Corona Virus

library(babynames)
library(countrycode)
library(dplyr)
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
library(echarts4r)
library(glue)
library(GGally)
## Loading required package: ggplot2
## Registered S3 method overwritten by 'GGally':
##   method from   
##   +.gg   ggplot2
library(glue)
library(gganimate)
## No renderer backend detected. gganimate will default to writing frames to separate files
## Consider installing:
## - the `gifski` package for gif output
## - the `av` package for video output
## and restarting the R session
library(geojsonio)
## Registered S3 method overwritten by 'geojsonsf':
##   method        from   
##   print.geojson geojson
## 
## Attaching package: 'geojsonio'
## The following object is masked from 'package:base':
## 
##     pretty
library(gapminder)
library(ggridges)
library(htmltools)
library(highcharter)
## Registered S3 method overwritten by 'quantmod':
##   method            from
##   as.zoo.data.frame zoo
library(hrbrthemes)
## NOTE: Either Arial Narrow or Roboto Condensed fonts are required to use these themes.
##       Please use hrbrthemes::import_roboto_condensed() to install Roboto Condensed and
##       if Arial Narrow is not on your system, please see https://bit.ly/arialnarrow
library(leaflet)
library(leaflet)
library(lubridate)
## 
## Attaching package: 'lubridate'
## The following objects are masked from 'package:base':
## 
##     date, intersect, setdiff, union
library(RColorBrewer)
library(rio)
library(plotly)
## 
## Attaching package: 'plotly'
## The following object is masked from 'package:rio':
## 
##     export
## The following object is masked from 'package:ggplot2':
## 
##     last_plot
## The following object is masked from 'package:stats':
## 
##     filter
## The following object is masked from 'package:graphics':
## 
##     layout
library(sf)
## Linking to GEOS 3.9.1, GDAL 3.4.3, PROJ 7.2.1; sf_use_s2() is TRUE
library(scales)
library(stringr)
library(tidyverse)
## ── Attaching packages
## ───────────────────────────────────────
## tidyverse 1.3.2 ──
## ✔ tibble  3.1.8     ✔ purrr   0.3.5
## ✔ tidyr   1.2.1     ✔ forcats 0.5.2
## ✔ readr   2.1.3     
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ lubridate::as.difftime() masks base::as.difftime()
## ✖ readr::col_factor()      masks scales::col_factor()
## ✖ lubridate::date()        masks base::date()
## ✖ purrr::discard()         masks scales::discard()
## ✖ plotly::filter()         masks dplyr::filter(), stats::filter()
## ✖ lubridate::intersect()   masks base::intersect()
## ✖ dplyr::lag()             masks stats::lag()
## ✖ lubridate::setdiff()     masks base::setdiff()
## ✖ lubridate::union()       masks base::union()

Preparing Data

covid <- read_csv("datasetupdate-covid.csv")
## Rows: 230696 Columns: 67
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## chr   (4): iso_code, continent, location, tests_units
## dbl  (62): total_cases, new_cases, new_cases_smoothed, total_deaths, new_dea...
## date  (1): date
## 
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
glimpse(covid)
## Rows: 230,696
## Columns: 67
## $ iso_code                                   <chr> "AFG", "AFG", "AFG", "AFG",…
## $ continent                                  <chr> "Asia", "Asia", "Asia", "As…
## $ location                                   <chr> "Afghanistan", "Afghanistan…
## $ date                                       <date> 2020-02-24, 2020-02-25, 20…
## $ total_cases                                <dbl> 5, 5, 5, 5, 5, 5, 5, 5, 5, …
## $ new_cases                                  <dbl> 5, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ new_cases_smoothed                         <dbl> NA, NA, NA, NA, NA, 0.714, …
## $ total_deaths                               <dbl> NA, NA, NA, NA, NA, NA, NA,…
## $ new_deaths                                 <dbl> NA, NA, NA, NA, NA, NA, NA,…
## $ new_deaths_smoothed                        <dbl> NA, NA, NA, NA, NA, NA, NA,…
## $ total_cases_per_million                    <dbl> 0.125, 0.125, 0.125, 0.125,…
## $ new_cases_per_million                      <dbl> 0.125, 0.000, 0.000, 0.000,…
## $ new_cases_smoothed_per_million             <dbl> NA, NA, NA, NA, NA, 0.018, …
## $ total_deaths_per_million                   <dbl> NA, NA, NA, NA, NA, NA, NA,…
## $ new_deaths_per_million                     <dbl> NA, NA, NA, NA, NA, NA, NA,…
## $ new_deaths_smoothed_per_million            <dbl> NA, NA, NA, NA, NA, NA, NA,…
## $ reproduction_rate                          <dbl> NA, NA, NA, NA, NA, NA, NA,…
## $ icu_patients                               <dbl> NA, NA, NA, NA, NA, NA, NA,…
## $ icu_patients_per_million                   <dbl> NA, NA, NA, NA, NA, NA, NA,…
## $ hosp_patients                              <dbl> NA, NA, NA, NA, NA, NA, NA,…
## $ hosp_patients_per_million                  <dbl> NA, NA, NA, NA, NA, NA, NA,…
## $ weekly_icu_admissions                      <dbl> NA, NA, NA, NA, NA, NA, NA,…
## $ weekly_icu_admissions_per_million          <dbl> NA, NA, NA, NA, NA, NA, NA,…
## $ weekly_hosp_admissions                     <dbl> NA, NA, NA, NA, NA, NA, NA,…
## $ weekly_hosp_admissions_per_million         <dbl> NA, NA, NA, NA, NA, NA, NA,…
## $ total_tests                                <dbl> NA, NA, NA, NA, NA, NA, NA,…
## $ new_tests                                  <dbl> NA, NA, NA, NA, NA, NA, NA,…
## $ total_tests_per_thousand                   <dbl> NA, NA, NA, NA, NA, NA, NA,…
## $ new_tests_per_thousand                     <dbl> NA, NA, NA, NA, NA, NA, NA,…
## $ new_tests_smoothed                         <dbl> NA, NA, NA, NA, NA, NA, NA,…
## $ new_tests_smoothed_per_thousand            <dbl> NA, NA, NA, NA, NA, NA, NA,…
## $ positive_rate                              <dbl> NA, NA, NA, NA, NA, NA, NA,…
## $ tests_per_case                             <dbl> NA, NA, NA, NA, NA, NA, NA,…
## $ tests_units                                <chr> NA, NA, NA, NA, NA, NA, NA,…
## $ total_vaccinations                         <dbl> NA, NA, NA, NA, NA, NA, NA,…
## $ people_vaccinated                          <dbl> NA, NA, NA, NA, NA, NA, NA,…
## $ people_fully_vaccinated                    <dbl> NA, NA, NA, NA, NA, NA, NA,…
## $ total_boosters                             <dbl> NA, NA, NA, NA, NA, NA, NA,…
## $ new_vaccinations                           <dbl> NA, NA, NA, NA, NA, NA, NA,…
## $ new_vaccinations_smoothed                  <dbl> NA, NA, NA, NA, NA, NA, NA,…
## $ total_vaccinations_per_hundred             <dbl> NA, NA, NA, NA, NA, NA, NA,…
## $ people_vaccinated_per_hundred              <dbl> NA, NA, NA, NA, NA, NA, NA,…
## $ people_fully_vaccinated_per_hundred        <dbl> NA, NA, NA, NA, NA, NA, NA,…
## $ total_boosters_per_hundred                 <dbl> NA, NA, NA, NA, NA, NA, NA,…
## $ new_vaccinations_smoothed_per_million      <dbl> NA, NA, NA, NA, NA, NA, NA,…
## $ new_people_vaccinated_smoothed             <dbl> NA, NA, NA, NA, NA, NA, NA,…
## $ new_people_vaccinated_smoothed_per_hundred <dbl> NA, NA, NA, NA, NA, NA, NA,…
## $ stringency_index                           <dbl> 8.33, 8.33, 8.33, 8.33, 8.3…
## $ population_density                         <dbl> 54.422, 54.422, 54.422, 54.…
## $ median_age                                 <dbl> 18.6, 18.6, 18.6, 18.6, 18.…
## $ aged_65_older                              <dbl> 2.581, 2.581, 2.581, 2.581,…
## $ aged_70_older                              <dbl> 1.337, 1.337, 1.337, 1.337,…
## $ gdp_per_capita                             <dbl> 1803.987, 1803.987, 1803.98…
## $ extreme_poverty                            <dbl> NA, NA, NA, NA, NA, NA, NA,…
## $ cardiovasc_death_rate                      <dbl> 597.029, 597.029, 597.029, …
## $ diabetes_prevalence                        <dbl> 9.59, 9.59, 9.59, 9.59, 9.5…
## $ female_smokers                             <dbl> NA, NA, NA, NA, NA, NA, NA,…
## $ male_smokers                               <dbl> NA, NA, NA, NA, NA, NA, NA,…
## $ handwashing_facilities                     <dbl> 37.746, 37.746, 37.746, 37.…
## $ hospital_beds_per_thousand                 <dbl> 0.5, 0.5, 0.5, 0.5, 0.5, 0.…
## $ life_expectancy                            <dbl> 64.83, 64.83, 64.83, 64.83,…
## $ human_development_index                    <dbl> 0.511, 0.511, 0.511, 0.511,…
## $ population                                 <dbl> 40099462, 40099462, 4009946…
## $ excess_mortality_cumulative_absolute       <dbl> NA, NA, NA, NA, NA, NA, NA,…
## $ excess_mortality_cumulative                <dbl> NA, NA, NA, NA, NA, NA, NA,…
## $ excess_mortality                           <dbl> NA, NA, NA, NA, NA, NA, NA,…
## $ excess_mortality_cumulative_per_million    <dbl> NA, NA, NA, NA, NA, NA, NA,…

