The fertility data set includes data on the fertility and woman's supply and
labor force, coming from the 1980 US Census on married woman aged 21-35 with 
two or more children 
fertility <- read.csv("https://raw.githubusercontent.com/gc521/RWorshhops/Assignment2/Fertility.csv")   #Read CSV from GitHub
summary(fertility)
##        X            morekids           gender1            gender2         
##  Min.   :     1   Length:254654      Length:254654      Length:254654     
##  1st Qu.: 63664   Class :character   Class :character   Class :character  
##  Median :127328   Mode  :character   Mode  :character   Mode  :character  
##  Mean   :127328                                                           
##  3rd Qu.:190991                                                           
##  Max.   :254654                                                           
##       age            afam             hispanic            other          
##  Min.   :21.00   Length:254654      Length:254654      Length:254654     
##  1st Qu.:28.00   Class :character   Class :character   Class :character  
##  Median :31.00   Mode  :character   Mode  :character   Mode  :character  
##  Mean   :30.39                                                           
##  3rd Qu.:33.00                                                           
##  Max.   :35.00                                                           
##       work      
##  Min.   : 0.00  
##  1st Qu.: 0.00  
##  Median : 5.00  
##  Mean   :19.02  
##  3rd Qu.:44.00  
##  Max.   :52.00
tail(fertility, 10)
##             X morekids gender1 gender2 age afam hispanic other work
## 254645 254645      yes  female    male  31   no       no    no    0
## 254646 254646      yes    male  female  30   no       no    no    0
## 254647 254647      yes    male  female  31   no       no    no   52
## 254648 254648      yes  female    male  34   no       no    no    0
## 254649 254649      yes    male    male  28   no       no    no    0
## 254650 254650      yes  female  female  35   no       no    no    0
## 254651 254651      yes    male    male  29   no       no    no    0
## 254652 254652      yes  female    male  34   no       no    no   38
## 254653 254653      yes  female  female  30   no       no    no   26
## 254654 254654      yes  female  female  35   no       no    no    0
GT package contains some useful functions to display tables. Kable package could also work.
library(dplyr)
library(gt)
mean_med_tib <- tibble(Attributes = c("Age", "Work"), Expected_Value = c(30.39, 19.02), Median = c(31.00, 5.00) )

gt_tbl <- gt(mean_med_tib)
gt_tbl <- gt_tbl %>%
   tab_header(
    title = md("**Mean and Median**"),
    subtitle = md("Age and Work Attributes"))


# Show the gt Table
gt_tbl
Mean and Median
Age and Work Attributes
Attributes Expected_Value Median
Age 30.39 31
Work 19.02 5
Subset/drop variables is next on the agenda. Also rename columns. 
#Subset data frame
df <- subset(fertility, select = -c(X,gender2))
#Rename columns, AA==African-American. K==Kids 
colnames(df) <- c('<2Kids', 'GenderK1', 'Years', 'MomAA?', 'MomHispanic?', 'Mom!=AA|Mom!=Hispanic', 'WeeksWorked')

tail(df, 10)
##        <2Kids GenderK1 Years MomAA? MomHispanic? Mom!=AA|Mom!=Hispanic
## 254645    yes   female    31     no           no                    no
## 254646    yes     male    30     no           no                    no
## 254647    yes     male    31     no           no                    no
## 254648    yes   female    34     no           no                    no
## 254649    yes     male    28     no           no                    no
## 254650    yes   female    35     no           no                    no
## 254651    yes     male    29     no           no                    no
## 254652    yes   female    34     no           no                    no
## 254653    yes   female    30     no           no                    no
## 254654    yes   female    35     no           no                    no
##        WeeksWorked
## 254645           0
## 254646           0
## 254647          52
## 254648           0
## 254649           0
## 254650           0
## 254651           0
## 254652          38
## 254653          26
## 254654           0
New table but with renamed attributes
mean_med_tib <- tibble(Attributes = c("Years", "WeeksWorked"), Expected_Value = c(30.39, 19.02), Median = c(31.00, 5.00) )

gt_tbl <- gt(mean_med_tib)
gt_tbl <- gt_tbl %>%
   tab_header(
    title = md("**Mean and Median**"),
    subtitle = md("Years and WeeksWorked Attributes"))


# Show the gt Table
gt_tbl
Mean and Median
Years and WeeksWorked Attributes
Attributes Expected_Value Median
Years 30.39 31
WeeksWorked 19.02 5
Adjust values in columns/df
df$GenderK1[df$GenderK1 == 'male'] <- 'M'
df$GenderK1[df$GenderK1 == 'female'] <- 'F'
tail(df, 10)
##        <2Kids GenderK1 Years MomAA? MomHispanic? Mom!=AA|Mom!=Hispanic
## 254645    yes        F    31     no           no                    no
## 254646    yes        M    30     no           no                    no
## 254647    yes        M    31     no           no                    no
## 254648    yes        F    34     no           no                    no
## 254649    yes        M    28     no           no                    no
## 254650    yes        F    35     no           no                    no
## 254651    yes        M    29     no           no                    no
## 254652    yes        F    34     no           no                    no
## 254653    yes        F    30     no           no                    no
## 254654    yes        F    35     no           no                    no
##        WeeksWorked
## 254645           0
## 254646           0
## 254647          52
## 254648           0
## 254649           0
## 254650           0
## 254651           0
## 254652          38
## 254653          26
## 254654           0