library(lubridate)
## Loading required package: timechange
## 
## Attaching package: 'lubridate'
## The following objects are masked from 'package:base':
## 
##     date, intersect, setdiff, union
library(dplyr)
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
library(reshape)
## 
## Attaching package: 'reshape'
## The following object is masked from 'package:dplyr':
## 
##     rename
## The following object is masked from 'package:lubridate':
## 
##     stamp
rename=dplyr::rename
#part3 09
df<-read.csv("disease.csv")
glimpse(df)
## Rows: 4
## Columns: 194
## $ year                         <int> 1999, 2000, 2001, 2002
## $ Afghanistan                  <int> 0, 0, 0, 0
## $ Albania                      <dbl> 89.0, 132.0, 54.0, 4.9
## $ Algeria                      <dbl> 25.0, 0.0, 14.0, 0.7
## $ Andorra                      <dbl> 245.0, 138.0, 312.0, 12.4
## $ Angola                       <dbl> 217.0, 57.0, 45.0, 5.9
## $ Antigua...Barbuda            <dbl> 102.0, 128.0, 45.0, 4.9
## $ Argentina                    <dbl> 193.0, 25.0, 221.0, 8.3
## $ Armenia                      <dbl> 21.0, 179.0, 11.0, 3.8
## $ Australia                    <dbl> 261.0, 72.0, 212.0, 10.4
## $ Austria                      <dbl> 279.0, 75.0, 191.0, 9.7
## $ Azerbaijan                   <dbl> 21.0, 46.0, 5.0, 1.3
## $ Bahamas                      <dbl> 122.0, 176.0, 51.0, 6.3
## $ Bahrain                      <int> 42, 63, 7, 2
## $ Bangladesh                   <int> 0, 0, 0, 0
## $ Barbados                     <dbl> 143.0, 173.0, 36.0, 6.3
## $ Belarus                      <dbl> 142.0, 373.0, 42.0, 14.4
## $ Belgium                      <dbl> 295.0, 84.0, 212.0, 10.5
## $ Belize                       <dbl> 263.0, 114.0, 8.0, 6.8
## $ Benin                        <dbl> 34.0, 4.0, 13.0, 1.1
## $ Bhutan                       <dbl> 23.0, 0.0, 0.0, 0.4
## $ Bolivia                      <dbl> 167.0, 41.0, 8.0, 3.8
## $ Bosnia.Herzegovina           <dbl> 76.0, 173.0, 8.0, 4.6
## $ Botswana                     <dbl> 173.0, 35.0, 35.0, 5.4
## $ Brazil                       <dbl> 245.0, 145.0, 16.0, 7.2
## $ Brunei                       <dbl> 31.0, 2.0, 1.0, 0.6
## $ Bulgaria                     <dbl> 231.0, 252.0, 94.0, 10.3
## $ Burkina.Faso                 <dbl> 25.0, 7.0, 7.0, 4.3
## $ Burundi                      <dbl> 88.0, 0.0, 0.0, 6.3
## $ Cote.d.Ivoire                <int> 37, 1, 7, 4
## $ Cabo.Verde                   <int> 144, 56, 16, 4
## $ Cambodia                     <dbl> 57.0, 65.0, 1.0, 2.2
## $ Cameroon                     <dbl> 147.0, 1.0, 4.0, 5.8
## $ Canada                       <dbl> 240.0, 122.0, 100.0, 8.2
## $ Central.African.Republic     <dbl> 17.0, 2.0, 1.0, 1.8
## $ Chad                         <dbl> 15.0, 1.0, 1.0, 0.4
## $ Chile                        <dbl> 130.0, 124.0, 172.0, 7.6
## $ China                        <int> 79, 192, 8, 5
## $ Colombia                     <dbl> 159.0, 76.0, 3.0, 4.2
## $ Comoros                      <dbl> 1.0, 3.0, 1.0, 0.1
## $ Congo                        <dbl> 76.0, 1.0, 9.0, 1.7
## $ Cook.Islands                 <dbl> 0.0, 254.0, 74.0, 5.9
## $ Costa.Rica                   <dbl> 149.0, 87.0, 11.0, 4.4
## $ Croatia                      <dbl> 230.0, 87.0, 254.0, 10.2
## $ Cuba                         <dbl> 93.0, 137.0, 5.0, 4.2
## $ Cyprus                       <dbl> 192.0, 154.0, 113.0, 8.2
## $ Czech.Republic               <dbl> 361.0, 170.0, 134.0, 11.8
## $ North.Korea                  <int> 0, 0, 0, 0
## $ DR.Congo                     <dbl> 32.0, 3.0, 1.0, 2.3
## $ Denmark                      <dbl> 224.0, 81.0, 278.0, 10.4
## $ Djibouti                     <dbl> 15.0, 44.0, 3.0, 1.1
## $ Dominica                     <dbl> 52.0, 286.0, 26.0, 6.6
## $ Dominican.Republic           <dbl> 193.0, 147.0, 9.0, 6.2
## $ Ecuador                      <dbl> 162.0, 74.0, 3.0, 4.2
## $ Egypt                        <dbl> 6.0, 4.0, 1.0, 0.2
## $ El.Salvador                  <dbl> 52.0, 69.0, 2.0, 2.2
## $ Equatorial.Guinea            <dbl> 92.0, 0.0, 233.0, 5.8
## $ Eritrea                      <dbl> 18.0, 0.0, 0.0, 0.5
## $ Estonia                      <dbl> 224.0, 194.0, 59.0, 9.5
## $ Ethiopia                     <dbl> 20.0, 3.0, 0.0, 0.7
## $ Fiji                         <int> 77, 35, 1, 2
## $ Finland                      <int> 263, 133, 97, 10
## $ France                       <dbl> 127.0, 151.0, 370.0, 11.8
## $ Gabon                        <dbl> 347.0, 98.0, 59.0, 8.9
## $ Gambia                       <dbl> 8.0, 0.0, 1.0, 2.4
## $ Georgia                      <dbl> 52.0, 100.0, 149.0, 5.4
## $ Germany                      <dbl> 346.0, 117.0, 175.0, 11.3
## $ Ghana                        <dbl> 31.0, 3.0, 10.0, 1.8
## $ Greece                       <dbl> 133.0, 112.0, 218.0, 8.3
## $ Grenada                      <dbl> 199.0, 438.0, 28.0, 11.9
## $ Guatemala                    <dbl> 53.0, 69.0, 2.0, 2.2
## $ Guinea                       <dbl> 9.0, 0.0, 2.0, 0.2
## $ Guinea.Bissau                <dbl> 28.0, 31.0, 21.0, 2.5
## $ Guyana                       <dbl> 93.0, 302.0, 1.0, 7.1
## $ Haiti                        <dbl> 1.0, 326.0, 1.0, 5.9
## $ Honduras                     <int> 69, 98, 2, 3
## $ Hungary                      <dbl> 234.0, 215.0, 185.0, 11.3
## $ Iceland                      <dbl> 233.0, 61.0, 78.0, 6.6
## $ India                        <dbl> 9.0, 114.0, 0.0, 2.2
## $ Indonesia                    <dbl> 5.0, 1.0, 0.0, 0.1
## $ Iran                         <int> 0, 0, 0, 0
## $ Iraq                         <dbl> 9.0, 3.0, 0.0, 0.2
## $ Ireland                      <dbl> 313.0, 118.0, 165.0, 11.4
## $ Israel                       <dbl> 63.0, 69.0, 9.0, 2.5
## $ Italy                        <dbl> 85.0, 42.0, 237.0, 6.5
## $ Jamaica                      <dbl> 82.0, 88.0, 9.0, 3.4
## $ Japan                        <int> 77, 202, 16, 7
## $ Jordan                       <dbl> 6.0, 21.0, 1.0, 0.5
## $ Kazakhstan                   <dbl> 124.0, 246.0, 12.0, 6.8
## $ Kenya                        <dbl> 58.0, 22.0, 2.0, 1.8
## $ Kiribati                     <int> 21, 34, 1, 1
## $ Kuwait                       <int> 0, 0, 0, 0
## $ Kyrgyzstan                   <dbl> 31.0, 88.0, 6.0, 2.4
## $ Laos                         <dbl> 62.0, 0.0, 123.0, 6.2
## $ Latvia                       <dbl> 281.0, 216.0, 62.0, 10.5
## $ Lebanon                      <dbl> 20.0, 55.0, 31.0, 1.9
## $ Lesotho                      <dbl> 82.0, 50.0, 0.0, 2.8
## $ Liberia                      <dbl> 19.0, 152.0, 2.0, 3.1
## $ Libya                        <int> 0, 0, 0, 0
## $ Lithuania                    <dbl> 343.0, 244.0, 56.0, 12.9
## $ Luxembourg                   <dbl> 236.0, 133.0, 271.0, 11.4
## $ Madagascar                   <dbl> 26.0, 15.0, 4.0, 0.8
## $ Malawi                       <dbl> 8.0, 11.0, 1.0, 1.5
## $ Malaysia                     <dbl> 13.0, 4.0, 0.0, 0.3
## $ Maldives                     <int> 0, 0, 0, 0
## $ Mali                         <dbl> 5.0, 1.0, 1.0, 0.6
## $ Malta                        <dbl> 149.0, 100.0, 120.0, 6.6
## $ Marshall.Islands             <int> 0, 0, 0, 0
## $ Mauritania                   <int> 0, 0, 0, 0
## $ Mauritius                    <dbl> 98.0, 31.0, 18.0, 2.6
## $ Mexico                       <dbl> 238.0, 68.0, 5.0, 5.5
## $ Micronesia                   <dbl> 62.0, 50.0, 18.0, 2.3
## $ Monaco                       <int> 0, 0, 0, 0
## $ Mongolia                     <dbl> 77.0, 189.0, 8.0, 4.9
## $ Montenegro                   <dbl> 31.0, 114.0, 128.0, 4.9
## $ Morocco                      <dbl> 12.0, 6.0, 10.0, 0.5
## $ Mozambique                   <dbl> 47.0, 18.0, 5.0, 1.3
## $ Myanmar                      <dbl> 5.0, 1.0, 0.0, 0.1
## $ Namibia                      <dbl> 376.0, 3.0, 1.0, 6.8
## $ Nauru                        <int> 49, 0, 8, 1
## $ Nepal                        <dbl> 5.0, 6.0, 0.0, 0.2
## $ Netherlands                  <dbl> 251.0, 88.0, 190.0, 9.4
## $ New.Zealand                  <dbl> 203.0, 79.0, 175.0, 9.3
## $ Nicaragua                    <dbl> 78.0, 118.0, 1.0, 3.5
## $ Niger                        <dbl> 3.0, 2.0, 1.0, 0.1
## $ Nigeria                      <dbl> 42.0, 5.0, 2.0, 9.1
## $ Niue                         <int> 188, 200, 7, 7
## $ Norway                       <dbl> 169.0, 71.0, 129.0, 6.7
## $ Oman                         <dbl> 22.0, 16.0, 1.0, 0.7
## $ Pakistan                     <int> 0, 0, 0, 0
## $ Palau                        <dbl> 306.0, 63.0, 23.0, 6.9
## $ Panama                       <dbl> 285.0, 104.0, 18.0, 7.2
## $ Papua.New.Guinea             <dbl> 44.0, 39.0, 1.0, 1.5
## $ Paraguay                     <dbl> 213.0, 117.0, 74.0, 7.3
## $ Peru                         <dbl> 163.0, 160.0, 21.0, 6.1
## $ Philippines                  <dbl> 71.0, 186.0, 1.0, 4.6
## $ Poland                       <dbl> 343.0, 215.0, 56.0, 10.9
## $ Portugal                     <int> 194, 67, 339, 11
## $ Qatar                        <dbl> 1.0, 42.0, 7.0, 0.9
## $ South.Korea                  <dbl> 140.0, 16.0, 9.0, 9.8
## $ Moldova                      <dbl> 109.0, 226.0, 18.0, 6.3
## $ Romania                      <dbl> 297.0, 122.0, 167.0, 10.4
## $ Russian.Federation           <dbl> 247.0, 326.0, 73.0, 11.5
## $ Rwanda                       <dbl> 43.0, 2.0, 0.0, 6.8
## $ St..Kitts...Nevis            <dbl> 194.0, 205.0, 32.0, 7.7
## $ St..Lucia                    <dbl> 171.0, 315.0, 71.0, 10.1
## $ St..Vincent...the.Grenadines <dbl> 120.0, 221.0, 11.0, 6.3
## $ Samoa                        <dbl> 105.0, 18.0, 24.0, 2.6
## $ San.Marino                   <int> 0, 0, 0, 0
## $ Sao.Tome...Principe          <dbl> 56.0, 38.0, 140.0, 4.2
## $ Saudi.Arabia                 <dbl> 0.0, 5.0, 0.0, 0.1
## $ Senegal                      <dbl> 9.0, 1.0, 7.0, 0.3
## $ Serbia                       <dbl> 283.0, 131.0, 127.0, 9.6
## $ Seychelles                   <dbl> 157.0, 25.0, 51.0, 4.1
## $ Sierra.Leone                 <dbl> 25.0, 3.0, 2.0, 6.7
## $ Singapore                    <dbl> 60.0, 12.0, 11.0, 1.5
## $ Slovakia                     <dbl> 196.0, 293.0, 116.0, 11.4
## $ Slovenia                     <dbl> 270.0, 51.0, 276.0, 10.6
## $ Solomon.Islands              <dbl> 56.0, 11.0, 1.0, 1.2
## $ Somalia                      <int> 0, 0, 0, 0
## $ South.Africa                 <dbl> 225.0, 76.0, 81.0, 8.2
## $ Spain                        <int> 284, 157, 112, 10
## $ Sri.Lanka                    <dbl> 16.0, 104.0, 0.0, 2.2
## $ Sudan                        <dbl> 8.0, 13.0, 0.0, 1.7
## $ Suriname                     <dbl> 128.0, 178.0, 7.0, 5.6
## $ Swaziland                    <dbl> 90.0, 2.0, 2.0, 4.7
## $ Sweden                       <dbl> 152.0, 60.0, 186.0, 7.2
## $ Switzerland                  <dbl> 185.0, 100.0, 280.0, 10.2
## $ Syria                        <int> 5, 35, 16, 1
## $ Tajikistan                   <dbl> 2.0, 15.0, 0.0, 0.3
## $ Thailand                     <dbl> 99.0, 258.0, 1.0, 6.4
## $ Macedonia                    <dbl> 106.0, 27.0, 86.0, 3.9
## $ Timor.Leste                  <dbl> 1.0, 1.0, 4.0, 0.1
## $ Togo                         <dbl> 36.0, 2.0, 19.0, 1.3
## $ Tonga                        <dbl> 36.0, 21.0, 5.0, 1.1
## $ Trinidad...Tobago            <dbl> 197.0, 156.0, 7.0, 6.4
## $ Tunisia                      <dbl> 51.0, 3.0, 20.0, 1.3
## $ Turkey                       <dbl> 51.0, 22.0, 7.0, 1.4
## $ Turkmenistan                 <dbl> 19.0, 71.0, 32.0, 2.2
## $ Tuvalu                       <int> 6, 41, 9, 1
## $ Uganda                       <dbl> 45.0, 9.0, 0.0, 8.3
## $ Ukraine                      <dbl> 206.0, 237.0, 45.0, 8.9
## $ United.Arab.Emirates         <dbl> 16.0, 135.0, 5.0, 2.8
## $ United.Kingdom               <dbl> 219.0, 126.0, 195.0, 10.4
## $ Tanzania                     <dbl> 36.0, 6.0, 1.0, 5.7
## $ USA                          <dbl> 249.0, 158.0, 84.0, 8.7
## $ Uruguay                      <dbl> 115.0, 35.0, 220.0, 6.6
## $ Uzbekistan                   <dbl> 25.0, 101.0, 8.0, 2.4
## $ Vanuatu                      <dbl> 21.0, 18.0, 11.0, 0.9
## $ Venezuela                    <dbl> 333.0, 100.0, 3.0, 7.7
## $ Vietnam                      <int> 111, 2, 1, 2
## $ Yemen                        <dbl> 6.0, 0.0, 0.0, 0.1
## $ Zambia                       <dbl> 32.0, 19.0, 4.0, 2.5
## $ Zimbabwe                     <dbl> 64.0, 18.0, 4.0, 4.7
df1<-melt(df,id='year')
glimpse(df1)
## Rows: 772
## Columns: 3
## $ year     <int> 1999, 2000, 2001, 2002, 1999, 2000, 2001, 2002, 1999, 2000, 2…
## $ variable <fct> Afghanistan, Afghanistan, Afghanistan, Afghanistan, Albania, …
## $ value    <dbl> 0.0, 0.0, 0.0, 0.0, 89.0, 132.0, 54.0, 4.9, 25.0, 0.0, 14.0, …
names(df1)[2:3]<-c('country','disease')