Exploration Data

# Check NA exist
anyNA(covid)
## [1] TRUE
# Check detail NA
colSums(is.na(covid))
##                                   iso_code 
##                                          0 
##                                  continent 
##                                      13024 
##                                   location 
##                                          0 
##                                       date 
##                                          0 
##                                total_cases 
##                                      13082 
##                                  new_cases 
##                                      13343 
##                         new_cases_smoothed 
##                                      14539 
##                               total_deaths 
##                                      32294 
##                                 new_deaths 
##                                      32345 
##                        new_deaths_smoothed 
##                                      33525 
##                    total_cases_per_million 
##                                      14076 
##                      new_cases_per_million 
##                                      14337 
##             new_cases_smoothed_per_million 
##                                      15528 
##                   total_deaths_per_million 
##                                      33275 
##                     new_deaths_per_million 
##                                      33326 
##            new_deaths_smoothed_per_million 
##                                      34501 
##                          reproduction_rate 
##                                      59517 
##                               icu_patients 
##                                     199194 
##                   icu_patients_per_million 
##                                     199194 
##                              hosp_patients 
##                                     195370 
##                  hosp_patients_per_million 
##                                     195370 
##                      weekly_icu_admissions 
##                                     222832 
##          weekly_icu_admissions_per_million 
##                                     222832 
##                     weekly_hosp_admissions 
##                                     212047 
##         weekly_hosp_admissions_per_million 
##                                     212047 
##                                total_tests 
##                                     151309 
##                                  new_tests 
##                                     155293 
##                   total_tests_per_thousand 
##                                     151309 
##                     new_tests_per_thousand 
##                                     155293 
##                         new_tests_smoothed 
##                                     126731 
##            new_tests_smoothed_per_thousand 
##                                     126731 
##                              positive_rate 
##                                     134769 
##                             tests_per_case 
##                                     136348 
##                                tests_units 
##                                     123908 
##                         total_vaccinations 
##                                     164836 
##                          people_vaccinated 
##                                     167634 
##                    people_fully_vaccinated 
##                                     170338 
##                             total_boosters 
##                                     194777 
##                           new_vaccinations 
##                                     176139 
##                  new_vaccinations_smoothed 
##                                      96028 
##             total_vaccinations_per_hundred 
##                                     164836 
##              people_vaccinated_per_hundred 
##                                     167634 
##        people_fully_vaccinated_per_hundred 
##                                     170338 
##                 total_boosters_per_hundred 
##                                     194777 
##      new_vaccinations_smoothed_per_million 
##                                      96028 
##             new_people_vaccinated_smoothed 
##                                      96494 
## new_people_vaccinated_smoothed_per_hundred 
##                                      96494 
##                           stringency_index 
##                                      61588 
##                         population_density 
##                                      29236 
##                                 median_age 
##                                      44296 
##                              aged_65_older 
##                                      46263 
##                              aged_70_older 
##                                      45271 
##                             gdp_per_capita 
##                                      44881 
##                            extreme_poverty 
##                                     109636 
##                      cardiovasc_death_rate 
##                                      44802 
##                        diabetes_prevalence 
##                                      35229 
##                             female_smokers 
##                                      89934 
##                               male_smokers 
##                                      91861 
##                     handwashing_facilities 
##                                     139167 
##                 hospital_beds_per_thousand 
##                                      65215 
##                            life_expectancy 
##                                      18671 
##                    human_development_index 
##                                      49320 
##                                 population 
##                                        994 
##       excess_mortality_cumulative_absolute 
##                                     222930 
##                excess_mortality_cumulative 
##                                     222930 
##                           excess_mortality 
##                                     222879 
##    excess_mortality_cumulative_per_million 
##                                     222930
covid$year_date <- year(covid$date)
covid$month_date <- month(covid$date, label = T, abbr = F)
covid <- covid %>% rename('Timeline' = 'date', 'Dailycases' = 'new_cases', 'Dailydeaths' = 'new_deaths', 'Country' = 'location')
glimpse(covid)
## Rows: 230,696
## Columns: 69
## $ iso_code                                   <chr> "AFG", "AFG", "AFG", "AFG",…
## $ continent                                  <chr> "Asia", "Asia", "Asia", "As…
## $ Country                                    <chr> "Afghanistan", "Afghanistan…
## $ Timeline                                   <date> 2020-02-24, 2020-02-25, 20…
## $ total_cases                                <dbl> 5, 5, 5, 5, 5, 5, 5, 5, 5, …
## $ Dailycases                                 <dbl> 5, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ new_cases_smoothed                         <dbl> NA, NA, NA, NA, NA, 0.714, …
## $ total_deaths                               <dbl> NA, NA, NA, NA, NA, NA, NA,…
## $ Dailydeaths                                <dbl> NA, NA, NA, NA, NA, NA, NA,…
## $ new_deaths_smoothed                        <dbl> NA, NA, NA, NA, NA, NA, NA,…
## $ total_cases_per_million                    <dbl> 0.125, 0.125, 0.125, 0.125,…
## $ new_cases_per_million                      <dbl> 0.125, 0.000, 0.000, 0.000,…
## $ new_cases_smoothed_per_million             <dbl> NA, NA, NA, NA, NA, 0.018, …
## $ total_deaths_per_million                   <dbl> NA, NA, NA, NA, NA, NA, NA,…
## $ new_deaths_per_million                     <dbl> NA, NA, NA, NA, NA, NA, NA,…
## $ new_deaths_smoothed_per_million            <dbl> NA, NA, NA, NA, NA, NA, NA,…
## $ reproduction_rate                          <dbl> NA, NA, NA, NA, NA, NA, NA,…
## $ icu_patients                               <dbl> NA, NA, NA, NA, NA, NA, NA,…
## $ icu_patients_per_million                   <dbl> NA, NA, NA, NA, NA, NA, NA,…
## $ hosp_patients                              <dbl> NA, NA, NA, NA, NA, NA, NA,…
## $ hosp_patients_per_million                  <dbl> NA, NA, NA, NA, NA, NA, NA,…
## $ weekly_icu_admissions                      <dbl> NA, NA, NA, NA, NA, NA, NA,…
## $ weekly_icu_admissions_per_million          <dbl> NA, NA, NA, NA, NA, NA, NA,…
## $ weekly_hosp_admissions                     <dbl> NA, NA, NA, NA, NA, NA, NA,…
## $ weekly_hosp_admissions_per_million         <dbl> NA, NA, NA, NA, NA, NA, NA,…
## $ total_tests                                <dbl> NA, NA, NA, NA, NA, NA, NA,…
## $ new_tests                                  <dbl> NA, NA, NA, NA, NA, NA, NA,…
## $ total_tests_per_thousand                   <dbl> NA, NA, NA, NA, NA, NA, NA,…
## $ new_tests_per_thousand                     <dbl> NA, NA, NA, NA, NA, NA, NA,…
## $ new_tests_smoothed                         <dbl> NA, NA, NA, NA, NA, NA, NA,…
## $ new_tests_smoothed_per_thousand            <dbl> NA, NA, NA, NA, NA, NA, NA,…
## $ positive_rate                              <dbl> NA, NA, NA, NA, NA, NA, NA,…
## $ tests_per_case                             <dbl> NA, NA, NA, NA, NA, NA, NA,…
## $ tests_units                                <chr> NA, NA, NA, NA, NA, NA, NA,…
## $ total_vaccinations                         <dbl> NA, NA, NA, NA, NA, NA, NA,…
## $ people_vaccinated                          <dbl> NA, NA, NA, NA, NA, NA, NA,…
## $ people_fully_vaccinated                    <dbl> NA, NA, NA, NA, NA, NA, NA,…
## $ total_boosters                             <dbl> NA, NA, NA, NA, NA, NA, NA,…
## $ new_vaccinations                           <dbl> NA, NA, NA, NA, NA, NA, NA,…
## $ new_vaccinations_smoothed                  <dbl> NA, NA, NA, NA, NA, NA, NA,…
## $ total_vaccinations_per_hundred             <dbl> NA, NA, NA, NA, NA, NA, NA,…
## $ people_vaccinated_per_hundred              <dbl> NA, NA, NA, NA, NA, NA, NA,…
## $ people_fully_vaccinated_per_hundred        <dbl> NA, NA, NA, NA, NA, NA, NA,…
## $ total_boosters_per_hundred                 <dbl> NA, NA, NA, NA, NA, NA, NA,…
## $ new_vaccinations_smoothed_per_million      <dbl> NA, NA, NA, NA, NA, NA, NA,…
## $ new_people_vaccinated_smoothed             <dbl> NA, NA, NA, NA, NA, NA, NA,…
## $ new_people_vaccinated_smoothed_per_hundred <dbl> NA, NA, NA, NA, NA, NA, NA,…
## $ stringency_index                           <dbl> 8.33, 8.33, 8.33, 8.33, 8.3…
## $ population_density                         <dbl> 54.422, 54.422, 54.422, 54.…
## $ median_age                                 <dbl> 18.6, 18.6, 18.6, 18.6, 18.…
## $ aged_65_older                              <dbl> 2.581, 2.581, 2.581, 2.581,…
## $ aged_70_older                              <dbl> 1.337, 1.337, 1.337, 1.337,…
## $ gdp_per_capita                             <dbl> 1803.987, 1803.987, 1803.98…
## $ extreme_poverty                            <dbl> NA, NA, NA, NA, NA, NA, NA,…
## $ cardiovasc_death_rate                      <dbl> 597.029, 597.029, 597.029, …
## $ diabetes_prevalence                        <dbl> 9.59, 9.59, 9.59, 9.59, 9.5…
## $ female_smokers                             <dbl> NA, NA, NA, NA, NA, NA, NA,…
## $ male_smokers                               <dbl> NA, NA, NA, NA, NA, NA, NA,…
## $ handwashing_facilities                     <dbl> 37.746, 37.746, 37.746, 37.…
## $ hospital_beds_per_thousand                 <dbl> 0.5, 0.5, 0.5, 0.5, 0.5, 0.…
## $ life_expectancy                            <dbl> 64.83, 64.83, 64.83, 64.83,…
## $ human_development_index                    <dbl> 0.511, 0.511, 0.511, 0.511,…
## $ population                                 <dbl> 40099462, 40099462, 4009946…
## $ excess_mortality_cumulative_absolute       <dbl> NA, NA, NA, NA, NA, NA, NA,…
## $ excess_mortality_cumulative                <dbl> NA, NA, NA, NA, NA, NA, NA,…
## $ excess_mortality                           <dbl> NA, NA, NA, NA, NA, NA, NA,…
## $ excess_mortality_cumulative_per_million    <dbl> NA, NA, NA, NA, NA, NA, NA,…
## $ year_date                                  <dbl> 2020, 2020, 2020, 2020, 202…
## $ month_date                                 <ord> Februari, Februari, Februar…
summary(covid)
##    iso_code          continent           Country             Timeline         
##  Length:230696      Length:230696      Length:230696      Min.   :2020-01-01  
##  Class :character   Class :character   Class :character   1st Qu.:2020-11-10  
##  Mode  :character   Mode  :character   Mode  :character   Median :2021-07-11  
##                                                           Mean   :2021-07-06  
##                                                           3rd Qu.:2022-03-03  
##                                                           Max.   :2022-10-27  
##                                                                               
##   total_cases          Dailycases      new_cases_smoothed  total_deaths    
##  Min.   :        1   Min.   :      0   Min.   :      0    Min.   :      1  
##  1st Qu.:     4396   1st Qu.:      0   1st Qu.:      6    1st Qu.:    113  
##  Median :    49489   Median :     53   Median :     94    Median :   1180  
##  Mean   :  4464512   Mean   :  12355   Mean   :  12393    Mean   :  74188  
##  3rd Qu.:   523961   3rd Qu.:    953   3rd Qu.:   1123    3rd Qu.:   9799  
##  Max.   :629437595   Max.   :4081967   Max.   :3436031    Max.   :6586637  
##  NA's   :13082       NA's   :13343     NA's   :14539      NA's   :32294    
##   Dailydeaths      new_deaths_smoothed total_cases_per_million
##  Min.   :    0.0   Min.   :    0.00    Min.   :     0         
##  1st Qu.:    0.0   1st Qu.:    0.00    1st Qu.:  1103         
##  Median :    1.0   Median :    1.43    Median : 10429         
##  Mean   :  137.9   Mean   :  138.57    Mean   : 60641         
##  3rd Qu.:   14.0   3rd Qu.:   15.71    3rd Qu.: 72898         
##  Max.   :17731.0   Max.   :14857.71    Max.   :665505         
##  NA's   :32345     NA's   :33525       NA's   :14076          
##  new_cases_per_million new_cases_smoothed_per_million total_deaths_per_million
##  Min.   :     0.00     Min.   :    0.00               Min.   :   0.0          
##  1st Qu.:     0.00     1st Qu.:    1.32               1st Qu.:  29.4          
##  Median :     7.41     Median :   19.16               Median : 214.6          
##  Mean   :   188.57     Mean   :  189.02               Mean   : 693.0          
##  3rd Qu.:    96.57     3rd Qu.:  135.21               3rd Qu.:1025.1          
##  Max.   :195005.31     Max.   :36401.61               Max.   :6432.8          
##  NA's   :14337         NA's   :15528                  NA's   :33275           
##  new_deaths_per_million new_deaths_smoothed_per_million reproduction_rate
##  Min.   :  0.00         Min.   :  0.00                  Min.   :-0.09    
##  1st Qu.:  0.00         1st Qu.:  0.00                  1st Qu.: 0.75    
##  Median :  0.03         Median :  0.20                  Median : 0.96    
##  Mean   :  1.40         Mean   :  1.40                  Mean   : 0.94    
##  3rd Qu.:  0.96         3rd Qu.:  1.33                  3rd Qu.: 1.15    
##  Max.   :553.80         Max.   :148.67                  Max.   : 5.71    
##  NA's   :33326          NA's   :34501                   NA's   :59517    
##   icu_patients     icu_patients_per_million hosp_patients   
##  Min.   :    0.0   Min.   :  0.00           Min.   :     0  
##  1st Qu.:   29.0   1st Qu.:  3.61           1st Qu.:   195  
##  Median :  136.0   Median :  9.71           Median :   779  
##  Mean   :  770.8   Mean   : 19.66           Mean   :  3956  
##  3rd Qu.:  533.0   3rd Qu.: 26.16           3rd Qu.:  3006  
##  Max.   :28891.0   Max.   :180.39           Max.   :154513  
##  NA's   :199194    NA's   :199194           NA's   :195370  
##  hosp_patients_per_million weekly_icu_admissions
##  Min.   :   0.00           Min.   :   0.0       
##  1st Qu.:  35.98           1st Qu.:  36.0       
##  Median :  93.99           Median : 175.0       
##  Mean   : 156.74           Mean   : 431.2       
##  3rd Qu.: 205.18           3rd Qu.: 560.0       
##  Max.   :1546.50           Max.   :5563.0       
##  NA's   :195370            NA's   :222832       
##  weekly_icu_admissions_per_million weekly_hosp_admissions
##  Min.   :  0.00                    Min.   :     0        
##  1st Qu.:  3.15                    1st Qu.:   290        
##  Median :  7.74                    Median :  1031        
##  Mean   : 17.05                    Mean   :  4875        
##  3rd Qu.: 17.34                    3rd Qu.:  4610        
##  Max.   :807.92                    Max.   :153988        
##  NA's   :222832                    NA's   :212047        
##  weekly_hosp_admissions_per_million  total_tests          new_tests       
##  Min.   :    0.00                   Min.   :0.000e+00   Min.   :       1  
##  1st Qu.:   30.68                   1st Qu.:3.647e+05   1st Qu.:    2244  
##  Median :   74.39                   Median :2.067e+06   Median :    8783  
##  Mean   :  118.81                   Mean   :2.110e+07   Mean   :   67285  
##  3rd Qu.:  136.21                   3rd Qu.:1.025e+07   3rd Qu.:   37229  
##  Max.   :10536.33                   Max.   :9.214e+09   Max.   :35855632  
##  NA's   :212047                     NA's   :151309      NA's   :155293    
##  total_tests_per_thousand new_tests_per_thousand new_tests_smoothed
##  Min.   :    0.00         Min.   :  0.00         Min.   :       0  
##  1st Qu.:   43.59         1st Qu.:  0.29         1st Qu.:    1486  
##  Median :  234.14         Median :  0.97         Median :    6570  
##  Mean   :  924.25         Mean   :  3.27         Mean   :  142178  
##  3rd Qu.:  894.37         3rd Qu.:  2.91         3rd Qu.:   32205  
##  Max.   :32925.83         Max.   :531.06         Max.   :14769984  
##  NA's   :151309           NA's   :155293         NA's   :126731    
##  new_tests_smoothed_per_thousand positive_rate    tests_per_case     
##  Min.   :  0.00                  Min.   :0.00     Min.   :      1.0  
##  1st Qu.:  0.20                  1st Qu.:0.02     1st Qu.:      7.1  
##  Median :  0.85                  Median :0.06     Median :     17.5  
##  Mean   :  2.83                  Mean   :0.10     Mean   :   2403.6  
##  3rd Qu.:  2.58                  3rd Qu.:0.14     3rd Qu.:     54.6  
##  Max.   :147.60                  Max.   :1.00     Max.   :1023631.9  
##  NA's   :126731                  NA's   :134769   NA's   :136348     
##  tests_units        total_vaccinations  people_vaccinated  
##  Length:230696      Min.   :0.000e+00   Min.   :0.000e+00  
##  Class :character   1st Qu.:1.229e+06   1st Qu.:6.939e+05  
##  Mode  :character   Median :8.799e+06   Median :4.542e+06  
##                     Mean   :2.849e+08   Mean   :1.307e+08  
##                     3rd Qu.:5.799e+07   3rd Qu.:2.846e+07  
##                     Max.   :1.287e+10   Max.   :5.412e+09  
##                     NA's   :164836      NA's   :167634     
##  people_fully_vaccinated total_boosters      new_vaccinations  
##  Min.   :1.000e+00       Min.   :1.000e+00   Min.   :       0  
##  1st Qu.:5.700e+05       1st Qu.:1.125e+05   1st Qu.:    4144  
##  Median :4.052e+06       Median :2.507e+06   Median :   31095  
##  Mean   :1.137e+08       Mean   :5.969e+07   Mean   :  918812  
##  3rd Qu.:2.552e+07       3rd Qu.:1.634e+07   3rd Qu.:  234449  
##  Max.   :4.986e+09       Max.   :2.584e+09   Max.   :49675850  
##  NA's   :170338          NA's   :194777      NA's   :176139    
##  new_vaccinations_smoothed total_vaccinations_per_hundred
##  Min.   :       0          Min.   :  0.00                
##  1st Qu.:     603          1st Qu.: 27.05                
##  Median :    6262          Median :100.03                
##  Mean   :  389635          Mean   :103.43                
##  3rd Qu.:   46838          3rd Qu.:165.90                
##  Max.   :43690278          Max.   :375.65                
##  NA's   :96028             NA's   :164836                
##  people_vaccinated_per_hundred people_fully_vaccinated_per_hundred
##  Min.   :  0.00                Min.   :  0.00                     
##  1st Qu.: 18.38                1st Qu.: 12.09                     
##  Median : 55.04                Median : 46.56                     
##  Mean   : 47.89                Mean   : 42.69                     
##  3rd Qu.: 74.87                3rd Qu.: 68.99                     
##  Max.   :128.78                Max.   :126.79                     
##  NA's   :167634                NA's   :170338                     
##  total_boosters_per_hundred new_vaccinations_smoothed_per_million
##  Min.   :  0.00             Min.   :     0                       
##  1st Qu.:  1.34             1st Qu.:   318                       
##  Median : 20.22             Median :  1240                       
##  Mean   : 26.84             Mean   :  2515                       
##  3rd Qu.: 48.73             3rd Qu.:  3489                       
##  Max.   :140.05             Max.   :117862                       
##  NA's   :194777             NA's   :96028                        
##  new_people_vaccinated_smoothed new_people_vaccinated_smoothed_per_hundred
##  Min.   :       0               Min.   : 0.00                             
##  1st Qu.:     147               1st Qu.: 0.01                             
##  Median :    1822               Median : 0.03                             
##  Mean   :  145322               Mean   : 0.10                             
##  3rd Qu.:   16087               3rd Qu.: 0.12                             
##  Max.   :21071237               Max.   :11.79                             
##  NA's   :96494                  NA's   :96494                             
##  stringency_index population_density    median_age    aged_65_older  
##  Min.   :  0.00   Min.   :    0.137   Min.   :15.10   Min.   : 1.14  
##  1st Qu.: 30.80   1st Qu.:   37.312   1st Qu.:22.30   1st Qu.: 3.53  
##  Median : 47.22   Median :   88.125   Median :30.60   Median : 6.70  
##  Mean   : 47.75   Mean   :  456.385   Mean   :30.61   Mean   : 8.80  
##  3rd Qu.: 65.74   3rd Qu.:  214.243   3rd Qu.:39.10   3rd Qu.:14.18  
##  Max.   :100.00   Max.   :20546.766   Max.   :48.20   Max.   :27.05  
##  NA's   :61588    NA's   :29236       NA's   :44296   NA's   :46263  
##  aged_70_older   gdp_per_capita     extreme_poverty  cardiovasc_death_rate
##  Min.   : 0.53   Min.   :   661.2   Min.   : 0.10    Min.   : 79.37       
##  1st Qu.: 2.06   1st Qu.:  4449.9   1st Qu.: 0.60    1st Qu.:170.05       
##  Median : 4.03   Median : 12951.8   Median : 2.20    Median :243.96       
##  Mean   : 5.55   Mean   : 19545.5   Mean   :13.64    Mean   :261.46       
##  3rd Qu.: 8.68   3rd Qu.: 27936.9   3rd Qu.:21.40    3rd Qu.:329.94       
##  Max.   :18.49   Max.   :116935.6   Max.   :77.60    Max.   :724.42       
##  NA's   :45271   NA's   :44881      NA's   :109636   NA's   :44802        
##  diabetes_prevalence female_smokers   male_smokers   handwashing_facilities
##  Min.   : 0.99       Min.   : 0.10   Min.   : 7.70   Min.   :  1.19        
##  1st Qu.: 5.31       1st Qu.: 1.90   1st Qu.:21.60   1st Qu.: 20.86        
##  Median : 7.20       Median : 6.30   Median :31.40   Median : 49.84        
##  Mean   : 8.39       Mean   :10.68   Mean   :32.81   Mean   : 50.92        
##  3rd Qu.:10.59       3rd Qu.:19.30   3rd Qu.:41.30   3rd Qu.: 83.24        
##  Max.   :30.53       Max.   :44.00   Max.   :78.10   Max.   :100.00        
##  NA's   :35229       NA's   :89934   NA's   :91861   NA's   :139167        
##  hospital_beds_per_thousand life_expectancy human_development_index
##  Min.   : 0.10              Min.   :53.28   Min.   :0.39           
##  1st Qu.: 1.30              1st Qu.:69.50   1st Qu.:0.60           
##  Median : 2.50              Median :75.05   Median :0.74           
##  Mean   : 3.09              Mean   :73.62   Mean   :0.72           
##  3rd Qu.: 4.20              3rd Qu.:79.07   3rd Qu.:0.84           
##  Max.   :13.80              Max.   :86.75   Max.   :0.96           
##  NA's   :65215              NA's   :18671   NA's   :49320          
##    population        excess_mortality_cumulative_absolute
##  Min.   :4.700e+01   Min.   : -37726.1                   
##  1st Qu.:8.960e+05   1st Qu.:     34.6                   
##  Median :6.886e+06   Median :   6009.5                   
##  Mean   :1.399e+08   Mean   :  47969.7                   
##  3rd Qu.:3.298e+07   3rd Qu.:  34719.6                   
##  Max.   :7.909e+09   Max.   :1224011.1                   
##  NA's   :994         NA's   :222930                      
##  excess_mortality_cumulative excess_mortality
##  Min.   :-28.45              Min.   :-95.92  
##  1st Qu.:  0.56              1st Qu.: -0.12  
##  Median :  7.38              Median :  7.27  
##  Mean   :  9.96              Mean   : 14.33  
##  3rd Qu.: 15.61              3rd Qu.: 19.77  
##  Max.   : 76.55              Max.   :376.58  
##  NA's   :222930              NA's   :222879  
##  excess_mortality_cumulative_per_million   year_date        month_date    
##  Min.   :-1884.68                        Min.   :2020   Juli     : 22146  
##  1st Qu.:   27.05                        1st Qu.:2020   Agustus  : 22113  
##  Median :  807.13                        Median :2021   Mei      : 22091  
##  Mean   : 1352.30                        Mean   :2021   Juni     : 21451  
##  3rd Qu.: 2109.74                        3rd Qu.:2022   September: 21388  
##  Max.   : 9771.68                        Max.   :2022   Oktober  : 21137  
##  NA's   :222930                                         (Other)  :100370
covid[is.na(covid$Dailycases), "Dailycases"] <- 0
covid[is.na(covid$total_cases), "total_cases"] <- 0
covid[is.na(covid$Dailydeaths), "Dailydeaths"] <- 0
covid[is.na(covid$total_deaths), "total_deaths"] <- 0
covid[is.na(covid$total_cases_per_million), "total_cases_per_million"] <- 0
covid[is.na(covid$new_cases_per_million), "new_cases_per_million"] <- 0
covid[is.na(covid$total_vaccinations), "total_vaccinations"] <- 0
covid[is.na(covid$population), "population"] <- 0
covid[is.na(covid$positive_rate), "positive_rate"] <- 0

