model

  vaxxIntentions vaxxIntentions
Predictors Est CI t p Est CI t p
(Intercept) 0.613 0.512 – 0.714 11.877 <0.001 1.020 0.955 – 1.085 30.841 <0.001
sum.exp 0.041 0.031 – 0.051 8.158 <0.001
ideology.z -0.512 -0.618 – -0.407 -9.486 <0.001 -0.351 -0.419 – -0.283 -10.137 <0.001
USvUK 1.033 0.827 – 1.240 9.801 <0.001 0.896 0.759 – 1.033 12.802 <0.001
age.z 0.341 0.278 – 0.404 10.536 <0.001 0.343 0.280 – 0.407 10.599 <0.001
education.z 0.145 0.086 – 0.204 4.824 <0.001 0.144 0.085 – 0.203 4.799 <0.001
sum.exp * ideology.z 0.017 0.006 – 0.027 3.164 0.002
sum.exp * USvUK 0.007 -0.013 – 0.027 0.678 0.498
ideology.z * USvUK 0.037 -0.172 – 0.247 0.349 0.727 0.010 -0.124 – 0.144 0.146 0.884
(sum.exp * ideology.z) *
USvUK
0.006 -0.014 – 0.026 0.575 0.565
index_ANexp.z 0.326 0.260 – 0.393 9.605 <0.001
index_ANexp.z *
ideology.z
0.123 0.055 – 0.191 3.564 <0.001
index_ANexp.z * USvUK -0.125 -0.258 – 0.008 -1.848 0.065
(index_ANexp.z
ideology.z)
USvUK
-0.018 -0.153 – 0.117 -0.264 0.792
Observations 4469 4469
R2 / R2 adjusted 0.122 / 0.120 0.121 / 0.120

iv. ethnicity included US only

vaxxIntentions ~ index_ANexp.z * ideology.z + US_0 + age.z + education.z + White_.5

  vaxxIntentions
Predictors Est SE CI t p df
(Intercept) 0.501 0.041 0.420 – 0.582 12.152 <0.001 2980.000
index_ANexp.z 0.419 0.037 0.346 – 0.491 11.298 <0.001 2980.000
ideology.z -0.386 0.037 -0.459 – -0.312 -10.315 <0.001 2980.000
age.z 0.414 0.039 0.337 – 0.491 10.572 <0.001 2980.000
education.z 0.180 0.036 0.110 – 0.250 5.025 <0.001 2980.000
white_.5 0.357 0.081 0.198 – 0.516 4.404 <0.001 2980.000
index_ANexp.z *
ideology.z
0.147 0.033 0.081 – 0.212 4.402 <0.001 2980.000
Observations 2987
R2 / R2 adjusted 0.128 / 0.126
## Scale for 'y' is already present. Adding another scale for 'y', which will
## replace the existing scale.

7. Figures

## Scale for 'colour' is already present. Adding another scale for 'colour',
## which will replace the existing scale.
## Scale for 'y' is already present. Adding another scale for 'y', which will
## replace the existing scale.

## Scale for 'colour' is already present. Adding another scale for 'colour',
## which will replace the existing scale.
## Scale for 'y' is already present. Adding another scale for 'y', which will
## replace the existing scale.