#Mengimput Dataset dan Packages yang di Butuhkan
library(e1071)
library(caret)
## Loading required package: ggplot2
## Loading required package: lattice
library(devtools)
## Loading required package: usethis
library(readxl)
uasbidikmisi <- read_excel("C:/Users/ASUS/Downloads/datauasbidikmisi.xlsx")
head(uasbidikmisi)
## # A tibble: 6 × 13
##      X1    X2    X3    X4    X5    X6    X7    X8    X9   X10   X11   X12
##   <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1     3     1     2     3     2     1     2     3     2     2     2     4
## 2     4     1     2     3     3     1     3     3     2     2     2     2
## 3     3     1     3     2     2     1     3     3     2     1     2     1
## 4     4     1     3     2     2     1     3     3     2     1     2     1
## 5     1     1     2     2     2     1     3     3     1     1     2     5
## 6     1     1     2     2     3     1     2     3     1     1     1     3
## # … with 1 more variable: bidikmisiclass <dbl>
##             X1             X2             X3             X4             X5 
##              0              0              0              0              0 
##             X6             X7             X8             X9            X10 
##              0              0              0              0              0 
##            X11            X12 bidikmisiclass 
##              0              0              0
#Membuat Data Training untuk Pembentukan MOdel dan Data Testing untuk Melakukan Prediksi
set.seed(123)
intrain<-sample(nrow(uasbidikmisi),nrow(uasbidikmisi)*0.8)
bidikmisi_train<-uasbidikmisi[intrain,]
bidikmisi_test<-uasbidikmisi[-intrain,]
#Pembentukan Model untuk Klasifikasi Naive Bayes Menggunakan Data Training
modelNB<-naiveBayes(bidikmisiclass~.,data=bidikmisi_train)
modelNB
## 
## Naive Bayes Classifier for Discrete Predictors
## 
## Call:
## naiveBayes.default(x = X, y = Y, laplace = laplace)
## 
## A-priori probabilities:
## Y
##          0          1 
## 0.03328882 0.96671118 
## 
## Conditional probabilities:
##    X1
## Y       [,1]     [,2]
##   0 1.796562 1.246133
##   1 1.726862 1.210809
## 
##    X2
## Y       [,1]      [,2]
##   0 1.375358 0.9210063
##   1 1.330291 0.8549766
## 
##    X3
## Y       [,1]      [,2]
##   0 2.502865 0.6986872
##   1 2.499186 0.6850191
## 
##    X4
## Y       [,1]      [,2]
##   0 2.402579 0.6772021
##   1 2.400123 0.6613406
## 
##    X5
## Y       [,1]      [,2]
##   0 2.002149 0.5571262
##   1 1.994425 0.5261072
## 
##    X6
## Y       [,1]      [,2]
##   0 1.490688 0.5685162
##   1 1.488234 0.5483007
## 
##    X7
## Y       [,1]      [,2]
##   0 2.684814 0.4902768
##   1 2.677997 0.4914367
## 
##    X8
## Y       [,1]      [,2]
##   0 2.989971 0.1251797
##   1 2.979896 0.1911105
## 
##    X9
## Y       [,1]      [,2]
##   0 2.344556 0.8257802
##   1 2.439911 0.7700809
## 
##    X10
## Y       [,1]      [,2]
##   0 1.762178 0.7530311
##   1 1.749556 0.7178181
## 
##    X11
## Y       [,1]      [,2]
##   0 1.921920 0.2683939
##   1 1.906216 0.2915315
## 
##    X12
## Y       [,1]     [,2]
##   0 2.795845 2.183157
##   1 2.732856 1.460067
#Melakukan Prediksi Menggunakan Data Testing
prediksiNB_test<-predict(modelNB,bidikmisi_test)
hasil_testNB=confusionMatrix(table(prediksiNB_test,bidikmisi_test$bidikmisiclass))
hasil_testNB
## Confusion Matrix and Statistics
## 
##                
## prediksiNB_test     0     1
##               0     4    65
##               1   357 10058
##                                           
##                Accuracy : 0.9597          
##                  95% CI : (0.9558, 0.9634)
##     No Information Rate : 0.9656          
##     P-Value [Acc > NIR] : 0.9994          
##                                           
##                   Kappa : 0.0076          
##                                           
##  Mcnemar's Test P-Value : <2e-16          
##                                           
##             Sensitivity : 0.0110803       
##             Specificity : 0.9935790       
##          Pos Pred Value : 0.0579710       
##          Neg Pred Value : 0.9657225       
##              Prevalence : 0.0344334       
##          Detection Rate : 0.0003815       
##    Detection Prevalence : 0.0065815       
##       Balanced Accuracy : 0.5023297       
##                                           
##        'Positive' Class : 0               
##