head(covid)
## # A tibble: 6 × 69
##   iso_code continent Country  Timeline   total…¹ Daily…² new_c…³ total…⁴ Daily…⁵
##   <chr>    <chr>     <chr>    <date>       <dbl>   <dbl>   <dbl>   <dbl>   <dbl>
## 1 AFG      Asia      Afghani… 2020-02-24       5       5  NA           0       0
## 2 AFG      Asia      Afghani… 2020-02-25       5       0  NA           0       0
## 3 AFG      Asia      Afghani… 2020-02-26       5       0  NA           0       0
## 4 AFG      Asia      Afghani… 2020-02-27       5       0  NA           0       0
## 5 AFG      Asia      Afghani… 2020-02-28       5       0  NA           0       0
## 6 AFG      Asia      Afghani… 2020-02-29       5       0   0.714       0       0
## # … with 60 more variables: new_deaths_smoothed <dbl>,
## #   total_cases_per_million <dbl>, new_cases_per_million <dbl>,
## #   new_cases_smoothed_per_million <dbl>, total_deaths_per_million <dbl>,
## #   new_deaths_per_million <dbl>, new_deaths_smoothed_per_million <dbl>,
## #   reproduction_rate <dbl>, icu_patients <dbl>,
## #   icu_patients_per_million <dbl>, hosp_patients <dbl>,
## #   hosp_patients_per_million <dbl>, weekly_icu_admissions <dbl>, …