df1 %>% filter(year==2000) %>% summarize(m=mean(disease))
##          m
## 1 81.01036
df1 %>% filter(year==2000) %>% filter(disease>81.01036) %>% nrow->result
print(result)
## [1] 76
#part3 10
x<-sample(1:20,10)
y<-c(1,2,3,4,5,37,41,42,44,10)
a<-data.frame(x,y)
quantile(a$y)
##    0%   25%   50%   75%  100% 
##  1.00  3.25  7.50 40.00 44.00
df<-quantile(a$y)
df1<-abs(df[[2]]-df[[4]]) #abs()<- 절대값 함수 
df1<-floor(df1) # floor()<- 소수점 버림 함수 
cat(df1)
## 36
#part3 11
df<-read.csv("facebook.csv")
glimpse(df)
## Rows: 6,997
## Columns: 16
## $ status_id          <chr> "246675545449582_1649696485147474", "24667554544958…
## $ status_type        <chr> "video", "photo", "video", "photo", "photo", "photo…
## $ status_published   <chr> "4/22/2018 6:00", "4/21/2018 22:45", "4/21/2018 6:1…
## $ num_reactions      <int> 529, 150, 227, 111, 213, 217, 503, 295, 203, 170, 2…
## $ num_comments       <int> 512, 0, 236, 0, 0, 6, 614, 453, 1, 9, 2, 4, 4, 4, 1…
## $ num_shares         <int> 262, 0, 57, 0, 0, 0, 72, 53, 0, 1, 3, 0, 2, 0, 0, 3…
## $ num_likes          <int> 432, 150, 204, 111, 204, 211, 418, 260, 198, 167, 2…
## $ num_loves          <int> 92, 0, 21, 0, 9, 5, 70, 32, 5, 3, 7, 5, 6, 8, 10, 2…
## $ num_wows           <int> 3, 0, 1, 0, 0, 1, 10, 1, 0, 0, 1, 4, 2, 1, 1, 1, 0,…
## $ num_hahas          <int> 1, 0, 1, 0, 0, 0, 2, 1, 0, 0, 0, 0, 0, 0, 0, 5, 0, …
## $ num_sads           <int> 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ num_angrys         <int> 0, 0, 0, 0, 0, 0, 3, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ react_comment_r    <dbl> 1.0332031, 0.0000000, 0.9618644, 0.0000000, 0.00000…
## $ react_share_r      <dbl> 2.019084, 0.000000, 3.982456, 0.000000, 0.000000, 0…
## $ postive_reactions  <int> 527, 150, 226, 111, 213, 217, 498, 293, 203, 170, 2…
## $ negative_reactions <int> 2, 0, 1, 0, 0, 0, 5, 2, 0, 0, 0, 0, 0, 0, 0, 5, 0, …
colSums(is.na(df))
##          status_id        status_type   status_published      num_reactions 
##                  0                  0                  0                  0 
##       num_comments         num_shares          num_likes          num_loves 
##                  0                  0                  0                  0 
##           num_wows          num_hahas           num_sads         num_angrys 
##                  0                  0                  0                  0 
##    react_comment_r      react_share_r  postive_reactions negative_reactions 
##                120                117                  0                  0
df1<- df %>% mutate(ratio=(num_loves+num_wows)/(num_reactions)) %>% filter(ratio<0.5&ratio>0.4) %>% 
  filter(status_type=='video') %>% nrow
cat(df1)
## 90
print(df1)
## [1] 90
#part3 12
df<- read.csv("netflix.csv")
glimpse(df)
## Rows: 8,807
## Columns: 11
## $ show_id      <chr> "s1", "s2", "s3", "s4", "s5", "s6", "s7", "s8", "s9", "s1…
## $ type         <chr> "Movie", "TV Show", "TV Show", "TV Show", "TV Show", "TV …
## $ title        <chr> "Dick Johnson Is Dead", "Blood & Water", "Ganglands", "Ja…
## $ director     <chr> "Kirsten Johnson", "", "Julien Leclercq", "", "", "Mike F…
## $ cast         <chr> "", "Ama Qamata, Khosi Ngema, Gail Mabalane, Thabang Mola…
## $ country      <chr> "United States", "South Africa", "", "", "India", "", "",…
## $ date_added   <chr> "25-Sep-21", "24-Sep-21", "24-Sep-21", "24-Sep-21", "24-S…
## $ release_year <int> 2020, 2021, 2021, 2021, 2021, 2021, 2021, 1993, 2021, 202…
## $ rating       <chr> "PG-13", "TV-MA", "TV-MA", "TV-MA", "TV-MA", "TV-MA", "PG…
## $ duration     <chr> "90 min", "2 Seasons", "1 Season", "1 Season", "2 Seasons…
## $ listed_in    <chr> "Documentaries", "International TV Shows, TV Dramas, TV M…
df %>% filter(country=='United Kingdom') %>% mutate(ymd=dmy(date_added)) %>% select(ymd) %>% 
  filter(ymd>='2018-01-01'&ymd<='2018-01-30')
## Warning: 15 failed to parse.
##          ymd
## 1 2018-01-30
## 2 2018-01-18
## 3 2018-01-01
## 4 2018-01-15
## 5 2018-01-01
df %>% filter(country=='United Kingdom') %>% count(date_added)
##             date_added  n
## 1                       1
## 2        April 4, 2017  1
## 3     December 1, 2018  1
## 4    December 15, 2017  1
## 5    December 15, 2018  1
## 6     December 2, 2017  1
## 7     February 1, 2019  1
## 8      January 1, 2018  1
## 9        July 26, 2019  1
## 10      March 16, 2016  1
## 11      March 31, 2017  1
## 12      March 31, 2018  2
## 13     October 1, 2019  2
## 14   September 1, 2019  1
## 15           01-Apr-17  2
## 16           01-Apr-18  2
## 17           01-Apr-19  1
## 18           01-Apr-20  3
## 19           01-Apr-21  2
## 20           01-Aug-16  6
## 21           01-Aug-17 11
## 22           01-Aug-18  1
## 23           01-Aug-19  4
## 24           01-Aug-20  1
## 25           01-Dec-17  2
## 26           01-Dec-18  2
## 27           01-Dec-19  1
## 28           01-Dec-20  2
## 29           01-Feb-18  2
## 30           01-Feb-19 11
## 31           01-Feb-20  1
## 32           01-Feb-21  1
## 33           01-Jan-18  2
## 34           01-Jan-19  2
## 35           01-Jan-20  2
## 36           01-Jan-21  1
## 37           01-Jul-17  1
## 38           01-Jul-20  1
## 39           01-Jul-21  1
## 40           01-Jun-16  1
## 41           01-Jun-17  4
## 42           01-Mar-17  7
## 43           01-Mar-18  2
## 44           01-Mar-19  2
## 45           01-May-17  1
## 46           01-May-18  2
## 47           01-May-19  3
## 48           01-May-21  1
## 49           01-Nov-16  1
## 50           01-Nov-18  1
## 51           01-Nov-19  3
## 52           01-Oct-16  1
## 53           01-Oct-17  4
## 54           01-Oct-18  2
## 55           01-Oct-19  1
## 56           01-Sep-16  5
## 57           01-Sep-17  1
## 58           01-Sep-19  1
## 59           01-Sep-20  1
## 60           02-Dec-20  1
## 61           02-Feb-19  1
## 62           02-Jan-19  1
## 63           02-Jun-17  1
## 64           02-Jun-21  3
## 65           02-Nov-16  1
## 66           02-Oct-18 10
## 67           02-Oct-19  3
## 68           03-Dec-18  1
## 69           03-Dec-19  1
## 70           03-Mar-20  1
## 71           03-May-19  1
## 72           03-Sep-20  1
## 73           04-Jan-20  1
## 74           04-Jun-21  1
## 75           04-Nov-17  1
## 76           04-Nov-19  1
## 77           04-Oct-19  1
## 78           05-Apr-19  2
## 79           05-Aug-21  1
## 80           05-Feb-19  1
## 81           05-Jan-19  1
## 82           05-Jun-19  1
## 83           05-Mar-20  1
## 84           05-Nov-19  1
## 85           05-Oct-18  1
## 86           05-Sep-20  1
## 87           06-Jul-21  5
## 88           06-Oct-20  1
## 89           06-Sep-16  1
## 90           06-Sep-17  1
## 91           07-Sep-21  1
## 92           08-Aug-21  1
## 93           08-Feb-19  1
## 94           08-Jan-19  1
## 95           08-Jan-21  1
## 96           08-May-18  1
## 97           08-Nov-19  1
## 98           09-Dec-16  1
## 99           09-Jan-20  1
## 100          09-Mar-17  1
## 101          09-Nov-16  1
## 102          09-Sep-16  1
## 103          10-Apr-18  1
## 104          10-Jan-20  2
## 105          10-Jul-18  1
## 106          10-Oct-15  1
## 107          10-Sep-19  2
## 108          11-Jan-19  1
## 109          11-Sep-17  1
## 110          11-Sep-20  1
## 111          12-Dec-17  1
## 112          12-Dec-19  1
## 113          12-Feb-21  1
## 114          12-Jan-21  1
## 115          12-Jul-19  4
## 116          12-Mar-21  1
## 117          12-May-17  1
## 118          13-Aug-17  1
## 119          13-Feb-21  1
## 120          13-Jul-17  1
## 121          13-Mar-18  1
## 122          13-May-21  1
## 123          13-Oct-17  1
## 124          13-Oct-20  1
## 125          14-Aug-20  1
## 126          14-Feb-17  1
## 127          14-May-17  1
## 128          14-Sep-21  1
## 129          15-Apr-17  1
## 130          15-Apr-20  1
## 131          15-Aug-16  3
## 132          15-Dec-16  2
## 133          15-Dec-18  2
## 134          15-Feb-19  1
## 135          15-Feb-21  1
## 136          15-Jan-18  1
## 137          15-Jun-15  1
## 138          15-Jun-17  1
## 139          15-Mar-17  1
## 140          15-Mar-19  2
## 141          15-Mar-21  1
## 142          15-May-16  1
## 143          15-May-17  1
## 144          15-May-19  2
## 145          15-May-20  2
## 146          15-May-21  1
## 147          15-Oct-18  1
## 148          15-Oct-20  1
## 149          15-Sep-17  1
## 150          15-Sep-18  2
## 151          15-Sep-20  2
## 152          15-Sep-21  1
## 153          16-Apr-19  1
## 154          16-Aug-19  1
## 155          16-Dec-16  1
## 156          16-Dec-20  1
## 157          16-Mar-17  1
## 158          16-May-18  1
## 159          16-May-19  1
## 160          16-Sep-16  1
## 161          17-Apr-19  1
## 162          17-Feb-21  1
## 163          17-May-19  1
## 164          17-Nov-16  1
## 165          17-Oct-20  1
## 166          17-Sep-17  1
## 167          17-Sep-19  1
## 168          17-Sep-20  1
## 169          17-Sep-21  1
## 170          18-Jan-18  1
## 171          18-Jan-19  1
## 172          18-Mar-16  2
## 173          18-Mar-20  1
## 174          18-May-20  1
## 175          18-Nov-16  1
## 176          18-Oct-19  3
## 177          18-Sep-17  1
## 178          19-Dec-17  1
## 179          19-Feb-19  1
## 180          19-Jan-19  1
## 181          19-Jul-20  1
## 182          19-Jun-19  1
## 183          19-Jun-21  1
## 184          19-Mar-21  1
## 185          19-Oct-18  1
## 186          20-Aug-19  2
## 187          20-Dec-18  1
## 188          20-Dec-20  1
## 189          20-Feb-18  1
## 190          20-Feb-21  1
## 191          20-Jul-18  1
## 192          20-Jun-16  1
## 193          20-Jun-17  1
## 194          20-Mar-20  2
## 195          20-May-20  1
## 196          21-Feb-19  1
## 197          21-Jul-17  1
## 198          21-Jul-20  1
## 199          21-Oct-19  1
## 200          21-Oct-20  1
## 201          22-Apr-15  1
## 202          22-Apr-17  2
## 203          22-Apr-20  1
## 204          22-Dec-18  2
## 205          22-Dec-20  2
## 206          22-Feb-17  2
## 207          22-Feb-18  1
## 208          22-Feb-19  2
## 209          22-Jul-19  1
## 210          22-Jun-18  1
## 211          22-Mar-19  1
## 212          22-May-17  1
## 213          22-May-20  1
## 214          22-Oct-20  1
## 215          23-Dec-17  1
## 216          23-Feb-17  2
## 217          23-Feb-21  1
## 218          23-Jul-21  1
## 219          23-Jun-18  2
## 220          23-Mar-18  1
## 221          23-Nov-18  1
## 222          23-Sep-20  1
## 223          24-Apr-20  1
## 224          24-Aug-18  1
## 225          24-Aug-21  1
## 226          24-Jun-20  1
## 227          24-Mar-18  1
## 228          24-Oct-17  2
## 229          24-Sep-21  1
## 230          25-Aug-16  1
## 231          25-Dec-17  1
## 232          25-Jan-19  1
## 233          25-May-20  1
## 234          25-Nov-20  1
## 235          25-Oct-17  1
## 236          25-Sep-17  1
## 237          26-Apr-20  1
## 238          26-Aug-20  1
## 239          26-Dec-17  1
## 240          26-Jan-19  1
## 241          26-Jul-18  2
## 242          26-Jul-19  6
## 243          26-Mar-21  2
## 244          26-May-16  1
## 245          27-Aug-19  1
## 246          27-Dec-17  1
## 247          27-Feb-18  1
## 248          27-Jan-17  1
## 249          27-Jun-19  1
## 250          27-Mar-18  1
## 251          27-Nov-17  1
## 252          28-Apr-16  1
## 253          28-Dec-18  1
## 254          28-Jul-17  1
## 255          28-Oct-19  1
## 256          29-Apr-20  1
## 257          29-Aug-19  1
## 258          29-Dec-17  1
## 259          29-Jan-20  1
## 260          29-Jan-21  1
## 261          29-Jun-18  2
## 262          29-Mar-19  1
## 263          29-Sep-17  1
## 264          30-Dec-20  1
## 265          30-Jan-18  1
## 266          30-Jan-20  1
## 267          30-Jul-21  1
## 268          30-Jun-16  1
## 269          30-Mar-18  1
## 270          30-Mar-19  1
## 271          30-Nov-17  1
## 272          30-Oct-20  1
## 273          30-Sep-17  1
## 274          30-Sep-19  1
## 275          31-Dec-17  1
## 276          31-Dec-18  7
## 277          31-Jan-19  1
## 278          31-Jul-20  1
## 279          31-Mar-17 12
## 280          31-Mar-18  2
## 281          31-Mar-21  1
## 282          31-May-17  1
a=6
cat(a)
## 6
#part4 01
library(caret)
## Loading required package: ggplot2
## Loading required package: lattice
library(recipes)
## 
## Attaching package: 'recipes'
## The following object is masked from 'package:stats':
## 
##     step
library(pROC)
