Dykstra-parsons Coefficient (Vk)
Dykstra and Parsons (1950) introduced the concept of the permeability variation coefficient V, which is a statistical measure of nonuniformity of a set of data. It is generally applied to the property of permeability but can be extended to treat other rock properties.
Our data is.
data<-read.csv("D:/karpur.csv",header=T)
head(data)
depth caliper ind.deep ind.med gamma phi.N R.deep R.med SP
1 5667.0 8.685 618.005 569.781 98.823 0.410 1.618 1.755 -56.587
2 5667.5 8.686 497.547 419.494 90.640 0.307 2.010 2.384 -61.916
3 5668.0 8.686 384.935 300.155 78.087 0.203 2.598 3.332 -55.861
4 5668.5 8.686 278.324 205.224 66.232 0.119 3.593 4.873 -41.860
5 5669.0 8.686 183.743 131.155 59.807 0.069 5.442 7.625 -34.934
6 5669.5 8.686 109.512 75.633 57.109 0.048 9.131 13.222 -39.769
density.corr density phi.core k.core Facies
1 -0.033 2.205 33.9000 2442.590 F1
2 -0.067 2.040 33.4131 3006.989 F1
3 -0.064 1.888 33.1000 3370.000 F1
4 -0.053 1.794 34.9000 2270.000 F1
5 -0.054 1.758 35.0644 2530.758 F1
6 -0.058 1.759 35.3152 2928.314 F1
At beginning, we will find the Frequency for K.core .
A<-table(data$k.core)
df=data.frame(A)
t=t(df)
t=as.data.frame(t)
r=rev(t)
r=t(r)
r=as.data.frame(r)
Permeability=r$Var1
Frequency=r$Freq
df2=data.frame(Permeability,Frequency)
R=head(df2,100)
R.=head(df2,30)
R.
## Permeability Frequency
## 1 15600 1
## 2 14225.3135 1
## 3 13544.9785 1
## 4 13033.5283 1
## 5 11841.7432 1
## 6 11117.4023 1
## 7 10860 1
## 8 10649.958 1
## 9 10540 1
## 10 9898.4785 1
## 11 9533.3623 1
## 12 9458.1729 1
## 13 9120 1
## 14 8820.1025 1
## 15 8820 2
## 16 8760 1
## 17 8742.7529 1
## 18 8689.8252 1
## 19 8390 1
## 20 8306.0459 1
## 21 8190 1
## 22 8030 1
## 23 7956.4258 1
## 24 7930 1
## 25 7918.8984 1
## 26 7862.0825 1
## 27 7740 1
## 28 7725.96 1
## 29 7525.2207 1
## 30 7517.4834 1
Then, the Number of samples with large Permeability will be found and the Cumulative Frequency Distribution.
df5=data.frame(R)
m=seq(1,100)
df3=data.frame(m)
df3$m=as.numeric(df3$m)
df5$Frequency=as.numeric(df5$Frequency)
f=df3$m+df5$Frequency
s=table(f)
df4=data.frame(s)
no=rbind(data.frame(f = 1, Freq = 1), df4)
rr=no$f
dd=data.frame( rr)
bb=as.numeric(rr)
gg=(bb/102)*100
df6=data.frame(Permeability=df5$Permeability,Freq=df5$Frequency,NO.samples=dd$rr,Cum_Freq=gg)
head(df6,30)
## Permeability Freq NO.samples Cum_Freq
## 1 15600 1 1 0.9803922
## 2 14225.3135 1 2 1.9607843
## 3 13544.9785 1 3 2.9411765
## 4 13033.5283 1 4 3.9215686
## 5 11841.7432 1 5 4.9019608
## 6 11117.4023 1 6 5.8823529
## 7 10860 1 7 6.8627451
## 8 10649.958 1 8 7.8431373
## 9 10540 1 9 8.8235294
## 10 9898.4785 1 10 9.8039216
## 11 9533.3623 1 11 10.7843137
## 12 9458.1729 1 12 11.7647059
## 13 9120 1 13 12.7450980
## 14 8820.1025 1 14 13.7254902
## 15 8820 2 15 14.7058824
## 16 8760 1 17 16.6666667
## 17 8742.7529 1 18 17.6470588
## 18 8689.8252 1 19 18.6274510
## 19 8390 1 20 19.6078431
## 20 8306.0459 1 21 20.5882353
## 21 8190 1 22 21.5686275
## 22 8030 1 23 22.5490196
## 23 7956.4258 1 24 23.5294118
## 24 7930 1 25 24.5098039
## 25 7918.8984 1 26 25.4901961
## 26 7862.0825 1 27 26.4705882
## 27 7740 1 28 27.4509804
## 28 7725.96 1 29 28.4313725
## 29 7525.2207 1 30 29.4117647
## 30 7517.4834 1 31 30.3921569
Next step is graph the data
df6$Permeability=as.numeric(df6$Permeability)
df6$Permeability=log(df6$Permeability)
slop=gg
model1=lm(df6$Permeability ~ slop)
plot(gg,df6$Permeability,xlab ='Percent Samples with larger Permeability',ylab='log Permeability, md')
abline(9.272671,-0.009271,lwd = 2)
#find the intercept and slop
model1
Call:
lm(formula = df6$Permeability ~ slop)
Coefficients:
(Intercept) slop
9.272671 -0.009271
Heterogeneity Index Can be calculate now.
#find K50
K50=9.272671-0.009271*50
K50=exp(K50)
#find K84.1
K84.1=9.272671-0.009271*84.1
K84.1=exp(K84.1)
#find Heterogeneity Index
HI=(K50-K84.1)/K50
HI
[1] 0.2710434
This value is for Slightly Heterogeneity in the Reservoir.
Since 1950, the Lorenz Coefficient has provided a practical way to quantify layered permeability heterogeneity. Simple to calculate from a set of permeability and porosity measurements and naturally bounded between 0 – 1.
First , Thickness will calculate by using Depth.
#Calculate thickness from depth
thickness = c(0.5)
for (i in 2:819) {
h = data$depth[i] - data$depth[i-1]
thickness = append(thickness, h)
}
data = data[order(data$k.core, decreasing = TRUE), ]
Second, calculate the flow capacity and storage capacity.
KH = thickness * data$k.core
PH = thickness * data$phi.core
cum_sum_kh = cumsum(KH)
cum_sum_ph = cumsum(PH)
FTV = (cum_sum_ph/100) / max(cum_sum_ph/100) #to convert phi between (0,1)
FTF = cum_sum_kh / max(cum_sum_kh)
Now, the Graph is ready to be plotted.
plot(FTV,FTF,xlab="Fraction of Total Volume",ylab="Fraction of Total Flow Capacity", pch = 10, cex = 0.2, text(0.4, 0.8, "B"))
text(0,0, "A", pos = 2)
text(1,1, "C", pos = 1)
text(1,0, "D", pos = 2)
abline(0,1, lwd = 2)
A = AUC(FTV,FTF, method="trapezoid")
HI = (A - 0.5) / 0.5
HI
## [1] 0.4524741
This value is for heterogeneous Reservoir.