Data Processing & Plotly

What is the daily number of confirmed cases in indonesia?

# Indonesi Daily Cases
ind_dc <- covid %>%
  select(Country, Timeline, Dailycases) %>%
  filter(Country %in% "Indonesia")%>%
  mutate(label = glue("Timeline: {Timeline}
                      Dailycases: {Dailycases}"))
ind_dc
## # A tibble: 970 × 4
##    Country   Timeline   Dailycases label                             
##    <chr>     <date>          <dbl> <glue>                            
##  1 Indonesia 2020-03-02          2 Timeline: 2020-03-02
## Dailycases: 2 
##  2 Indonesia 2020-03-03          0 Timeline: 2020-03-03
## Dailycases: 0 
##  3 Indonesia 2020-03-04          0 Timeline: 2020-03-04
## Dailycases: 0 
##  4 Indonesia 2020-03-05          0 Timeline: 2020-03-05
## Dailycases: 0 
##  5 Indonesia 2020-03-06          2 Timeline: 2020-03-06
## Dailycases: 2 
##  6 Indonesia 2020-03-07          0 Timeline: 2020-03-07
## Dailycases: 0 
##  7 Indonesia 2020-03-08          2 Timeline: 2020-03-08
## Dailycases: 2 
##  8 Indonesia 2020-03-09         13 Timeline: 2020-03-09
## Dailycases: 13
##  9 Indonesia 2020-03-10          8 Timeline: 2020-03-10
## Dailycases: 8 
## 10 Indonesia 2020-03-11          7 Timeline: 2020-03-11
## Dailycases: 7 
## # … with 960 more rows
# Indonesia Daily Cases Plot
ind_dcp <- 
ggplot(data = ind_dc, mapping = aes(x = Timeline, 
                                        y = Dailycases, 
                                        text = label))+
  geom_line(group = 7, color = "blue") +
    scale_x_date(date_breaks = "month", date_labels = "%m") +
    scale_y_continuous(labels = scales::comma) +
  labs(title = "Daily Number of Confirmed Cases In Indonesia",
        x = "Timeline Monthly",
       y = "Daily Cases Confirmed") +
  theme_minimal()

ggplotly(p =ind_dcp, tooltip = "text")
# World Total Cases
wtotalc <- covid %>%
  select(Country, Timeline, Dailycases) %>%
  filter(Country %in% "World") %>% arrange(desc(Timeline))
wtotalc
## # A tibble: 1,010 × 3
##    Country Timeline   Dailycases
##    <chr>   <date>          <dbl>
##  1 World   2022-10-27     456213
##  2 World   2022-10-26     448519
##  3 World   2022-10-25     569105
##  4 World   2022-10-24     428961
##  5 World   2022-10-23     160166
##  6 World   2022-10-22     181670
##  7 World   2022-10-21     411914
##  8 World   2022-10-20     569626
##  9 World   2022-10-19     514129
## 10 World   2022-10-18     608150
## # … with 1,000 more rows