## Type 'citation("pROC")' for a citation.
## 
## Attaching package: 'pROC'
## The following objects are masked from 'package:stats':
## 
##     cov, smooth, var
x_test<-read.csv('X_test.csv', fileEncoding = 'euc-kr')
x_train<-read.csv('X_train.csv', fileEncoding = 'euc-kr')
y_train<-read.csv('Y_train.csv', fileEncoding = 'euc-kr')
glimpse(x_train)
## Rows: 3,500
## Columns: 10
## $ cust_id        <int> 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 1…
## $ 총구매액       <dbl> 68282840, 2136000, 3197000, 16077620, 29050000, 1137900…
## $ 최대구매액     <int> 11264000, 2136000, 1639000, 4935000, 24000000, 9552000,…
## $ 환불금액       <int> 6860000, 300000, NA, NA, NA, 462000, 4582000, 29524000,…
## $ 주구매상품     <chr> "기타", "스포츠", "남성 캐주얼", "기타", "보석", "디자…
## $ 주구매지점     <chr> "강남점", "잠실점", "관악점", "광주점", "본  점", "일산…
## $ 내점일수       <int> 19, 2, 2, 18, 2, 3, 5, 63, 18, 1, 25, 3, 2, 27, 84, 152…
## $ 내점당구매건수 <dbl> 3.894737, 1.500000, 2.000000, 2.444444, 1.500000, 1.666…
## $ 주말방문비율   <dbl> 0.52702703, 0.00000000, 0.00000000, 0.31818182, 0.00000…
## $ 구매주기       <int> 17, 1, 1, 16, 85, 42, 42, 5, 15, 0, 13, 89, 16, 10, 4, …
glimpse(y_train)
## Rows: 3,500
## Columns: 2
## $ cust_id <int> 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, …
## $ gender  <int> 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1,…
left_join(x_train,y_train,by='cust_id') %>% mutate(index='train')->train #열결합 
glimpse(train)
## Rows: 3,500
## Columns: 12
## $ cust_id        <int> 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 1…
## $ 총구매액       <dbl> 68282840, 2136000, 3197000, 16077620, 29050000, 1137900…
## $ 최대구매액     <int> 11264000, 2136000, 1639000, 4935000, 24000000, 9552000,…
## $ 환불금액       <int> 6860000, 300000, NA, NA, NA, 462000, 4582000, 29524000,…
## $ 주구매상품     <chr> "기타", "스포츠", "남성 캐주얼", "기타", "보석", "디자…
## $ 주구매지점     <chr> "강남점", "잠실점", "관악점", "광주점", "본  점", "일산…
## $ 내점일수       <int> 19, 2, 2, 18, 2, 3, 5, 63, 18, 1, 25, 3, 2, 27, 84, 152…
## $ 내점당구매건수 <dbl> 3.894737, 1.500000, 2.000000, 2.444444, 1.500000, 1.666…
## $ 주말방문비율   <dbl> 0.52702703, 0.00000000, 0.00000000, 0.31818182, 0.00000…
## $ 구매주기       <int> 17, 1, 1, 16, 85, 42, 42, 5, 15, 0, 13, 89, 16, 10, 4, …
## $ gender         <int> 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0…
## $ index          <chr> "train", "train", "train", "train", "train", "train", "…
x_test %>% mutate(index='test')->test
glimpse(test)
## Rows: 2,482
## Columns: 11
## $ cust_id        <int> 3500, 3501, 3502, 3503, 3504, 3505, 3506, 3507, 3508, 3…
## $ 총구매액       <dbl> 70900400, 310533100, 305264140, 7594080, 1795790, 13000…
## $ 최대구매액     <int> 22000000, 38558000, 14825000, 5225000, 1411200, 2160000…
## $ 환불금액       <int> 4050000, 48034700, 30521000, NA, NA, NA, 39566000, NA, …
## $ 주구매상품     <chr> "골프", "농산물", "가공식품", "주방용품", "수산품", "화…
## $ 주구매지점     <chr> "부산본점", "잠실점", "본  점", "부산본점", "청량리점",…
## $ 내점일수       <int> 13, 90, 101, 5, 3, 5, 144, 1, 1, 28, 21, 3, 23, 30, 3, …
## $ 내점당구매건수 <dbl> 1.461538, 2.433333, 14.623762, 2.000000, 2.666667, 2.20…
## $ 주말방문비율   <dbl> 0.78947368, 0.36986301, 0.08327691, 0.00000000, 0.12500…
## $ 구매주기       <int> 26, 3, 3, 47, 8, 61, 2, 0, 0, 12, 14, 2, 15, 11, 112, 2…
## $ index          <chr> "test", "test", "test", "test", "test", "test", "test",…
bind_rows(train,test)->full# 두 데이터셋을 행결합 
full$gender<- ifelse(full$gender==0,'남성','여성')
full$gender<-as.factor(full$gender)
full$index<- as.factor(full$index)
names(full)
##  [1] "cust_id"        "총구매액"       "최대구매액"     "환불금액"      
##  [5] "주구매상품"     "주구매지점"     "내점일수"       "내점당구매건수"
##  [9] "주말방문비율"   "구매주기"       "gender"         "index"
data<-full %>% rename(total='총구매액',
                      max='최대구매액',
                      refund='환불금액',
                      product='주구매상품',
                      store='주구매지점',
                      day='내점일수',
                      count='내점당구매건수',
                      week='주말방문비율',
                      cycle='구매주기') %>% 
  select(cust_id,index,gender,total,max,refund,product,store,day,count,week,cycle)
colSums(is.na(data))
## cust_id   index  gender   total     max  refund product   store     day   count 
##       0       0    2482       0       0    3906       0       0       0       0 
##    week   cycle 
##       0       0
data$refund<- ifelse(is.na(data$refund),0,data$refund)
recipe(gender~.,data=data) %>% 
  step_YeoJohnson(total,max,refund,day,count,week,cycle) %>% 
  step_scale(total,max,refund,day,count,week,cycle) %>% 
  step_center(total,max,refund,day,count,week,cycle) %>% prep() %>% juice()->data1
data1 %>% filter(index=='train') %>% select(-index)->train
data1 %>% filter(index=='test') %>% select(-index)->test
ctrl<-trainControl(method='cv',number=10,
                   summaryFunction=twoClassSummary,
                   classProbs = TRUE)
train(gender~.,data=train,
      method='rpart',
      metric="ROC",
      trControl=ctrl)->rffit
train(gender~.,data=train,
      method='glm', family=binomial,
      metric="ROC",
      trControl=ctrl)->rffit1
## Warning in predict.lm(object, newdata, se.fit, scale = 1, type = if (type == :
## prediction from a rank-deficient fit may be misleading

## Warning in predict.lm(object, newdata, se.fit, scale = 1, type = if (type == :
## prediction from a rank-deficient fit may be misleading
rffit
## CART 
## 
## 3500 samples
##   10 predictor
##    2 classes: '남성', '여성' 
## 
## No pre-processing
## Resampling: Cross-Validated (10 fold) 
## Summary of sample sizes: 3150, 3150, 3150, 3151, 3150, 3150, ... 
## Resampling results across tuning parameters:
## 
##   cp           ROC        Sens       Spec     
##   0.005319149  0.6287350  0.8062796  0.3471837
##   0.006838906  0.6225665  0.8090696  0.3313960
##   0.007598784  0.6224032  0.8058586  0.3366991
## 
## ROC was used to select the optimal model using the largest value.
## The final value used for the model was cp = 0.005319149.
rffit1
## Generalized Linear Model 
## 
## 3500 samples
##   10 predictor
##    2 classes: '남성', '여성' 
## 
## No pre-processing
## Resampling: Cross-Validated (10 fold) 
## Summary of sample sizes: 3150, 3150, 3149, 3150, 3150, 3150, ... 
## Resampling results:
## 
##   ROC        Sens       Spec     
##   0.6819856  0.8461564  0.3761682
predict(rffit,test,type='prob')->pred_fit1
head(pred_fit1)
##        남성      여성
## 1 0.7364290 0.2635710
## 2 0.7364290 0.2635710
## 3 0.7364290 0.2635710
## 4 0.4471698 0.5528302
## 5 0.4471698 0.5528302
## 6 0.6927711 0.3072289
names(pred_fit1)[1]<-'gender'
head(pred_fit1)
##      gender      여성
## 1 0.7364290 0.2635710
## 2 0.7364290 0.2635710
## 3 0.7364290 0.2635710
## 4 0.4471698 0.5528302
## 5 0.4471698 0.5528302
## 6 0.6927711 0.3072289
bind_cols(x_test,pred_fit1) %>% select(cust_id,gender)->df
df
##      cust_id    gender
## 1       3500 0.7364290
## 2       3501 0.7364290
## 3       3502 0.7364290
## 4       3503 0.4471698
## 5       3504 0.4471698
## 6       3505 0.6927711
## 7       3506 0.7364290
## 8       3507 0.4471698
## 9       3508 0.6927711
## 10      3509 0.7364290
## 11      3510 0.7364290
## 12      3511 0.4471698
## 13      3512 0.7364290
## 14      3513 0.7364290
## 15      3514 0.4471698
## 16      3515 0.7724138
## 17      3516 0.7364290
## 18      3517 0.6927711
## 19      3518 0.5934066
## 20      3519 0.3913043
## 21      3520 0.6800000
## 22      3521 0.5934066
## 23      3522 0.4471698
## 24      3523 0.7364290
## 25      3524 0.7724138
## 26      3525 0.4471698
## 27      3526 0.7724138
## 28      3527 0.1333333
## 29      3528 0.4471698
## 30      3529 0.4471698
## 31      3530 0.7364290
## 32      3531 0.4471698
## 33      3532 0.7364290
## 34      3533 0.7364290
## 35      3534 0.4471698
## 36      3535 0.3913043
## 37      3536 0.3913043
## 38      3537 0.7010309
## 39      3538 0.4471698
## 40      3539 0.4471698
## 41      3540 0.7364290
## 42      3541 0.7364290
## 43      3542 0.8281250
## 44      3543 0.5934066
## 45      3544 0.3913043
## 46      3545 0.7364290
## 47      3546 0.7364290
## 48      3547 0.7364290
## 49      3548 0.4471698
## 50      3549 0.7364290
## 51      3550 0.3913043
## 52      3551 0.3913043
## 53      3552 0.4029851
## 54      3553 0.7364290
## 55      3554 0.6927711
## 56      3555 0.7364290
## 57      3556 0.2173913
## 58      3557 0.6927711
## 59      3558 0.7364290
## 60      3559 0.7364290
## 61      3560 0.6666667
## 62      3561 0.7364290
## 63      3562 0.7364290
## 64      3563 0.7364290
## 65      3564 0.7010309
## 66      3565 0.4471698
## 67      3566 0.7364290
## 68      3567 0.4471698
## 69      3568 0.7364290
## 70      3569 0.3913043
## 71      3570 0.7364290
## 72      3571 0.4471698
## 73      3572 0.4471698
## 74      3573 0.3913043
## 75      3574 0.4029851
## 76      3575 0.4471698
## 77      3576 0.4471698
## 78      3577 0.7364290
## 79      3578 0.7364290
## 80      3579 0.7364290
## 81      3580 0.4471698
## 82      3581 0.4471698
## 83      3582 0.4471698
## 84      3583 0.5934066
## 85      3584 0.5934066
## 86      3585 0.7364290
## 87      3586 0.7364290
## 88      3587 0.7364290
## 89      3588 0.7364290
## 90      3589 0.6927711
## 91      3590 0.7364290
## 92      3591 0.7364290
## 93      3592 0.4471698
## 94      3593 0.4029851
## 95      3594 0.7364290
## 96      3595 0.7724138
## 97      3596 0.7010309
## 98      3597 0.7364290
## 99      3598 0.7364290
## 100     3599 0.4471698
## 101     3600 0.7364290
## 102     3601 0.7364290
## 103     3602 0.5934066
## 104     3603 0.7364290
## 105     3604 0.3913043
## 106     3605 0.8281250
## 107     3606 0.7724138
## 108     3607 0.8281250
## 109     3608 0.7364290
## 110     3609 0.7364290
## 111     3610 0.4471698
## 112     3611 0.4471698
## 113     3612 0.4471698
## 114     3613 0.7364290
## 115     3614 0.4471698
## 116     3615 0.7364290
## 117     3616 0.4471698
## 118     3617 0.3913043
## 119     3618 0.3913043
## 120     3619 0.7364290
## 121     3620 0.7364290
## 122     3621 0.7724138
## 123     3622 0.5934066
## 124     3623 0.4471698
## 125     3624 0.7364290
## 126     3625 0.4471698
## 127     3626 0.5934066
## 128     3627 0.7364290
## 129     3628 0.3913043
## 130     3629 0.8281250
## 131     3630 0.7364290
## 132     3631 0.4029851
## 133     3632 0.7364290
## 134     3633 0.7364290
## 135     3634 0.7364290
## 136     3635 0.7364290
## 137     3636 0.5934066
## 138     3637 0.7364290
## 139     3638 0.7010309
## 140     3639 0.4471698
## 141     3640 0.4471698
## 142     3641 0.7364290
## 143     3642 0.3913043
## 144     3643 0.7364290
## 145     3644 0.7364290
## 146     3645 0.7364290
## 147     3646 0.8281250
## 148     3647 0.6666667
## 149     3648 0.3913043
## 150     3649 0.7724138
## 151     3650 0.7364290
## 152     3651 0.5934066
## 153     3652 0.7364290
## 154     3653 0.4029851
## 155     3654 0.4471698
## 156     3655 0.5934066
## 157     3656 0.5934066
## 158     3657 0.4029851
## 159     3658 0.7364290
## 160     3659 0.7364290
## 161     3660 0.7364290
## 162     3661 0.3913043
## 163     3662 0.7364290
## 164     3663 0.4471698
## 165     3664 0.6666667
## 166     3665 0.3913043
## 167     3666 0.2173913
## 168     3667 0.7364290
## 169     3668 0.8281250
## 170     3669 0.4471698
## 171     3670 0.7364290
## 172     3671 0.3913043
## 173     3672 0.7364290
## 174     3673 0.4029851
## 175     3674 0.6666667
## 176     3675 0.7364290
## 177     3676 0.7724138
## 178     3677 0.4029851
## 179     3678 0.7724138
## 180     3679 0.7724138
## 181     3680 0.7364290
## 182     3681 0.4471698
## 183     3682 0.4471698
## 184     3683 0.7364290
## 185     3684 0.7364290
## 186     3685 0.5934066
## 187     3686 0.7364290
## 188     3687 0.7857143
## 189     3688 0.7364290
## 190     3689 0.3913043
## 191     3690 0.7364290
## 192     3691 0.7364290
## 193     3692 0.7364290
## 194     3693 0.7364290
## 195     3694 0.7364290
## 196     3695 0.4471698
## 197     3696 0.4029851
## 198     3697 0.7010309
## 199     3698 0.7364290
## 200     3699 0.7724138
## 201     3700 0.7364290
## 202     3701 0.7364290
## 203     3702 0.7010309
## 204     3703 0.7857143
## 205     3704 0.4471698
## 206     3705 0.4471698
## 207     3706 0.7364290
## 208     3707 0.7364290
## 209     3708 0.7364290
## 210     3709 0.7364290
## 211     3710 0.7364290
## 212     3711 0.7364290
## 213     3712 0.4471698
## 214     3713 0.7364290
## 215     3714 0.5934066
## 216     3715 0.7364290
## 217     3716 0.7010309
## 218     3717 0.7010309
## 219     3718 0.7364290
## 220     3719 0.7364290
## 221     3720 0.4029851
## 222     3721 0.6800000
## 223     3722 0.7364290
## 224     3723 0.4029851
## 225     3724 0.7724138
## 226     3725 0.5934066
## 227     