Cumulative number of confirmed cases in Indonesia

# Set Indonesia Total Cases
indtotalc <- covid %>%
  select(Country, Timeline, total_cases) %>%
  filter(Country %in% "Indonesia")%>%
  mutate(label = glue("Timeline: {Timeline}
                      Total cases: {total_cases}"))
indtotalc
## # A tibble: 970 × 4
##    Country   Timeline   total_cases label                              
##    <chr>     <date>           <dbl> <glue>                             
##  1 Indonesia 2020-03-02           2 Timeline: 2020-03-02
## Total cases: 2 
##  2 Indonesia 2020-03-03           2 Timeline: 2020-03-03
## Total cases: 2 
##  3 Indonesia 2020-03-04           2 Timeline: 2020-03-04
## Total cases: 2 
##  4 Indonesia 2020-03-05           2 Timeline: 2020-03-05
## Total cases: 2 
##  5 Indonesia 2020-03-06           4 Timeline: 2020-03-06
## Total cases: 4 
##  6 Indonesia 2020-03-07           4 Timeline: 2020-03-07
## Total cases: 4 
##  7 Indonesia 2020-03-08           6 Timeline: 2020-03-08
## Total cases: 6 
##  8 Indonesia 2020-03-09          19 Timeline: 2020-03-09
## Total cases: 19
##  9 Indonesia 2020-03-10          27 Timeline: 2020-03-10
## Total cases: 27
## 10 Indonesia 2020-03-11          34 Timeline: 2020-03-11
## Total cases: 34
## # … with 960 more rows
# Indonesia Total Cases
indtotalc %>%  
  e_charts(Timeline) %>%  
  e_line(total_cases) %>% 
  e_color(color = "red" ) %>% 
  e_datazoom() %>% 
  e_title("Cumulative Covid Cases in Indonesia") %>%
  e_tooltip(trigger = "axis")

Cumulative confirmed cases: how do they compare to other countries? (Map)

# Set World Daily Cases
wdc <- covid %>% 
  select(Country, Timeline, Dailycases) %>%
  mutate(label = glue("Timeline: {Timeline}
                      Dailycases: {Dailycases}"))
wdc
## # A tibble: 230,696 × 4
##    Country     Timeline   Dailycases label                            
##    <chr>       <date>          <dbl> <glue>                           
##  1 Afghanistan 2020-02-24          5 Timeline: 2020-02-24
## Dailycases: 5
##  2 Afghanistan 2020-02-25          0 Timeline: 2020-02-25
## Dailycases: 0
##  3 Afghanistan 2020-02-26          0 Timeline: 2020-02-26
## Dailycases: 0
##  4 Afghanistan 2020-02-27          0 Timeline: 2020-02-27
## Dailycases: 0
##  5 Afghanistan 2020-02-28          0 Timeline: 2020-02-28
## Dailycases: 0
##  6 Afghanistan 2020-02-29          0 Timeline: 2020-02-29
## Dailycases: 0
##  7 Afghanistan 2020-03-01          0 Timeline: 2020-03-01
## Dailycases: 0
##  8 Afghanistan 2020-03-02          0 Timeline: 2020-03-02
## Dailycases: 0
##  9 Afghanistan 2020-03-03          0 Timeline: 2020-03-03
## Dailycases: 0
## 10 Afghanistan 2020-03-04          0 Timeline: 2020-03-04
## Dailycases: 0
## # … with 230,686 more rows
# World Daily Cases Plot Map
wdc %>% filter(Timeline == "2020-03-03") %>%
  e_charts(Country) %>%
  e_map(Dailycases) %>%
  e_visual_map(Dailycases) %>%
  e_tooltip() 
# Set Death Contingent
deathcon <-covid %>% 
  select(Timeline, Country, total_deaths) %>%
  filter(Country %in% c("Africa", "Asia", "Europe", "North America", "Oceania","South America ", "Singapore" ),
         Timeline==as.character("2022-10-10")) %>%
  group_by(Country, Timeline, total_deaths) %>%
  arrange(-total_deaths)
deathcon %>% group_by(Country) %>%  summarise(sum = sum(total_deaths)) %>% 
        e_charts(Country) %>%  
        e_pie(sum, radius = c('40%', '60%'),
              itemStyle = list(borderRadius= 20, borderColor = "#fff", borderWidth = 2),
              emphasis = list(show = T, fontSize = "50", label = list(show = T))) %>%  
        e_title("Percentage and Number Of Contingent Deaths", position = "center")  %>% 
        e_labels(show = FALSE,
                 position = "center",
                 fontSize = 18,
                 fontWeigth = "bold",
                 formatter = "{b} \n median value : {d}% \n Total Death : {c}") %>%
        e_legend(type = c("scroll"), right = 0,orient = "vertical") 

Indonesia: What is the daily number of confirmed deaths?(line linear/log)

# Indonesia Daily Deaths
inddd <- covid %>% 
  select(Country, Timeline, Dailydeaths) %>%
  filter(Country %in% "Indonesia")%>%
  mutate(label = glue("Timeline: {Timeline}
                      Dailydeaths: {Dailydeaths}"))
inddd
## # A tibble: 970 × 4
##    Country   Timeline   Dailydeaths label                             
##    <chr>     <date>           <dbl> <glue>                            
##  1 Indonesia 2020-03-02           0 Timeline: 2020-03-02
## Dailydeaths: 0
##  2 Indonesia 2020-03-03           0 Timeline: 2020-03-03
## Dailydeaths: 0
##  3 Indonesia 2020-03-04           0 Timeline: 2020-03-04
## Dailydeaths: 0
##  4 Indonesia 2020-03-05           0 Timeline: 2020-03-05
## Dailydeaths: 0
##  5 Indonesia 2020-03-06           0 Timeline: 2020-03-06
## Dailydeaths: 0
##  6 Indonesia 2020-03-07           0 Timeline: 2020-03-07
## Dailydeaths: 0
##  7 Indonesia 2020-03-08           0 Timeline: 2020-03-08
## Dailydeaths: 0
##  8 Indonesia 2020-03-09           0 Timeline: 2020-03-09
## Dailydeaths: 0
##  9 Indonesia 2020-03-10           0 Timeline: 2020-03-10
## Dailydeaths: 0
## 10 Indonesia 2020-03-11           1 Timeline: 2020-03-11
## Dailydeaths: 1
## # … with 960 more rows
# Indonesia Daily Deaths Plot
indddp <- ggplot(data = inddd, mapping = aes(x = Timeline, 
                                        y = Dailydeaths, 
                                        text = label))+
  geom_line(group = 7, color = "red3") +
    scale_x_date(date_breaks = "month", date_labels = "%m") +
    scale_y_continuous(labels = scales::comma) +
  labs(title = "Daily Number of Confirmed Deaths In Indonesia",
        x = "Timeline Monthly",
       y = "Daily Deaths Confirmed") +
  theme_minimal()