3726 0.4471698
## 228     3727 0.4471698
## 229     3728 0.4471698
## 230     3729 0.3913043
## 231     3730 0.6927711
## 232     3731 0.6666667
## 233     3732 0.5934066
## 234     3733 0.3913043
## 235     3734 0.7364290
## 236     3735 0.7364290
## 237     3736 0.7364290
## 238     3737 0.4029851
## 239     3738 0.7364290
## 240     3739 0.7857143
## 241     3740 0.4471698
## 242     3741 0.4471698
## 243     3742 0.6666667
## 244     3743 0.7364290
## 245     3744 0.7364290
## 246     3745 0.7364290
## 247     3746 0.3913043
## 248     3747 0.7364290
## 249     3748 0.7364290
## 250     3749 0.4471698
## 251     3750 0.7724138
## 252     3751 0.4471698
## 253     3752 0.7364290
## 254     3753 0.2173913
## 255     3754 0.5934066
## 256     3755 0.6619718
## 257     3756 0.4471698
## 258     3757 0.7724138
## 259     3758 0.4029851
## 260     3759 0.7364290
## 261     3760 0.7364290
## 262     3761 0.4471698
## 263     3762 0.7364290
## 264     3763 0.7364290
## 265     3764 0.4471698
## 266     3765 0.7364290
## 267     3766 0.4471698
## 268     3767 0.5934066
## 269     3768 0.7364290
## 270     3769 0.7364290
## 271     3770 0.4471698
## 272     3771 0.7364290
## 273     3772 0.3913043
## 274     3773 0.6800000
## 275     3774 0.7364290
## 276     3775 0.4471698
## 277     3776 0.3913043
## 278     3777 0.7364290
## 279     3778 0.6927711
## 280     3779 0.6927711
## 281     3780 0.6927711
## 282     3781 0.5934066
## 283     3782 0.6800000
## 284     3783 0.7724138
## 285     3784 0.6927711
## 286     3785 0.3913043
## 287     3786 0.7364290
## 288     3787 0.5934066
## 289     3788 0.6927711
## 290     3789 0.7364290
## 291     3790 0.7364290
## 292     3791 0.8281250
## 293     3792 0.4471698
## 294     3793 0.4471698
## 295     3794 0.7364290
## 296     3795 0.6619718
## 297     3796 0.7364290
## 298     3797 0.5934066
## 299     3798 0.7857143
## 300     3799 0.6927711
## 301     3800 0.7364290
## 302     3801 0.7364290
## 303     3802 0.8281250
## 304     3803 0.7364290
## 305     3804 0.7364290
## 306     3805 0.4471698
## 307     3806 0.4471698
## 308     3807 0.7364290
## 309     3808 0.7857143
## 310     3809 0.7364290
## 311     3810 0.7364290
## 312     3811 0.4471698
## 313     3812 0.5934066
## 314     3813 0.4471698
## 315     3814 0.7364290
## 316     3815 0.2173913
## 317     3816 0.7364290
## 318     3817 0.7364290
## 319     3818 0.8281250
## 320     3819 0.7364290
## 321     3820 0.7364290
## 322     3821 0.7857143
## 323     3822 0.7364290
## 324     3823 0.7364290
## 325     3824 0.8281250
## 326     3825 0.7857143
## 327     3826 0.8281250
## 328     3827 0.7010309
## 329     3828 0.7364290
## 330     3829 0.5934066
## 331     3830 0.4471698
## 332     3831 0.7364290
## 333     3832 0.7364290
## 334     3833 0.7364290
## 335     3834 0.8281250
## 336     3835 0.7364290
## 337     3836 0.7364290
## 338     3837 0.7364290
## 339     3838 0.4471698
## 340     3839 0.7364290
## 341     3840 0.3913043
## 342     3841 0.7364290
## 343     3842 0.7364290
## 344     3843 0.7364290
## 345     3844 0.4471698
## 346     3845 0.7364290
## 347     3846 0.7364290
## 348     3847 0.7364290
## 349     3848 0.7364290
## 350     3849 0.3913043
## 351     3850 0.7364290
## 352     3851 0.7364290
## 353     3852 0.5934066
## 354     3853 0.7724138
## 355     3854 0.7724138
## 356     3855 0.7364290
## 357     3856 0.5934066
## 358     3857 0.7364290
## 359     3858 0.7364290
## 360     3859 0.4471698
## 361     3860 0.2173913
## 362     3861 0.7364290
## 363     3862 0.7364290
## 364     3863 0.7010309
## 365     3864 0.6619718
## 366     3865 0.3913043
## 367     3866 0.7724138
## 368     3867 0.7724138
## 369     3868 0.4471698
## 370     3869 0.3913043
## 371     3870 0.7364290
## 372     3871 0.7364290
## 373     3872 0.4471698
## 374     3873 0.4029851
## 375     3874 0.3913043
## 376     3875 0.7364290
## 377     3876 0.7364290
## 378     3877 0.7364290
## 379     3878 0.4029851
## 380     3879 0.4471698
## 381     3880 0.4029851
## 382     3881 0.7364290
## 383     3882 0.7364290
## 384     3883 0.6927711
## 385     3884 0.7364290
## 386     3885 0.4471698
## 387     3886 0.6619718
## 388     3887 0.7364290
## 389     3888 0.7364290
## 390     3889 0.7364290
## 391     3890 0.4471698
## 392     3891 0.7364290
## 393     3892 0.7364290
## 394     3893 0.7364290
## 395     3894 0.7364290
## 396     3895 0.7364290
## 397     3896 0.7364290
## 398     3897 0.7364290
## 399     3898 0.4471698
## 400     3899 0.7364290
## 401     3900 0.3913043
## 402     3901 0.7364290
## 403     3902 0.7364290
## 404     3903 0.6927711
## 405     3904 0.7364290
## 406     3905 0.7364290
## 407     3906 0.5934066
## 408     3907 0.7364290
## 409     3908 0.7724138
## 410     3909 0.6619718
## 411     3910 0.7364290
## 412     3911 0.7364290
## 413     3912 0.4471698
## 414     3913 0.3913043
## 415     3914 0.7364290
## 416     3915 0.7364290
## 417     3916 0.7364290
## 418     3917 0.3913043
## 419     3918 0.4471698
## 420     3919 0.7364290
## 421     3920 0.5934066
## 422     3921 0.7364290
## 423     3922 0.5934066
## 424     3923 0.2173913
## 425     3924 0.4471698
## 426     3925 0.7364290
## 427     3926 0.7364290
## 428     3927 0.7364290
## 429     3928 0.6666667
## 430     3929 0.4471698
## 431     3930 0.3913043
## 432     3931 0.7364290
## 433     3932 0.4471698
## 434     3933 0.4471698
## 435     3934 0.7364290
## 436     3935 0.7364290
## 437     3936 0.7364290
## 438     3937 0.7364290
## 439     3938 0.4029851
## 440     3939 0.6927711
## 441     3940 0.3913043
## 442     3941 0.8281250
## 443     3942 0.7364290
## 444     3943 0.7364290
## 445     3944 0.7364290
## 446     3945 0.5934066
## 447     3946 0.6666667
## 448     3947 0.7364290
## 449     3948 0.6927711
## 450     3949 0.4471698
## 451     3950 0.7364290
## 452     3951 0.5934066
## 453     3952 0.6666667
## 454     3953 0.5934066
## 455     3954 0.4471698
## 456     3955 0.5934066
## 457     3956 0.8281250
## 458     3957 0.7364290
## 459     3958 0.4471698
## 460     3959 0.7364290
## 461     3960 0.3913043
## 462     3961 0.3913043
## 463     3962 0.6619718
## 464     3963 0.7364290
## 465     3964 0.6800000
## 466     3965 0.4471698
## 467     3966 0.7364290
## 468     3967 0.7364290
## 469     3968 0.4471698
## 470     3969 0.7364290
## 471     3970 0.7364290
## 472     3971 0.7364290
## 473     3972 0.3913043
## 474     3973 0.4471698
## 475     3974 0.7364290
## 476     3975 0.4471698
## 477     3976 0.7364290
## 478     3977 0.4029851
## 479     3978 0.4471698
## 480     3979 0.1333333
## 481     3980 0.6927711
## 482     3981 0.7364290
## 483     3982 0.5934066
## 484     3983 0.7364290
## 485     3984 0.7364290
## 486     3985 0.7364290
## 487     3986 0.7364290
## 488     3987 0.7364290
## 489     3988 0.7364290
## 490     3989 0.3913043
## 491     3990 0.7724138
## 492     3991 0.7724138
## 493     3992 0.7364290
## 494     3993 0.7364290
## 495     3994 0.7364290
## 496     3995 0.7364290
## 497     3996 0.7364290
## 498     3997 0.7364290
## 499     3998 0.4471698
## 500     3999 0.1333333
## 501     4000 0.7724138
## 502     4001 0.7364290
## 503     4002 0.7364290
## 504     4003 0.7364290
## 505     4004 0.7364290
## 506     4005 0.7364290
## 507     4006 0.3913043
## 508     4007 0.3913043
## 509     4008 0.7364290
## 510     4009 0.7364290
## 511     4010 0.7364290
## 512     4011 0.6927711
## 513     4012 0.3913043
## 514     4013 0.7010309
## 515     4014 0.7364290
## 516     4015 0.3913043
## 517     4016 0.7364290
## 518     4017 0.3913043
## 519     4018 0.6666667
## 520     4019 0.7010309
## 521     4020 0.7364290
## 522     4021 0.4029851
## 523     4022 0.5934066
## 524     4023 0.7364290
## 525     4024 0.3913043
## 526     4025 0.4471698
## 527     4026 0.5934066
## 528     4027 0.3913043
## 529     4028 0.7364290
## 530     4029 0.7364290
## 531     4030 0.7364290
## 532     4031 0.7364290
## 533     4032 0.4029851
## 534     4033 0.6927711
## 535     4034 0.7364290
## 536     4035 0.7724138
## 537     4036 0.7364290
## 538     4037 0.7364290
## 539     4038 0.7364290
## 540     4039 0.7364290
## 541     4040 0.7010309
## 542     4041 0.5934066
## 543     4042 0.7364290
## 544     4043 0.7364290
## 545     4044 0.3913043
## 546     4045 0.4471698
## 547     4046 0.7364290
## 548     4047 0.7364290
## 549     4048 0.6666667
## 550     4049 0.7364290
## 551     4050 0.7364290
## 552     4051 0.4471698
## 553     4052 0.7364290
## 554     4053 0.7364290
## 555     4054 0.3913043
## 556     4055 0.4471698
## 557     4056 0.3913043
## 558     4057 0.7364290
## 559     4058 0.3913043
## 560     4059 0.4471698
## 561     4060 0.5934066
## 562     4061 0.5934066
## 563     4062 0.6927711
## 564     4063 0.7364290
## 565     4064 0.3913043
## 566     4065 0.1333333
## 567     4066 0.7724138
## 568     4067 0.7364290
## 569     4068 0.7364290
## 570     4069 0.4471698
## 571     4070 0.7364290
## 572     4071 0.5934066
## 573     4072 0.7364290
## 574     4073 0.7364290
## 575     4074 0.7364290
## 576     4075 0.7724138
## 577     4076 0.4029851
## 578     4077 0.7364290
## 579     4078 0.3913043
## 580     4079 0.2173913
## 581     4080 0.3913043
## 582     4081 0.7364290
## 583     4082 0.7364290
## 584     4083 0.8281250
## 585     4084 0.4471698
## 586     4085 0.7010309
## 587     4086 0.6927711
## 588     4087 0.5934066
## 589     4088 0.7364290
## 590     4089 0.7364290
## 591     4090 0.7364290
## 592     4091 0.7857143
## 593     4092 0.5934066
## 594     4093 0.3913043
## 595     4094 0.7724138
## 596     4095 0.7364290
## 597     4096 0.7364290
## 598     4097 0.4471698
## 599     4098 0.7364290
## 600     4099 0.3913043
## 601     4100 0.2173913
## 602     4101 0.7724138
## 603     4102 0.7364290
## 604     4103 0.7364290
## 605     4104 0.7364290
## 606     4105 0.4471698
## 607     4106 0.7364290
## 608     4107 0.7364290
## 609     4108 0.7724138
## 610     4109 0.7364290
## 611     4110 0.7364290
## 612     4111 0.3913043
## 613     4112 0.7364290
## 614     4113 0.7724138
## 615     4114 0.5934066
## 616     4115 0.4471698
## 617     4116 0.4471698
## 618     4117 0.1333333
## 619     4118 0.7364290
## 620     4119 0.3913043
## 621     4120 0.5934066
## 622     4121 0.4471698
## 623     4122 0.3913043
## 624     4123 0.5934066
## 625     4124 0.4029851
## 626     4125 0.7364290
## 627     4126 0.7364290
## 628     4127 0.7364290
## 629     4128 0.7364290
## 630     4129 0.6927711
## 631     4130 0.5934066
## 632     4131 0.5934066
## 633     4132 0.7364290
## 634     4133 0.7364290
## 635     4134 0.5934066
## 636     4135 0.7364290
## 637     4136 0.4471698
## 638     4137 0.7364290
## 639     4138 0.7364290
## 640     4139 0.6927711
## 641     4140 0.3913043
## 642     4141 0.7364290
## 643     4142 0.7364290
## 644     4143 0.7364290
## 645     4144 0.4471698
## 646     4145 0.4471698
## 647     4146 0.7364290
## 648     4147 0.4471698
## 649     4148 0.4471698
## 650     4149 0.4471698
## 651     4150 0.7364290
## 652     4151 0.4471698
## 653     4152 0.5934066
## 654     4153 0.4471698
## 655     4154 0.7364290
## 656     4155 0.7364290
## 657     4156 0.7364290
## 658     4157 0.7364290
## 659     4158 0.3913043
## 660     4159 0.7364290
## 661     4160 0.4471698
## 662     4161 0.7364290
## 663     4162 0.7857143
## 664     4163 0.7724138
## 665     4164 0.4471698
## 666     4165 0.4029851
## 667     4166 0.3913043
## 668     4167 0.6619718
## 669     4168 0.6619718
## 670     4169 0.7364290
## 671     4170 0.5934066
## 672     4171 0.4471698
## 673     4172 0.7364290
## 674     4173 0.7010309
## 675     4174 0.4471698
## 676     4175 0.7364290
## 677     4176 0.3913043
## 678     4177 0.7364290
## 679     4178 0.5934066
## 680     4179 0.7364290
## 681     4180 0.7364290
## 682     4181 0.7364290
## 683     4182 0.4471698
## 684     4183 0.7364290
## 685     4184 0.7364290
## 686     4185 0.7364290
## 687     4186 0.7364290
## 688     4187 0.7364290
## 689     4188 0.4471698
## 690     4189 0.4471698
## 691     4190 0.7364290
## 692     4191 0.7364290
## 693     4192 0.3913043
## 694     4193 0.4471698
## 695     4194 0.5934066
## 696     4195 0.6619718
## 697     4196 0.6619718
## 698     4197 0.5934066
## 699     4198 0.5934066
## 700     4199 0.7364290
## 701     4200 0.5934066
## 702     4201 0.4471698
## 703     4202 0.7364290
## 704     4203 0.3913043
## 705     4204 0.7364290
## 706     4205 0.7364290
## 707     4206 0.3913043
## 708     4207 0.7364290
## 709     4208 0.7364290
## 710     4209 0.4471698
## 711     4210 0.7364290
## 712     4211 0.5934066
## 713     4212 0.3913043
## 714     4213 0.7364290