ggplotly(p =indddp, tooltip = "text")
# All Total Cases of World 
final_tw <- covid %>%
  select(Country, Timeline, total_cases) %>%
  filter(Country %in% "World") %>% arrange(desc(Timeline))
final_tw
## # A tibble: 1,010 × 3
##    Country Timeline   total_cases
##    <chr>   <date>           <dbl>
##  1 World   2022-10-27   629437595
##  2 World   2022-10-26   628989233
##  3 World   2022-10-25   628540714
##  4 World   2022-10-24   627971609
##  5 World   2022-10-23   627543269
##  6 World   2022-10-22   627383103
##  7 World   2022-10-21   627201433
##  8 World   2022-10-20   626789519
##  9 World   2022-10-19   626219917
## 10 World   2022-10-18   625706642
## # … with 1,000 more rows

Cumulative number of confirmed deaths of Indonesia

# Set Indonesia Cumulative Deaths
indcumdeaths <- covid %>%
  select(Country, Timeline, total_deaths) %>%
  filter(Country %in% "Indonesia")%>%
  mutate(label = glue("Timeline: {Timeline}
                      Cumulative Deaths: {total_deaths}"))
indcumdeaths
## # A tibble: 970 × 4
##    Country   Timeline   total_deaths label                                   
##    <chr>     <date>            <dbl> <glue>                                  
##  1 Indonesia 2020-03-02            0 Timeline: 2020-03-02
## Cumulative Deaths: 0
##  2 Indonesia 2020-03-03            0 Timeline: 2020-03-03
## Cumulative Deaths: 0
##  3 Indonesia 2020-03-04            0 Timeline: 2020-03-04
## Cumulative Deaths: 0
##  4 Indonesia 2020-03-05            0 Timeline: 2020-03-05
## Cumulative Deaths: 0
##  5 Indonesia 2020-03-06            0 Timeline: 2020-03-06
## Cumulative Deaths: 0
##  6 Indonesia 2020-03-07            0 Timeline: 2020-03-07
## Cumulative Deaths: 0
##  7 Indonesia 2020-03-08            0 Timeline: 2020-03-08
## Cumulative Deaths: 0
##  8 Indonesia 2020-03-09            0 Timeline: 2020-03-09
## Cumulative Deaths: 0
##  9 Indonesia 2020-03-10            0 Timeline: 2020-03-10
## Cumulative Deaths: 0
## 10 Indonesia 2020-03-11            1 Timeline: 2020-03-11
## Cumulative Deaths: 1
## # … with 960 more rows
# Cumulative Number of Confirmed Deaths in Indonesia
indcumdeaths %>%  
  e_charts(Timeline) %>%  
  e_line(total_deaths) %>% 
  e_datazoom() %>%
  e_color(color = "red") %>% 
  e_title("Indonesia
          Cumulative Confirmed Deaths") %>%
  e_tooltip(trigger = "axis")

Country of the World Cumulative confirmed Deaths

# Total World Cases
wtc <- covid %>% 
  select(Country, Timeline, total_cases) %>%
  mutate(label = glue("Timeline: {Timeline}
                      Total Cases: {total_cases}"))
wtc
## # A tibble: 230,696 × 4
##    Country     Timeline   total_cases label                             
##    <chr>       <date>           <dbl> <glue>                            
##  1 Afghanistan 2020-02-24           5 Timeline: 2020-02-24
## Total Cases: 5
##  2 Afghanistan 2020-02-25           5 Timeline: 2020-02-25
## Total Cases: 5
##  3 Afghanistan 2020-02-26           5 Timeline: 2020-02-26
## Total Cases: 5
##  4 Afghanistan 2020-02-27           5 Timeline: 2020-02-27
## Total Cases: 5
##  5 Afghanistan 2020-02-28           5 Timeline: 2020-02-28
## Total Cases: 5
##  6 Afghanistan 2020-02-29           5 Timeline: 2020-02-29
## Total Cases: 5
##  7 Afghanistan 2020-03-01           5 Timeline: 2020-03-01
## Total Cases: 5
##  8 Afghanistan 2020-03-02           5 Timeline: 2020-03-02
## Total Cases: 5
##  9 Afghanistan 2020-03-03           5 Timeline: 2020-03-03
## Total Cases: 5
## 10 Afghanistan 2020-03-04           5 Timeline: 2020-03-04
## Total Cases: 5
## # … with 230,686 more rows
wtc %>% filter(Timeline == "2020-03-03") %>%
  e_charts(Country) %>%
  e_map(total_cases) %>%
  e_visual_map(total_cases) %>%
  e_tooltip()

It is possible that the Mortality Risk of Covid 19 in Indonesia will continue to increase and there needs to be serious handling in handling it, this data is presented as a need for handling based on policy.

# Mortality Risk
indmr <- covid %>% 
select(Country, Timeline, total_cases, total_deaths) %>%
filter(Country %in% "Indonesia")
indmr
## # A tibble: 970 × 4
##    Country   Timeline   total_cases total_deaths
##    <chr>     <date>           <dbl>        <dbl>
##  1 Indonesia 2020-03-02           2            0
##  2 Indonesia 2020-03-03           2            0
##  3 Indonesia 2020-03-04           2            0
##  4 Indonesia 2020-03-05           2            0
##  5 Indonesia 2020-03-06           4            0
##  6 Indonesia 2020-03-07           4            0
##  7 Indonesia 2020-03-08           6            0
##  8 Indonesia 2020-03-09          19            0
##  9 Indonesia 2020-03-10          27            0
## 10 Indonesia 2020-03-11          34            1
## # … with 960 more rows
indmr_plot <- indmr %>% 
  e_charts(Timeline) %>%
  e_line(total_cases, itemStyle = list(color = "blue")) %>% 
  e_line(total_deaths, itemStyle = list(color = "red")) %>% 
  e_datazoom() %>% 
  e_title("Mortality Risk of Covid 19 in Indonesia") %>%
  e_tooltip(trigger = "axis")

indmr_plot