## 715     4214 0.7364290
## 716     4215 0.7364290
## 717     4216 0.7364290
## 718     4217 0.7364290
## 719     4218 0.5934066
## 720     4219 0.4471698
## 721     4220 0.6619718
## 722     4221 0.3913043
## 723     4222 0.3913043
## 724     4223 0.7364290
## 725     4224 0.7364290
## 726     4225 0.7364290
## 727     4226 0.4471698
## 728     4227 0.7724138
## 729     4228 0.7724138
## 730     4229 0.3913043
## 731     4230 0.4471698
## 732     4231 0.7364290
## 733     4232 0.5934066
## 734     4233 0.7364290
## 735     4234 0.7364290
## 736     4235 0.3913043
## 737     4236 0.7364290
## 738     4237 0.4029851
## 739     4238 0.2173913
## 740     4239 0.6927711
## 741     4240 0.7364290
## 742     4241 0.7364290
## 743     4242 0.7364290
## 744     4243 0.7364290
## 745     4244 0.7010309
## 746     4245 0.7364290
## 747     4246 0.3913043
## 748     4247 0.3913043
## 749     4248 0.7364290
## 750     4249 0.4471698
## 751     4250 0.7364290
## 752     4251 0.6800000
## 753     4252 0.7364290
## 754     4253 0.7010309
## 755     4254 0.7724138
## 756     4255 0.7364290
## 757     4256 0.7364290
## 758     4257 0.6666667
## 759     4258 0.4471698
## 760     4259 0.3913043
## 761     4260 0.4029851
## 762     4261 0.7364290
## 763     4262 0.7364290
## 764     4263 0.5934066
## 765     4264 0.7724138
## 766     4265 0.7364290
## 767     4266 0.3913043
## 768     4267 0.7364290
## 769     4268 0.7364290
## 770     4269 0.7364290
## 771     4270 0.3913043
## 772     4271 0.7724138
## 773     4272 0.7364290
## 774     4273 0.7010309
## 775     4274 0.3913043
## 776     4275 0.7364290
## 777     4276 0.4471698
## 778     4277 0.6800000
## 779     4278 0.7364290
## 780     4279 0.5934066
## 781     4280 0.4471698
## 782     4281 0.7364290
## 783     4282 0.7364290
## 784     4283 0.4471698
## 785     4284 0.4471698
## 786     4285 0.4471698
## 787     4286 0.7010309
## 788     4287 0.4471698
## 789     4288 0.7364290
## 790     4289 0.3913043
## 791     4290 0.7364290
## 792     4291 0.7364290
## 793     4292 0.3913043
## 794     4293 0.7724138
## 795     4294 0.7364290
## 796     4295 0.7364290
## 797     4296 0.6666667
## 798     4297 0.7364290
## 799     4298 0.7364290
## 800     4299 0.3913043
## 801     4300 0.7364290
## 802     4301 0.7364290
## 803     4302 0.7364290
## 804     4303 0.7364290
## 805     4304 0.3913043
## 806     4305 0.7857143
## 807     4306 0.3913043
## 808     4307 0.7364290
## 809     4308 0.7364290
## 810     4309 0.7364290
## 811     4310 0.7364290
## 812     4311 0.3913043
## 813     4312 0.5934066
## 814     4313 0.7857143
## 815     4314 0.7364290
## 816     4315 0.7724138
## 817     4316 0.5934066
## 818     4317 0.4471698
## 819     4318 0.7364290
## 820     4319 0.4471698
## 821     4320 0.8281250
## 822     4321 0.7364290
## 823     4322 0.7364290
## 824     4323 0.7364290
## 825     4324 0.4029851
## 826     4325 0.5934066
## 827     4326 0.3913043
## 828     4327 0.4471698
## 829     4328 0.7364290
## 830     4329 0.8281250
## 831     4330 0.7364290
## 832     4331 0.8281250
## 833     4332 0.4471698
## 834     4333 0.3913043
## 835     4334 0.7364290
## 836     4335 0.8281250
## 837     4336 0.4471698
## 838     4337 0.3913043
## 839     4338 0.7724138
## 840     4339 0.7364290
## 841     4340 0.7364290
## 842     4341 0.4471698
## 843     4342 0.3913043
## 844     4343 0.7364290
## 845     4344 0.5934066
## 846     4345 0.7364290
## 847     4346 0.7364290
## 848     4347 0.5934066
## 849     4348 0.7010309
## 850     4349 0.2173913
## 851     4350 0.7364290
## 852     4351 0.7364290
## 853     4352 0.4471698
## 854     4353 0.3913043
## 855     4354 0.7364290
## 856     4355 0.6927711
## 857     4356 0.3913043
## 858     4357 0.5934066
## 859     4358 0.4471698
## 860     4359 0.4471698
## 861     4360 0.6619718
## 862     4361 0.4471698
## 863     4362 0.7364290
## 864     4363 0.3913043
## 865     4364 0.7364290
## 866     4365 0.7364290
## 867     4366 0.7364290
## 868     4367 0.5934066
## 869     4368 0.7364290
## 870     4369 0.7364290
## 871     4370 0.7364290
## 872     4371 0.5934066
## 873     4372 0.4471698
## 874     4373 0.3913043
## 875     4374 0.7857143
## 876     4375 0.4471698
## 877     4376 0.5934066
## 878     4377 0.7364290
## 879     4378 0.7364290
## 880     4379 0.6927711
## 881     4380 0.3913043
## 882     4381 0.7364290
## 883     4382 0.7364290
## 884     4383 0.4471698
## 885     4384 0.4029851
## 886     4385 0.7364290
## 887     4386 0.7364290
## 888     4387 0.4471698
## 889     4388 0.6619718
## 890     4389 0.4471698
## 891     4390 0.7364290
## 892     4391 0.6927711
## 893     4392 0.4471698
## 894     4393 0.7364290
## 895     4394 0.7364290
## 896     4395 0.5934066
## 897     4396 0.5934066
## 898     4397 0.7364290
## 899     4398 0.4471698
## 900     4399 0.7364290
## 901     4400 0.7364290
## 902     4401 0.8281250
## 903     4402 0.6927711
## 904     4403 0.7364290
## 905     4404 0.7010309
## 906     4405 0.7857143
## 907     4406 0.7364290
## 908     4407 0.7364290
## 909     4408 0.5934066
## 910     4409 0.7364290
## 911     4410 0.3913043
## 912     4411 0.4029851
## 913     4412 0.7364290
## 914     4413 0.7364290
## 915     4414 0.4471698
## 916     4415 0.7364290
## 917     4416 0.4471698
## 918     4417 0.7364290
## 919     4418 0.7364290
## 920     4419 0.7364290
## 921     4420 0.7364290
## 922     4421 0.7364290
## 923     4422 0.3913043
## 924     4423 0.8281250
## 925     4424 0.6619718
## 926     4425 0.7364290
## 927     4426 0.7364290
## 928     4427 0.7364290
## 929     4428 0.3913043
## 930     4429 0.7724138
## 931     4430 0.6619718
## 932     4431 0.3913043
## 933     4432 0.6927711
## 934     4433 0.7364290
## 935     4434 0.7364290
## 936     4435 0.5934066
## 937     4436 0.7364290
## 938     4437 0.7364290
## 939     4438 0.7364290
## 940     4439 0.4471698
## 941     4440 0.7364290
## 942     4441 0.7364290
## 943     4442 0.6927711
## 944     4443 0.7364290
## 945     4444 0.4471698
## 946     4445 0.4471698
## 947     4446 0.6927711
## 948     4447 0.4471698
## 949     4448 0.7724138
## 950     4449 0.7364290
## 951     4450 0.7364290
## 952     4451 0.3913043
## 953     4452 0.3913043
## 954     4453 0.7364290
## 955     4454 0.2173913
## 956     4455 0.7364290
## 957     4456 0.7364290
## 958     4457 0.7364290
## 959     4458 0.7364290
## 960     4459 0.7364290
## 961     4460 0.4029851
## 962     4461 0.7364290
## 963     4462 0.4471698
## 964     4463 0.4471698
## 965     4464 0.7364290
## 966     4465 0.7364290
## 967     4466 0.6666667
## 968     4467 0.7364290
## 969     4468 0.3913043
## 970     4469 0.5934066
## 971     4470 0.7364290
## 972     4471 0.7010309
## 973     4472 0.5934066
## 974     4473 0.4471698
## 975     4474 0.7364290
## 976     4475 0.3913043
## 977     4476 0.7010309
## 978     4477 0.7364290
## 979     4478 0.2173913
## 980     4479 0.3913043
## 981     4480 0.7364290
## 982     4481 0.7364290
## 983     4482 0.7364290
## 984     4483 0.7364290
## 985     4484 0.4471698
## 986     4485 0.7364290
## 987     4486 0.7364290
## 988     4487 0.8281250
## 989     4488 0.7364290
## 990     4489 0.7364290
## 991     4490 0.7364290
## 992     4491 0.7364290
## 993     4492 0.3913043
## 994     4493 0.5934066
## 995     4494 0.7364290
## 996     4495 0.7364290
## 997     4496 0.7364290
## 998     4497 0.4471698
## 999     4498 0.5934066
## 1000    4499 0.5934066
## 1001    4500 0.6619718
## 1002    4501 0.7364290
## 1003    4502 0.7364290
## 1004    4503 0.5934066
## 1005    4504 0.7364290
## 1006    4505 0.4471698
## 1007    4506 0.7364290
## 1008    4507 0.7364290
## 1009    4508 0.3913043
## 1010    4509 0.7364290
## 1011    4510 0.7364290
## 1012    4511 0.8281250
## 1013    4512 0.3913043
## 1014    4513 0.5934066
## 1015    4514 0.4471698
## 1016    4515 0.7724138
## 1017    4516 0.7364290
## 1018    4517 0.7364290
## 1019    4518 0.7364290
## 1020    4519 0.6927711
## 1021    4520 0.3913043
## 1022    4521 0.5934066
## 1023    4522 0.7364290
## 1024    4523 0.7364290
## 1025    4524 0.3913043
## 1026    4525 0.3913043
## 1027    4526 0.6927711
## 1028    4527 0.7364290
## 1029    4528 0.4471698
## 1030    4529 0.7364290
## 1031    4530 0.3913043
## 1032    4531 0.3913043
## 1033    4532 0.4471698
## 1034    4533 0.4471698
## 1035    4534 0.4471698
## 1036    4535 0.7364290
## 1037    4536 0.3913043
## 1038    4537 0.7364290
## 1039    4538 0.7364290
## 1040    4539 0.4471698
## 1041    4540 0.5934066
## 1042    4541 0.6800000
## 1043    4542 0.8281250
## 1044    4543 0.7364290
## 1045    4544 0.7364290
## 1046    4545 0.7724138
## 1047    4546 0.7364290
## 1048    4547 0.7364290
## 1049    4548 0.8281250
## 1050    4549 0.4029851
## 1051    4550 0.7364290
## 1052    4551 0.4471698
## 1053    4552 0.7364290
## 1054    4553 0.4471698
## 1055    4554 0.4471698
## 1056    4555 0.7364290
## 1057    4556 0.4471698
## 1058    4557 0.5934066
## 1059    4558 0.5934066
## 1060    4559 0.7364290
## 1061    4560 0.5934066
## 1062    4561 0.7364290
## 1063    4562 0.5934066
## 1064    4563 0.4471698
## 1065    4564 0.7364290
## 1066    4565 0.3913043
## 1067    4566 0.7010309
## 1068    4567 0.2173913
## 1069    4568 0.7724138
## 1070    4569 0.3913043
## 1071    4570 0.7364290
## 1072    4571 0.4029851
## 1073    4572 0.7364290
## 1074    4573 0.7364290
## 1075    4574 0.4471698
## 1076    4575 0.3913043
## 1077    4576 0.7724138
## 1078    4577 0.4471698
## 1079    4578 0.8281250
## 1080    4579 0.7364290
## 1081    4580 0.7364290
## 1082    4581 0.8281250
## 1083    4582 0.7364290
## 1084    4583 0.4029851
## 1085    4584 0.7364290
## 1086    4585 0.4471698
## 1087    4586 0.5934066
## 1088    4587 0.7010309
## 1089    4588 0.4471698
## 1090    4589 0.7364290
## 1091    4590 0.4471698
## 1092    4591 0.7364290
## 1093    4592 0.7364290
## 1094    4593 0.4471698
## 1095    4594 0.7364290
## 1096    4595 0.7364290
## 1097    4596 0.5934066
## 1098    4597 0.4471698
## 1099    4598 0.4471698
## 1100    4599 0.7364290
## 1101    4600 0.5934066
## 1102    4601 0.3913043
## 1103    4602 0.7364290
## 1104    4603 0.7364290
## 1105    4604 0.3913043
## 1106    4605 0.7724138
## 1107    4606 0.7364290
## 1108    4607 0.7364290
## 1109    4608 0.7364290
## 1110    4609 0.4471698
## 1111    4610 0.3913043
## 1112    4611 0.4029851
## 1113    4612 0.4471698
## 1114    4613 0.6927711
## 1115    4614 0.7724138
## 1116    4615 0.6800000
## 1117    4616 0.7364290
## 1118    4617 0.7724138
## 1119    4618 0.7364290
## 1120    4619 0.4471698
## 1121    4620 0.4471698
## 1122    4621 0.3913043
## 1123    4622 0.3913043
## 1124    4623 0.6927711
## 1125    4624 0.6800000
## 1126    4625 0.6927711
## 1127    4626 0.3913043
## 1128    4627 0.4029851
## 1129    4628 0.6927711
## 1130    4629 0.7364290
## 1131    4630 0.7364290
## 1132    4631 0.7724138
## 1133    4632 0.7364290
## 1134    4633 0.7364290
## 1135    4634 0.7364290
## 1136    4635 0.6927711
## 1137    4636 0.4471698
## 1138    4637 0.7364290
## 1139    4638 0.7364290
## 1140    4639 0.7364290
## 1141    4640 0.7364290
## 1142    4641 0.7724138
## 1143    4642 0.7364290
## 1144    4643 0.7364290
## 1145    4644 0.7010309
## 1146    4645 0.4471698
## 1147    4646 0.7364290
## 1148    4647 0.4471698
## 1149    4648 0.3913043
## 1150    4649 0.4471698
## 1151    4650 0.6927711
## 1152    4651 0.7364290
## 1153    4652 0.7364290
## 1154    4653 0.7724138
## 1155    4654 0.5934066
## 1156    4655 0.3913043
## 1157    4656 0.7010309
## 1158    4657 0.6927711
## 1159    4658 0.3913043
## 1160    4659 0.4471698
## 1161    4660 0.7364290
## 1162    4661 0.3913043
## 1163    4662 0.7364290
## 1164    4663 0.6927711
## 1165    4664 0.7364290
## 1166    4665 0.3913043
## 1167    4666 0.7364290
## 1168    4667 0.7364290
## 1169    4668 0.7724138
## 1170    4669 0.5934066
## 1171    4670 0.7364290
## 1172    4671 0.7364290
## 1173    4672 0.7364290
## 1174    4673 0.7364290
## 1175    4674 0.6927711
## 1176    4675 0.6927711
## 1177    4676 0.7364290
## 1178    4677 0.7010309
## 1179    4678 0.7364290
## 1180    4679 0.6927711
## 1181    4680 0.7364290
## 1182    4681 0.7364290
## 1183    4682 0.7364290
## 1184    4683 0.7364290
## 1185    4684 0.4471698
## 1186    4685 0.7364290
## 1187    4686 0.7364290
## 1188    4687 0.7364290
## 1189    4688 0.7364290
## 1190    4689 0.7364290
## 1191    4690 0.7364290
## 1192    4691 0.6927711
## 1193    4692 0.7364290
## 1194    4693 0.7364290
## 1195    4694 0.7364290
## 1196    4695 0.7364290
## 1197    4696 0.7364290
## 1198    4697 0.7364290
## 1199    4698 0.6619718
## 1200    4699 0.7364290
## 1201    4700 0.7364290
## 1202    4701 0.7364290
## 1203    4702 0.7364290
## 1204    4703 0.7364290
## 1205    4704 0.6619718
## 1206    4705 0.4471698
## 1207    4706 0.7364290
## 1208    4707 0.4471698
## 1209    4708 0.7364290
## 1210    4709 0.3913043
## 1211    4710 0.7364290
## 1212    4711 0.7010309
## 1213    4712 0.3913043
## 1214    4713 0.4029851
## 1215    4714 0.3913043
## 1216    4715 0.5934066
## 1217    4716 0.7364290
## 1218    4717 0.7364290
## 1219    4718 0.6927711
## 1220    4719 0.4471698
## 1221    4720 0.6666667
## 1222    4721 0.4471698
## 1223    4722 0.7364290
## 1224    4723 0.5934066
## 1225    4724 0.7364290
## 1226    4725 0.4471698
## 1227    4726 0.6927711
## 1228    4727 0.7364290
## 1229    4728 0.7364290
## 1230    4729 0.7364290
## 1231    4730 0.3913043
## 1232    4731 0.4471698
## 1233    4732 0.3913043
## 1234    4733 0.7364290
## 1235    4734 0.7364290
## 1236    4735 0.7364290
## 1237    4736 0.4029851
## 1238    4737 0.4471698
## 1239    4738 0.5934066
## 1240    4739 0.6927711
## 1241    4740 0.7364290
## 1242    4741 0.5934066
## 1243    4742 0.7364290
## 1244    4743 0.4471698
## 1245    4744 0.7364290
## 1246    4745 0.4471698
## 1247    4746 0.4029851
## 1248    4747 0.7010309
## 1249    4748 0.3913043
## 1250    4749 0.7364290
## 1251    4750 0.5934066
## 1252    4751 0.7364290
## 1253    4752 0.4471698
## 1254    4753 0.7010309
## 1255    4754 0.7724138
## 1256    4755 0.4471698
## 1257    4756 0.3913043
## 1258    4757 0.7364290
## 1259    4758 0.3913043
## 1260    4759 0.7364290
## 1261    4760 0.7364290
## 1262    4761 0.3913043
## 1263    4762 0.3913043
## 1264    4763 0.7364290
## 1265    4764 0.7364290
## 1266    4765 0.7364290
## 1267    4766 0.4471698
## 1268    4767 0.4471698
## 1269    4768 0.7364290
## 1270    4769 0.6927711
## 1271    4770 0.7724138
## 1272    4771 0.4471698
## 1273    4772 0.7010309
## 1274    4773 0.7364290
## 1275    4774 0.7364290
## 1276    4775 0.6927711
## 1277    4776 0.7364290
## 1278    4777 0.4029851
## 1279    4778 0.6927711
## 1280    4779 0.7364290
## 1281    4780 0.6927711
## 1282    4781 0.4471698
## 1283    4782 0.7364290
## 1284    4783 0.7364290
## 1285    4784 0.7364290
## 1286    4785 0.7364290
## 1287    4786 0.5934066
## 1288    4787 0.7724138
## 1289    4788 0.7364290
## 1290    4789 0.3913043
## 1291    4790 0.6619718
## 1292    4791 0.7364290
## 1293    4792 0.4471698
## 1294    4793 0.3913043
## 1295    4794 0.7724138
## 1296    4795 0.7364290
## 1297    4796 0.5934066
## 1298    4797 0.4029851
## 1299    4798 0.6927711
## 1300    4799 0.7364290
## 1301    4800 0.6800000
## 1302    4801 0.6927711
## 1303    4802 0.7364290
## 1304    4803 0.7364290
## 1305    4804 0.3913043
## 1306    4805 0.7010309
## 1307    4806 0.7364290
## 1308    4807 0.1333333
## 1309    4808 0.7364290
## 1310    4809 0.7364290
## 1311    4810 0.7364290
## 1312    4811 0.7364290
## 1313    4812 0.3913043
## 1314    4813 0.7724138
## 1315    4814 0.7364290
## 1316    4815 0.3913043
## 1317    4816 0.7364290
## 1318    4817 0.4471698
## 1319    4818 0.4471698
## 1320    4819 0.3913043
## 1321    4820 0.7364290
## 1322    4821 0.5934066
## 1323    4822 0.7364290
## 1324    4823 0.7364290
## 1325    4824 0.7364290
## 1326    4825 0.7364290
## 1327    4826 0.7364290
## 1328    4827 0.7364290
## 1329    4828 0.7364290
## 1330    4829 0.7364290
## 1331    4830 0.7364290
## 1332    4831 0.7364290
## 1333    4832 0.7364290
## 1334    4833 0.6927711
## 1335    4834 0.4471698
## 1336    4835 0.4471698
## 1337    4836 0.4471698
## 1338    4837 0.4029851
## 1339    4838 0.4471698
## 1340    4839 0.7364290
## 1341    4840 0.8281250
## 1342    4841 0.3913043
## 1343    4842 0.7364290
## 1344    4843 0.5934066
## 1345    4844 0.4471698
## 1346    4845 0.4471698
## 1347    4846 0.7364290
## 1348    4847 0.3913043
## 1349    4848 0.3913043
## 1350    4849 0.7364290
## 1351    4850 0.2173913
## 1352    4851 0.3913043
## 1353    4852 0.7364290
## 1354    4853 0.3913043
## 1355    4854 0.4471698
## 1356    4855 0.8281250
## 1357    4856 0.7364290
## 1358    4857 0.7364290
## 1359    4858 0.3913043
## 1360    4859 0.7364290
## 1361    4860 0.4471698
## 1362    4861 0.4471698
## 1363    4862 0.6800000
## 1364    4863 0.7364290
## 1365    4864 0.6619718
## 1366    4865 0.7364290
## 1367    4866 0.7364290
## 1368    4867 0.7364290
## 1369    4868 0.7364290
## 1370    4869 0.7364290
## 1371    4870 0.7364290
## 1372    4871 0.4471698
## 1373    4872 0.7724138
## 1374    4873 0.7364290
## 1375    4874 0.4029851
## 1376    4875 0.4471698
## 1377    4876 0.5934066
## 1378    4877 0.4471698
## 1379    4878 0.3913043
## 1380    4879 0.5934066
## 1381    4880 0.7364290
## 1382    4881 0.3913043
## 1383    4882 0.6619718
## 1384    4883 0.4471698
## 1385    4884 0.4471698
## 1386    4885 0.5934066
## 1387    4886 0.7364290
## 1388    4887 0.7364290
## 1389    4888 0.7724138
## 1390    4889 0.7364290
## 1391    4890 0.6666667
## 1392    4891 0.7364290
## 1393    4892 0.4471698
## 1394    4893 0.4471698
## 1395    4894 0.7364290
## 1396    4895 0.7364290
## 1397    4896 0.6927711
## 1398    4897 0.4471698
## 1399    4898 0.7364290
## 1400    4899 0.7364290
## 1401    4900 0.3913043
## 1402    4901 0.3913043
## 1403    4902 0.4471698
## 1404    4903 0.7364290
## 1405    4904 0.3913043
## 1406    4905 0.5934066
## 1407    4906 0.3913043
## 1408    4907 0.7010309
## 1409    4908 0.7364290
## 1410    4909 0.5934066
## 1411    4910 0.7364290
## 1412    4911 0.4471698
## 1413    4912 0.4471698
## 1414    4913 0.3913043
## 1415    4914 0.4471698
## 1416    4915 0.7364290
## 1417    4916 0.7724138
## 1418    4917 0.7364290
## 1419    4918 0.7010309
## 1420    4919 0.7857143
## 1421    4920 0.4471698
## 1422    4921 0.4471698
## 1423    4922 0.7857143
## 1424    4923 0.7364290
## 1425    4924 0.7364290
## 1426    4925 0.6927711
## 1427    4926 0.7724138
## 1428    4927 0.7364290
## 1429    4928 0.7364290
## 1430    4929 0.7364290
## 1431    4930 0.5934066
## 1432    4931 0.7364290
## 1433    4932 0.7364290
## 1434    4933 0.7364290
## 1435    4934 0.3913043
## 1436    4935 0.8281250
## 1437    4936 0.7364290
## 1438    4937 0.7364290
## 1439    4938 0.7724138
## 1440    4939 0.7724138
## 1441    4940 0.4471698
## 1442    4941 0.4471698
## 1443    4942 0.7364290
## 1444    4943 0.4471698
## 1445    4944 0.7364290
## 1446    4945 0.3913043
## 1447    4946 0.4471698
## 1448    4947 0.7364290
## 1449    4948 0.5934066
## 1450    4949 0.7364290
## 1451    4950 0.4471698
## 1452    4951 0.4471698
## 1453    4952 0.7364290
## 1454    4953 0.7364290
## 1455    4954 0.5934066
## 1456    4955 0.3913043
## 1457    4956 0.3913043
## 1458    4957 0.6927711
## 1459    4958 0.7724138
## 1460    4959 0.4471698
## 1461    4960 0.7364290
## 1462    4961 0.6927711
## 1463    4962 0.5934066
## 1464    4963 0.6619718
## 1465    4964 0.3913043
## 1466    4965 0.6619718
## 1467    4966 0.3913043
## 1468    4967 0.4471698
## 1469    4968 0.7364290
## 1470    4969 0.7364290
## 1471    4970 0.7364290
## 1472    4971 0.4029851
## 1473    4972 0.7364290
## 1474    4973 0.4471698
## 1475    4974 0.6619718
## 1476    4975 0.7724138
## 1477    4976 0.7364290
## 1478    4977 0.7364290
## 1479    4978 0.7364290
## 1480    4979 0.3913043
## 1481    4980 0.7364290
## 1482    4981 0.7364290
## 1483    4982 0.6927711
## 1484    4983 0.3913043
## 1485    4984 0.3913043
## 1486    4985 0.3913043
## 1487    4986 0.7364290
## 1488    4987 0.3913043
## 1489    4988 0.7364290
## 1490    4989 0.4471698
## 1491    4990 0.6927711
## 1492    4991 0.7010309
## 1493    4992 0.4471698
## 1494    4993 0.7364290
## 1495    4994 0.7857143
## 1496    4995 0.7364290
## 1497    4996 0.7364290
## 1498    4997 0.3913043
## 1499    4998 0.5934066
## 1500    4999 0.8281250
## 1501    5000 0.5934066
## 1502    5001 0.4471698
## 1503    5002 0.7364290
## 1504    5003 0.3913043
## 1505    5004 0.5934066
## 1506    5005 0.7364290
## 1507    5006 0.4471698
## 1508    5007 0.6927711
## 1509    5008 0.7010309
## 1510    5009 0.3913043
## 1511    5010 0.4471698
## 1512    5011 0.4471698
## 1513    5012 0.7364290
## 1514    5013 0.3913043
## 1515    5014 0.7364290
## 1516    5015 0.7364290
## 1517    5016 0.4471698
## 1518    5017 0.5934066
## 1519    5018 0.7364290
## 1520    5019 0.7364290
## 1521    5020 0.4471698
## 1522    5021 0.7364290
## 1523    5022 0.4471698
## 1524    5023 0.3913043
## 1525    5024 0.7724138
## 1526    5025 0.6800000
## 1527    5026 0.3913043
## 1528    5027 0.7010309
## 1529    5028 0.7364290
## 1530    5029 0.4471698
## 1531    5030 0.8281250
## 1532    5031 0.6927711
## 1533    5032 0.6800000
## 1534    5033 0.5934066
## 1535    5034 0.3913043
## 1536    5035 0.7364290
## 1537    5036 0.5934066
## 1538    5037 0.7857143
## 1539    5038 0.7364290
## 1540    5039 0.7364290
## 1541    5040 0.7364290
## 1542    5041 0.7364290
## 1543    5042 0.7364290
## 1544    5043 0.7364290
## 1545    5044 0.6619718
## 1546    5045 0.5934066
## 1547    5046 0.7364290
## 1548    5047 0.7364290
## 1549    5048 0.4029851
## 1550    5049 0.4471698
## 1551    5050 0.3913043
## 1552    5051 0.7364290
## 1553    5052 0.3913043
## 1554    5053 0.4471698
## 1555    5054 0.4471698
## 1556    5055 0.4471698
## 1557    5056 0.5934066
## 1558    5057 0.7364290
## 1559    5058 0.7364290
## 1560    5059 0.7364290
## 1561    5060 0.6927711
## 1562    5061 0.7364290
## 1563    5062 0.7364290
## 1564    5063 0.4471698
## 1565    5064 0.7364290
## 1566    5065 0.7364290
## 1567    5066 0.7364290
## 1568    5067 0.7364290
## 1569    5068 0.7364290
## 1570    5069 0.7364290
## 1571    5070 0.7364290
## 1572    5071 0.2173913
## 1573    5072 0.7364290
## 1574    5073 0.3913043
## 1575    5074 0.7364290
## 1576    5075 0.7364290
## 1577    5076 0.3913043
## 1578    5077 0.3913043
## 1579    5078 0.7364290
## 1580    5079 0.4471698
## 1581    5080 0.7364290
## 1582    5081 0.4471698
## 1583    5082 0.5934066
## 1584    5083 0.7364290
## 1585    5084 0.4471698
## 1586    5085 0.5934066
## 1587    5086 0.7364290
## 1588    5087 0.7724138
## 1589    5088 0.7724138
## 1590    5089 0.6666667
## 1591    5090 0.7724138
## 1592    5091 0.4471698
## 1593    5092 0.7364290
## 1594    5093 0.7364290
## 1595    5094 0.4029851
## 1596    5095 0.4471698
## 1597    5096 0.7364290
## 1598    5097 0.6927711
## 1599    5098 0.5934066
## 1600    5099 0.7364290
## 1601    5100 0.7364290
## 1602    5101 0.7364290
## 1603    5102 0.7364290
## 1604    5103 0.7364290
## 1605    5104 0.7364290
## 1606    5105 0.7364290
## 1607    5106 0.3913043
## 1608    5107 0.2173913
## 1609    5108 0.5934066
## 1610    5109 0.2173913
## 1611    5110 0.7364290
## 1612    5111 0.4471698
## 1613    5112 0.7364290
## 1614    5113 0.5934066
## 1615    5114 0.7364290
## 1616    5115 0.4471698
## 1617    5116 0.7364290
## 1618    5117 0.7364290
## 1619    5118 0.7364290
## 1620    5119 0.7364290
## 1621    5120 0.3913043
## 1622    5121 0.5934066
## 1623    5122 0.7364290
## 1624    5123 0.4471698
## 1625    5124 0.3913043
## 1626    5125 0.7364290
## 1627    5126 0.7364290
## 1628    5127 0.5934066
## 1629    5128 0.4471698
## 1630    5129 0.7364290
## 1631    5130 0.8281250
## 1632    5131 0.7364290
## 1633    5132 0.7364290
## 1634    5133 0.7364290
## 1635    5134 0.6666667
## 1636    5135 0.7364290
## 1637    5136 0.7364290
## 1638    5137 0.4471698
## 1639    5138 0.7364290
## 1640    5139 0.5934066
## 1641    5140 0.5934066
## 1642    5141 0.5934066
## 1643    5142 0.4471698
## 1644    5143 0.6927711
## 1645    5144 0.7724138
## 1646    5145 0.7364290
## 1647    5146 0.7724138
## 1648    5147 0.3913043
## 1649    5148 0.2173913
## 1650    5149 0.3913043
## 1651    5150 0.7364290
## 1652    5151 0.7364290
## 1653    5152 0.3913043
## 1654    5153 0.7364290
## 1655    5154 0.6619718
## 1656    5155 0.7364290
## 1657    5156 0.7364290
## 1658    5157 0.4471698
## 1659    5158 0.7364290
## 1660    5159 0.6927711
## 1661    5160 0.6927711
## 1662    5161 0.7364290
## 1663    5162 0.4471698
## 1664    5163 0.7364290
## 1665    5164 0.6927711
## 1666    5165 0.7724138
## 1667    5166 0.5934066
## 1668    5167 0.7364290
## 1669    5168 0.7364290
## 1670    5169 0.6619718
## 1671    5170 0.4471698
## 1672    5171 0.6927711
## 1673    5172 0.7364290
## 1674    5173 0.4471698
## 1675    5174 0.7724138
## 1676    5175 0.4471698
## 1677    5176 0.7364290
## 1678    5177 0.7364290
## 1679    5178 0.7364290
## 1680    5179 0.4471698
## 1681    5180 0.7364290
## 1682    5181 0.4471698
## 1683    5182 0.5934066
## 1684    5183 0.7364290
## 1685    5184 0.7364290
## 1686    5185 0.7364290
## 1687    5186 0.3913043
## 1688    5187 0.7364290
## 1689    5188 0.5934066
## 1690    5189 0.6927711
## 1691    5190 0.7364290
## 1692    5191 0.7364290
## 1693    5192 0.7364290
## 1694    5193 0.5934066
## 1695    5194 0.4471698
## 1696    5195 0.7364290
## 1697    5196 0.7364290
## 1698    5197 0.7364290
## 1699    5198 0.4471698
## 1700    5199 0.7724138
## 1701    5200 0.4029851
## 1702    5201 0.7364290
## 1703    5202 0.7364290
## 1704    5203 0.7364290
## 1705    5204 0.5934066
## 1706    5205 0.7724138
## 1707    5206 0.7364290
## 1708    5207 0.7364290
## 1709    5208 0.4471698
## 1710    5209 0.7364290
## 1711    5210 0.7364290
## 1712    5211 0.7724138
## 1713    5212 0.7364290
## 1714    5213 0.7364290
## 1715    5214 0.7724138
## 1716    5215 0.4471698
## 1717    5216 0.7364290
## 1718    5217 0.4029851
## 1719    5218 0.7364290
## 1720    5219 0.7724138
## 1721    5220 0.4471698
## 1722    5221 0.4471698
## 1723    5222 0.3913043
## 1724    5223 0.7364290
## 1725    5224 0.7364290
## 1726    5225 0.3913043
## 1727    5226 0.4471698
## 1728    5227 0.7364290
## 1729    5228 0.5934066
## 1730    5229 0.4029851
## 1731    5230 0.6927711
## 1732    5231 0.7724138
## 1733    5232 0.4471698
## 1734    5233 0.3913043
## 1735    5234 0.7724138
## 1736    5235 0.4471698
## 1737    5236 0.7364290
## 1738    5237 0.7364290
## 1739    5238 0.4471698
## 1740    5239 0.7364290
## 1741    5240 0.7364290
## 1742    5241 0.3913043
## 1743    5242 0.4471698
## 1744    5243 0.6927711
## 1745    5244 0.7364290
## 1746    5245 0.7364290
## 1747    5246 0.4471698
## 1748    5247 0.6927711
## 1749    5248 0.4471698
## 1750    5249 0.7364290
## 1751    5250 0.6666667
## 1752    5251 0.7364290
## 1753    5252 0.7364290
## 1754    5253 0.7364290
## 1755    5254 0.7724138
## 1756    5255 0.7364290
## 1757    5256 0.7364290
## 1758    5257 0.6619718
## 1759    5258 0.3913043
## 1760    5259 0.7364290
## 1761    5260 0.7364290
## 1762    5261 0.5934066
## 1763    5262 0.7364290
## 1764    5263 0.7364290
## 1765    5264 0.3913043
## 1766    5265 0.7010309
## 1767    5266 0.5934066
## 1768    5267 0.7364290
## 1769    5268 0.3913043
## 1770    5269 0.7364290
## 1771    5270 0.7724138
## 1772    5271 0.4029851
## 1773    5272 0.4471698
## 1774    5273 0.7724138
## 1775    5274 0.7364290
## 1776    5275 0.3913043
## 1777    5276 0.5934066
## 1778    5277 0.7364290
## 1779    5278 0.7364290
## 1780    5279 0.4471698
## 1781    5280 0.7724138
## 1782    5281 0.5934066
## 1783    5282 0.7364290
## 1784    5283 0.7364290
## 1785    5284 0.7364290
## 1786    5285 0.7010309
## 1787    5286 0.4471698
## 1788    5287 0.4471698
## 1789    5288 0.3913043
## 1790    5289 0.7857143
## 1791    5290 0.7364290
## 1792    5291 0.7364290
## 1793    5292 0.7364290
## 1794    5293 0.3913043
## 1795    5294 0.3913043
## 1796    5295 0.7364290
## 1797    5296 0.5934066
## 1798    5297 0.4471698
## 1799    5298 0.7364290
## 1800    5299 0.3913043
## 1801    5300 0.7364290
## 1802    5301 0.5934066
## 1803    5302 0.7364290
## 1804    5303 0.4471698
## 1805    5304 0.7724138
## 1806    5305 0.7724138
## 1807    5306 0.7364290
## 1808    5307 0.7364290
## 1809    5308 0.7364290
## 1810    5309 0.3913043
## 1811    5310 0.7364290
## 1812    5311 0.7010309
## 1813    5312 0.7364290
## 1814    5313 0.7364290
## 1815    5314 0.4471698
## 1816    5315 0.7364290
## 1817    5316 0.6927711
## 1818    5317 0.7364290
## 1819    5318 0.6619718
## 1820    5319 0.7724138
## 1821    5320 0.7364290
## 1822    5321 0.6927711
## 1823    5322 0.7364290
## 1824    5323 0.4471698
## 1825    5324 0.5934066
## 1826    5325 0.4029851
## 1827    5326 0.7364290
## 1828    5327 0.5934066
## 1829    5328 0.7364290
## 1830    5329 0.4471698
## 1831    5330 0.7364290
## 1832    5331 0.7364290
## 1833    5332 0.7364290
## 1834    5333 0.7364290
## 1835    5334 0.4471698
## 1836    5335 0.7364290
## 1837    5336 0.4471698
## 1838    5337 0.7364290
## 1839    5338 0.7364290
## 1840    5339 0.7364290
## 1841    5340 0.7364290
## 1842    5341 0.7364290
## 1843    5342 0.3913043
## 1844    5343 0.4029851
## 1845    5344 0.4471698
## 1846    5345 0.7364290
## 1847    5346 0.5934066
## 1848    5347 0.4471698
## 1849    5348 0.7364290
## 1850    5349 0.6927711
## 1851    5350 0.7364290
## 1852    5351 0.7364290
## 1853    5352 0.7010309
## 1854    5353 0.3913043
## 1855    5354 0.4471698
## 1856    5355 0.4471698
## 1857    5356 0.3913043
## 1858    5357 0.4029851
## 1859    5358 0.7364290
## 1860    5359 0.7010309
## 1861    5360 0.7364290
## 1862    5361 0.7364290
## 1863    5362 0.7364290
## 1864    5363 0.3913043
## 1865    5364 0.7364290
## 1866    5365 0.3913043
## 1867    5366 0.5934066
## 1868    5367 0.3913043
## 1869    5368 0.5934066
## 1870    5369 0.7364290
## 1871    5370 0.7364290
## 1872    5371 0.3913043
## 1873    5372 0.5934066
## 1874    5373 0.3913043
## 1875    5374 0.7364290
## 1876    5375 0.7364290
## 1877    5376 0.1333333
## 1878    5377 0.4471698
## 1879    5378 0.8281250
## 1880    5379 0.7364290
## 1881    5380 0.4471698
## 1882    5381 0.7364290
## 1883    5382 0.7364290
## 1884    5383 0.7364290
## 1885    5384 0.3913043
## 1886    5385 0.7364290
## 1887    5386 0.8281250
## 1888    5387 0.4471698
## 1889    5388 0.7364290
## 1890    5389 0.4471698
## 1891    5390 0.5934066
## 1892    5391 0.7364290
## 1893    5392 0.7724138
## 1894    5393 0.7364290
## 1895    5394 0.5934066
## 1896    5395 0.5934066
## 1897    5396 0.4471698
## 1898    5397 0.7364290
## 1899    5398 0.7364290
## 1900    5399 0.7364290
## 1901    5400 0.7364290
## 1902    5401 0.4471698
## 1903    5402 0.6666667
## 1904    5403 0.7364290
## 1905    5404 0.7724138
## 1906    5405 0.7364290
## 1907    5406 0.5934066
## 1908    5407 0.7364290
## 1909    5408 0.7364290
## 1910    5409 0.7364290
## 1911    5410 0.3913043
## 1912    5411 0.8281250
## 1913    5412 0.6666667
## 1914    5413 0.7364290
## 1915    5414 0.7364290
## 1916    5415 0.4471698
## 1917    5416 0.4471698
## 1918    5417 0.6927711
## 1919    5418 0.7364290
## 1920    5419 0.7364290
## 1921    5420 0.4471698
## 1922    5421 0.7364290
## 1923    5422 0.7364290
## 1924    5423 0.7364290
## 1925    5424 0.4471698
## 1926    5425 0.7364290
## 1927    5426 0.7010309
## 1928    5427 0.4471698
## 1929    5428 0.7364290
## 1930    5429 0.4471698
## 1931    5430 0.7364290
## 1932    5431 0.7364290
## 1933    5432 0.7364290
## 1934    5433 0.3913043
## 1935    5434 0.7364290
## 1936    5435 0.7364290
## 1937    5436 0.7364290
## 1938    5437 0.3913043
## 1939    5438 0.4471698
## 1940    5439 0.4471698
## 1941    5440 0.4029851
## 1942    5441 0.7364290
## 1943    5442 0.3913043
## 1944    5443 0.7364290
## 1945    5444 0.7364290
## 1946    5445 0.7364290
## 1947    5446 0.7364290
## 1948    5447 0.7364290
## 1949    5448 0.3913043
## 1950    5449 0.5934066
## 1951    5450 0.3913043
## 1952    5451 0.7364290
## 1953    5452 0.7364290
## 1954    5453 0.8281250
## 1955    5454 0.7364290
## 1956    5455 0.7364290
## 1957    5456 0.4471698
## 1958    5457 0.7364290
## 1959    5458 0.6927711
## 1960    5459 0.4471698
## 1961    5460 0.4471698
## 1962    5461 0.7364290
## 1963    5462 0.5934066
## 1964    5463 0.2173913
## 1965    5464 0.7364290
## 1966    5465 0.7364290
## 1967    5466 0.7364290
## 1968    5467 0.7364290
## 1969    5468 0.7364290
## 1970    5469 0.5934066
## 1971    5470 0.7364290
## 1972    5471 0.3913043
## 1973    5472 0.7364290
## 1974    5473 0.6800000
## 1975    5474 0.7364290
## 1976    5475 0.7364290
## 1977    5476 0.7364290
## 1978    5477 0.7364290
## 1979    5478 0.5934066
## 1980    5479 0.7364290
## 1981    5480 0.7364290
## 1982    5481 0.7364290
## 1983    5482 0.5934066
## 1984    5483 0.7364290
## 1985    5484 0.7364290
## 1986    5485 0.6927711
## 1987    5486 0.7364290
## 1988    5487 0.7364290
## 1989    5488 0.6927711
## 1990    5489 0.7364290
## 1991    5490 0.4471698
## 1992    5491 0.7364290
## 1993    5492 0.6927711
## 1994    5493 0.7364290
## 1995    5494 0.7364290
## 1996    5495 0.4471698
## 1997    5496 0.4471698
## 1998    5497 0.4471698
## 1999    5498 0.7364290
## 2000    5499 0.5934066
## 2001    5500 0.8281250
## 2002    5501 0.4471698
## 2003    5502 0.4471698
## 2004    5503 0.7364290
## 2005    5504 0.7364290
## 2006    5505 0.7010309
## 2007    5506 0.6927711
## 2008    5507 0.5934066
## 2009    5508 0.3913043
## 2010    5509 0.7364290
## 2011    5510 0.7364290
## 2012    5511 0.4471698
## 2013    5512 0.7724138
## 2014    5513 0.4471698
## 2015    5514 0.7364290
## 2016    5515 0.7364290
## 2017    5516 0.7364290
## 2018    5517 0.4471698
## 2019    5518 0.4471698
## 2020    5519 0.4471698
## 2021    5520 0.4471698
## 2022    5521 0.7364290
## 2023    5522 0.3913043
## 2024    5523 0.4471698
## 2025    5524 0.7364290
## 2026    5525 0.3913043
## 2027    5526 0.5934066
## 2028    5527 0.7364290
## 2029    5528 0.4471698
## 2030    5529 0.7364290
## 2031    5530 0.7364290
## 2032    5531 0.7364290
## 2033    5532 0.7364290
## 2034    5533 0.4471698
## 2035    5534 0.7364290
## 2036    5535 0.7364290
## 2037    5536 0.4029851
## 2038    5537 0.7364290
## 2039    5538 0.3913043
## 2040    5539 0.4471698
## 2041    5540 0.6619718
## 2042    5541 0.3913043
## 2043    5542 0.4471698
## 2044    5543 0.7857143
## 2045    5544 0.5934066
## 2046    5545 0.7724138
## 2047    5546 0.7364290
## 2048    5547 0.7364290
## 2049    5548 0.7364290
## 2050    5549 0.7364290
## 2051    5550 0.7364290
## 2052    5551 0.7724138
## 2053    5552 0.6927711
## 2054    5553 0.3913043
## 2055    5554 0.3913043
## 2056    5555 0.7364290
## 2057    5556 0.7364290
## 2058    5557 0.3913043
## 2059    5558 0.3913043
## 2060    5559 0.4471698
## 2061    5560 0.7364290
## 2062    5561 0.7364290
## 2063    5562 0.3913043
## 2064    5563 0.6927711
## 2065    5564 0.5934066
## 2066    5565 0.7364290
## 2067    5566 0.5934066
## 2068    5567 0.7364290
## 2069    5568 0.7364290
## 2070    5569 0.7364290
## 2071    5570 0.4471698
## 2072    5571 0.3913043
## 2073    5572 0.7364290
## 2074    5573 0.6619718
## 2075    5574 0.6927711
## 2076    5575 0.7364290
## 2077    5576 0.7364290
## 2078    5577 0.7364290
## 2079    5578 0.7364290
## 2080    5579 0.3913043
## 2081    5580 0.6927711
## 2082    5581 0.7364290
## 2083    5582 0.3913043
## 2084    5583 0.7364290
## 2085    5584 0.3913043
## 2086    5585 0.6927711
## 2087    5586 0.6927711
## 2088    5587 0.3913043
## 2089    5588 0.7364290
## 2090    5589 0.2173913
## 2091    5590 0.3913043
## 2092    5591 0.7364290
## 2093    5592 0.3913043
## 2094    5593 0.5934066
## 2095    5594 0.6927711
## 2096    5595 0.4029851
## 2097    5596 0.5934066
## 2098    5597 0.3913043
## 2099    5598 0.7364290
## 2100    5599 0.7364290
## 2101    5600 0.4471698
## 2102    5601 0.6619718
## 2103    5602 0.7364290
## 2104    5603 0.3913043
## 2105    5604 0.3913043
## 2106    5605 0.4471698
## 2107    5606 0.4471698
## 2108    5607 0.7364290
## 2109    5608 0.7364290
## 2110    5609 0.4471698
## 2111    5610 0.4471698
## 2112    5611 0.7364290
## 2113    5612 0.7364290
## 2114    5613 0.7364290
## 2115    5614 0.4471698
## 2116    5615 0.7364290
## 2117    5616 0.3913043
## 2118    5617 0.7364290
## 2119    5618 0.7364290
## 2120    5619 0.5934066
## 2121    5620 0.4471698
## 2122    5621 0.7364290
## 2123    5622 0.7010309
## 2124    5623 0.7364290
## 2125    5624 0.7364290
## 2126    5625 0.3913043
## 2127    5626 0.7364290
## 2128    5627 0.7364290
## 2129    5628 0.7724138
## 2130    5629 0.7364290
## 2131    5630 0.5934066
## 2132    5631 0.7364290
## 2133    5632 0.4029851
## 2134    5633 0.7364290
## 2135    5634 0.7364290
## 2136    5635 0.7364290
## 2137    5636 0.4471698
## 2138    5637 0.7364290
## 2139    5638 0.3913043
## 2140    5639 0.7364290
## 2141    5640 0.4471698
## 2142    5641 0.6927711
## 2143    5642 0.7364290
## 2144    5643 0.7364290
## 2145    5644 0.4471698
## 2146    5645 0.7364290
## 2147    5646 0.3913043
## 2148    5647 0.4471698
## 2149    5648 0.7364290
## 2150    5649 0.4029851
## 2151    5650 0.7364290
## 2152    5651 0.7364290
## 2153    5652 0.5934066
## 2154    5653 0.6927711
## 2155    5654 0.4029851
## 2156    5655 0.4471698
## 2157    5656 0.4471698
## 2158    5657 0.6927711
## 2159    5658 0.7364290
## 2160    5659 0.3913043
## 2161    5660 0.7364290
## 2162    5661 0.7010309
## 2163    5662 0.5934066
## 2164    5663 0.4471698
## 2165    5664 0.5934066
## 2166    5665 0.7364290
## 2167    5666 0.4471698
## 2168    5667 0.3913043
## 2169    5668 0.7724138
## 2170    5669 0.7364290
## 2171    5670 0.7364290
## 2172    5671 0.3913043
## 2173    5672 0.6927711
## 2174    5673 0.7364290
## 2175    5674 0.3913043
## 2176    5675 0.7364290
## 2177    5676 0.7364290
## 2178    5677 0.7364290
## 2179    5678 0.4471698
## 2180    5679 0.5934066
## 2181    5680 0.7364290
## 2182    5681 0.7364290
## 2183    5682 0.7364290
## 2184    5683 0.7364290
## 2185    5684 0.4471698
## 2186    5685 0.7364290
## 2187    5686 0.5934066
## 2188    5687 0.4471698
## 2189    5688 0.4471698
## 2190    5689 0.7857143
## 2191    5690 0.4029851
## 2192    5691 0.7364290
## 2193    5692 0.4471698
## 2194    5693 0.3913043
## 2195    5694 0.7364290
## 2196    5695 0.3913043
## 2197    5696 0.2173913
## 2198    5697 0.7364290
## 2199    5698 0.4471698
## 2200    5699 0.8281250
## 2201    5700 0.4471698
## 2202    5701 0.8281250
## 2203    5702 0.5934066
## 2204    5703 0.7364290
## 2205    5704 0.7364290
## 2206    5705 0.7364290
## 2207    5706 0.4471698
## 2208    5707 0.8281250
## 2209    5708 0.4471698
## 2210    5709 0.3913043
## 2211    5710 0.5934066
## 2212    5711 0.3913043
## 2213    5712 0.7364290
## 2214    5713 0.3913043
## 2215    5714 0.7724138
## 2216    5715 0.4471698
## 2217    5716 0.7364290
## 2218    5717 0.7364290
## 2219    5718 0.7364290
## 2220    5719 0.3913043
## 2221    5720 0.7364290
## 2222    5721 0.4471698
## 2223    5722 0.7364290
## 2224    5723 0.7364290
## 2225    5724 0.7364290
## 2226    5725 0.7364290
## 2227    5726 0.7364290
## 2228    5727 0.7364290
## 2229    5728 0.7010309
## 2230    5729 0.7364290
## 2231    5730 0.7364290
## 2232    5731 0.7364290
## 2233    5732 0.4471698
## 2234    5733 0.5934066
## 2235    5734 0.3913043
## 2236    5735 0.7364290
## 2237    5736 0.5934066
## 2238    5737 0.4471698
## 2239    5738 0.7364290
## 2240    5739 0.7364290
## 2241    5740 0.7364290
## 2242    5741 0.7364290
## 2243    5742 0.6927711
## 2244    5743 0.7364290
## 2245    5744 0.7364290
## 2246    5745 0.3913043
## 2247    5746 0.7364290
## 2248    5747 0.7364290
## 2249    5748 0.7364290
## 2250    5749 0.7364290
## 2251    5750 0.7364290
## 2252    5751 0.3913043
## 2253    5752 0.5934066
## 2254    5753 0.7364290
## 2255    5754 0.4471698
## 2256    5755 0.7364290
## 2257    5756 0.7364290
## 2258    5757 0.3913043
## 2259    5758 0.7364290
## 2260    5759 0.4471698
## 2261    5760 0.6927711
## 2262    5761 0.7364290
## 2263    5762 0.3913043
## 2264    5763 0.7364290
## 2265    5764 0.7364290
## 2266    5765 0.7364290
## 2267    5766 0.7364290
## 2268    5767 0.7364290
## 2269    5768 0.7364290
## 2270    5769 0.4471698
## 2271    5770 0.3913043
## 2272    5771 0.3913043
## 2273    5772 0.7364290
## 2274    5773 0.7364290
## 2275    5774 0.7724138
## 2276    5775 0.4471698
## 2277    5776 0.7364290
## 2278    5777 0.3913043
## 2279    5778 0.3913043
## 2280    5779 0.4471698
## 2281    5780 0.6619718
## 2282    5781 0.7857143
## 2283    5782 0.4471698
## 2284    5783 0.7364290
## 2285    5784 0.7364290
## 2286    5785 0.7364290
## 2287    5786 0.6927711
## 2288    5787 0.6666667
## 2289    5788 0.7724138
## 2290    5789 0.7364290
## 2291    5790 0.7364290
## 2292    5791 0.7364290
## 2293    5792 0.5934066
## 2294    5793 0.7364290
## 2295    5794 0.7364290
## 2296    5795 0.7364290
## 2297    5796 0.7364290
## 2298    5797 0.6619718
## 2299    5798 0.6927711
## 2300    5799 0.4471698
## 2301    5800 0.7364290
## 2302    5801 0.7364290
## 2303    5802 0.6927711
## 2304    5803 0.7364290
## 2305    5804 0.4471698
## 2306    5805 0.6800000
## 2307    5806 0.5934066
## 2308    5807 0.3913043
## 2309    5808 0.7364290
## 2310    5809 0.7364290
## 2311    5810 0.7364290
## 2312    5811 0.7364290
## 2313    5812 0.1333333
## 2314    5813 0.7364290
## 2315    5814 0.3913043
## 2316    5815 0.6927711
## 2317    5816 0.7364290
## 2318    5817 0.7724138
## 2319    5818 0.3913043
## 2320    5819 0.4471698
## 2321    5820 0.6619718
## 2322    5821 0.7364290
## 2323    5822 0.4471698
## 2324    5823 0.7364290
## 2325    5824 0.8281250
## 2326    5825 0.7364290
## 2327    5826 0.3913043
## 2328    5827 0.4029851
## 2329    5828 0.7364290
## 2330    5829 0.7364290
## 2331    5830 0.5934066
## 2332    5831 0.1333333
## 2333    5832 0.7010309
## 2334    5833 0.5934066
## 2335    5834 0.5934066
## 2336    5835 0.7364290
## 2337    5836 0.4471698
## 2338    5837 0.8281250
## 2339    5838 0.4471698
## 2340    5839 0.4029851
## 2341    5840 0.3913043
## 2342    5841 0.3913043
## 2343    5842 0.3913043
## 2344    5843 0.3913043
## 2345    5844 0.7364290
## 2346    5845 0.3913043
## 2347    5846 0.7364290
## 2348    5847 0.6927711
## 2349    5848 0.4471698
## 2350    5849 0.7364290
## 2351    5850 0.7364290
## 2352    5851 0.4471698
## 2353    5852 0.7364290
## 2354    5853 0.6927711
## 2355    5854 0.7364290
## 2356    5855 0.4471698
## 2357    5856 0.6927711
## 2358    5857 0.7364290
## 2359    5858 0.7364290
## 2360    5859 0.4471698
## 2361    5860 0.7010309
## 2362    5861 0.7364290
## 2363    5862 0.7364290
## 2364    5863 0.7364290
## 2365    5864 0.3913043
## 2366    5865 0.7724138
## 2367    5866 0.4029851
## 2368    5867 0.7364290
## 2369    5868 0.5934066
## 2370    5869 0.4471698
## 2371    5870 0.7724138
## 2372    5871 0.4471698
## 2373    5872 0.7364290
## 2374    5873 0.7364290
## 2375    5874 0.7364290
## 2376    5875 0.7364290
## 2377    5876 0.2173913
## 2378    5877 0.3913043
## 2379    5878 0.7010309
## 2380    5879 0.3913043
## 2381    5880 0.4471698
## 2382    5881 0.4471698
## 2383    5882 0.6927711
## 2384    5883 0.7364290
## 2385    5884 0.7364290
## 2386    5885 0.7364290
## 2387    5886 0.7364290
## 2388    5887 0.4471698
## 2389    5888 0.7364290
## 2390    5889 0.4471698
## 2391    5890 0.6666667
## 2392    5891 0.5934066
## 2393    5892 0.6666667
## 2394    5893 0.7364290
## 2395    5894 0.5934066
## 2396    5895 0.4471698
## 2397    5896 0.5934066
## 2398    5897 0.5934066
## 2399    5898 0.7364290
## 2400    5899 0.7364290
## 2401    5900 0.7364290
## 2402    5901 0.7364290
## 2403    5902 0.7364290
## 2404    5903 0.7364290
## 2405    5904 0.7364290
## 2406    5905 0.3913043
## 2407    5906 0.3913043
## 2408    5907 0.3913043
## 2409    5908 0.6666667
## 2410    5909 0.7364290
## 2411    5910 0.8281250
## 2412    5911 0.7364290
## 2413    5912 0.7364290
## 2414    5913 0.4471698
## 2415    5914 0.7364290
## 2416    5915 0.4471698
## 2417    5916 0.3913043
## 2418    5917 0.3913043
## 2419    5918 0.4471698
## 2420    5919 0.4471698
## 2421    5920 0.7364290
## 2422    5921 0.7364290
## 2423    5922 0.7724138
## 2424    5923 0.3913043
## 2425    5924 0.4471698
## 2426    5925 0.7364290
## 2427    5926 0.5934066
## 2428    5927 0.6619718
## 2429    5928 0.7364290
## 2430    5929 0.7364290
## 2431    5930 0.6666667
## 2432    5931 0.7364290
## 2433    5932 0.4471698
## 2434    5933 0.7364290
## 2435    5934 0.4029851
## 2436    5935 0.7364290
## 2437    5936 0.7364290
## 2438    5937 0.5934066
## 2439    5938 0.7010309
## 2440    5939 0.5934066
## 2441    5940 0.6927711
## 2442    5941 0.7364290
## 2443    5942 0.7364290
## 2444    5943 0.4471698
## 2445    5944 0.7364290
## 2446    5945 0.7364290
## 2447    5946 0.7364290
## 2448    5947 0.7364290
## 2449    5948 0.3913043
## 2450    5949 0.7364290
## 2451    5950 0.5934066
## 2452    5951 0.3913043
## 2453    5952 0.7364290
## 2454    5953 0.7364290
## 2455    5954 0.8281250
## 2456    5955 0.4471698
## 2457    5956 0.7364290
## 2458    5957 0.4471698
## 2459    5958 0.7364290
## 2460    5959 0.8281250
## 2461    5960 0.3913043
## 2462    5961 0.7364290
## 2463    5962 0.4471698
## 2464    5963 0.7364290
## 2465    5964 0.4471698
## 2466    5965 0.7364290
## 2467    5966 0.1333333
## 2468    5967 0.4471698
## 2469    5968 0.4471698
## 2470    5969 0.3913043
## 2471    5970 0.7364290
## 2472    5971 0.3913043
## 2473    5972 0.7364290
## 2474    5973 0.6927711
## 2475    5974 0.4471698
## 2476    5975 0.1333333
## 2477    5976 0.7364290
## 2478    5977 0.5934066
## 2479    5978 0.4471698
## 2480    5979 0.7364290
## 2481    5980 0.3913043
## 2482    5981 0.4471698
#part4 02
train<-read.csv("insurance_train_10.csv")
test<-read.csv("insurance_test_10.csv")
glimpse(train)
## Rows: 6,969
## Columns: 9
## $ Gender          <chr> "Male", "Female", "Male", "Male", "Male", "Female", "F…
## $ Ever_Married    <chr> "No", "Yes", "Yes", "Yes", "No", "No", "Yes", "Yes", "…
## $ Age             <int> 22, 67, 67, 56, 32, 33, 61, 55, 26, 19, 58, 41, 32, 31…
## $ Graduated       <chr> "No", "Yes", "Yes", "No", "Yes", "Yes", "Yes", "Yes", …
## $ Profession      <chr> "Healthcare", "Engineer", "Lawyer", "Artist", "Healthc…
## $ Work_Experience <int> 1, 1, 0, 0, 1, 1, 0, 1, 1, 4, 0, 1, 9, 1, 1, 0, 12, 3,…
## $ Spending_Score  <chr> "Low", "Low", "High", "Average", "Low", "Low", "Low", …
## $ Family_Size     <int> 4, 1, 2, 2, 3, 3, 3, 4, 3, 4, 1, 2, 5, 6, 4, 1, 1, 4, …
## $ Segmentation    <int> 4, 2, 2, 3, 3, 4, 4, 3, 1, 4, 2, 3, 4, 2, 2, 3, 1, 4, …
glimpse(test)
## Rows: 2,267
## Columns: 9
## $ X               <int> 1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17…
## $ Gender          <chr> "Female", "Male", "Female", "Male", "Male", "Male", "F…
## $ Ever_Married    <chr> "Yes", "Yes", "Yes", "Yes", "Yes", "Yes", "Yes", "Yes"…
## $ Age             <int> 36, 37, 69, 59, 47, 61, 47, 50, 19, 22, 22, 50, 27, 18…
## $ Graduated       <chr> "Yes", "Yes", "No", "No", "Yes", "Yes", "Yes", "Yes", …
## $ Profession      <chr> "Engineer", "Healthcare", "", "Executive", "Doctor", "…
## $ Work_Experience <int> 0, 8, 0, 11, 0, 5, 1, 2, 0, 0, 0, 1, 8, 0, 0, 1, 1, 8,…
## $ Spending_Score  <chr> "Low", "Average", "Low", "High", "High", "Low", "Avera…
## $ Family_Size     <int> 1, 4, 1, 2, 5, 3, 3, 4, 4, 3, 6, 5, 3, 3, 1, 3, 2, 1, …
colSums(is.na(train))
##          Gender    Ever_Married             Age       Graduated      Profession 
##               0               0               0               0               0 
## Work_Experience  Spending_Score     Family_Size    Segmentation 
##               0               0               0               0
colSums(is.na(test))
##               X          Gender    Ever_Married             Age       Graduated 
##               0               0               0               0               0 
##      Profession Work_Experience  Spending_Score     Family_Size 
##               0               0               0               0
train$Segmentation<-as.factor(train$Segmentation)
library(caret)
ctrl<-trainControl(method='cv',number=10)
train(Segmentation~.,data=train,
      method='knn', trControl=ctrl,
      preProcess=c('center','scale'))->knn_fit
knn_fit
## k-Nearest Neighbors 
## 
## 6969 samples
##    8 predictor
##    4 classes: '1', '2', '3', '4' 
## 
## Pre-processing: centered (19), scaled (19) 
## Resampling: Cross-Validated (10 fold) 
## Summary of sample sizes: 6273, 6270, 6274, 6271, 6273, 6272, ... 
## Resampling results across tuning parameters:
## 
##   k  Accuracy   Kappa    
##   5  0.4838596  0.3105291
##   7  0.4887413  0.3169519
##   9  0.4927565  0.3220579
## 
## Accuracy was used to select the optimal model using the largest value.
## The final value used for the model was k = 9.
confusionMatrix(knn_fit)
## Cross-Validated (10 fold) Confusion Matrix 
## 
## (entries are percentual average cell counts across resamples)
##  
##           Reference
## Prediction    1    2    3    4
##          1  9.7  5.4  2.8  5.3
##          2  5.5  7.3  5.4  2.0
##          3  3.8  8.0 14.1  1.3
##          4  5.3  2.8  3.2 18.2
##                             
##  Accuracy (average) : 0.4928
predict(knn_fit,test)->pred_fit
head(pred_fit)
## [1] 2 1 2 3 3 1
## Levels: 1 2 3 4
NROW(pred_fit)
## [1] 2267
glimpse(test)
## Rows: 2,267
## Columns: 9
## $ X               <int> 1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17…
## $ Gender          <chr> "Female", "Male", "Female", "Male", "Male", "Male", "F…
## $ Ever_Married    <chr> "Yes", "Yes", "Yes", "Yes", "Yes", "Yes", "Yes", "Yes"…
## $ Age             <int> 36, 37, 69, 59, 47, 61, 47, 50, 19, 22, 22, 50, 27, 18…
## $ Graduated       <chr> "Yes", "Yes", "No", "No", "Yes", "Yes", "Yes", "Yes", …
## $ Profession      <chr> "Engineer", "Healthcare", "", "Executive", "Doctor", "…
## $ Work_Experience <int> 0, 8, 0, 11, 0, 5, 1, 2, 0, 0, 0, 1, 8, 0, 0, 1, 1, 8,…
## $ Spending_Score  <chr> "Low", "Average", "Low", "High", "High", "Low", "Avera…
## $ Family_Size     <int> 1, 4, 1, 2, 5, 3, 3, 4, 4, 3, 6, 5, 3, 3, 1, 3, 2, 1, …
bind_cols(test,pred_fit)->df
## New names:
## • `` -> `...10`
names(df)[9]<-"Segmentation_pred"
df %>% select(9)->df1
write.csv(df1,"수험번호.csv",row.names=FALSE)
head(df1)
##   Segmentation_pred
## 1                 1
## 2                 4
## 3                 1
## 4                 2
## 5                 5
## 6                 3