Scale Correction of Core Permeability

Scale Correction is important due to the small Scale of the K.core and the Large Scale of the reservoir (gegascopic)

Data we will use is .

data<-read.csv("D:/karpur.csv",header=T)
head(data)
##    depth caliper ind.deep ind.med  gamma phi.N R.deep  R.med      SP
## 1 5667.0   8.685  618.005 569.781 98.823 0.410  1.618  1.755 -56.587
## 2 5667.5   8.686  497.547 419.494 90.640 0.307  2.010  2.384 -61.916
## 3 5668.0   8.686  384.935 300.155 78.087 0.203  2.598  3.332 -55.861
## 4 5668.5   8.686  278.324 205.224 66.232 0.119  3.593  4.873 -41.860
## 5 5669.0   8.686  183.743 131.155 59.807 0.069  5.442  7.625 -34.934
## 6 5669.5   8.686  109.512  75.633 57.109 0.048  9.131 13.222 -39.769
##   density.corr density phi.core   k.core Facies
## 1       -0.033   2.205  33.9000 2442.590     F1
## 2       -0.067   2.040  33.4131 3006.989     F1
## 3       -0.064   1.888  33.1000 3370.000     F1
## 4       -0.053   1.794  34.9000 2270.000     F1
## 5       -0.054   1.758  35.0644 2530.758     F1
## 6       -0.058   1.759  35.3152 2928.314     F1

In this step We will draw plot between phi.N and phi.core

plot(data$phi.core/100 ~ data$phi.N)

Now, we find the relationship between phi.N and phi.core

model1 <- lm(phi.core/100 ~ phi.N+Facies-1, data = data)
summary(model1)
## 
## Call:
## lm(formula = phi.core/100 ~ phi.N + Facies - 1, data = data)
## 
## Residuals:
##       Min        1Q    Median        3Q       Max 
## -0.103530 -0.011573 -0.000206  0.010463  0.102852 
## 
## Coefficients:
##           Estimate Std. Error t value Pr(>|t|)    
## phi.N     0.013364   0.018060    0.74     0.46    
## FaciesF1  0.314805   0.002777  113.37   <2e-16 ***
## FaciesF10 0.207680   0.005072   40.95   <2e-16 ***
## FaciesF2  0.175233   0.009390   18.66   <2e-16 ***
## FaciesF3  0.231939   0.004955   46.81   <2e-16 ***
## FaciesF5  0.272953   0.003914   69.74   <2e-16 ***
## FaciesF7  0.225164   0.008730   25.79   <2e-16 ***
## FaciesF8  0.305884   0.005019   60.94   <2e-16 ***
## FaciesF9  0.264448   0.004825   54.81   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.02326 on 810 degrees of freedom
## Multiple R-squared:  0.9928, Adjusted R-squared:  0.9928 
## F-statistic: 1.246e+04 on 9 and 810 DF,  p-value: < 2.2e-16

Predict the core porosity corrected to the log scale by using phi.core and phi.log

phi.corel<-predict(model1,data)
#cbind(data$phi.core/100,phi.corel)

Construction a relationship between permeability calculated from core and core porosity corrected to the log scale in order to get core premeability corrected to the log scale

model2<-lm(k.core~phi.corel+Facies-1,data=data)
summary(model2)
## 
## Call:
## lm(formula = k.core ~ phi.corel + Facies - 1, data = data)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -5613.4  -596.9  -130.3   475.0 10449.1 
## 
## Coefficients:
##           Estimate Std. Error t value Pr(>|t|)    
## phi.corel  -412352      89814  -4.591 5.11e-06 ***
## FaciesF1    132659      28386   4.673 3.47e-06 ***
## FaciesF10    87869      18969   4.632 4.21e-06 ***
## FaciesF2     73980      16049   4.610 4.69e-06 ***
## FaciesF3     97910      21087   4.643 4.00e-06 ***
## FaciesF5    118916      24729   4.809 1.81e-06 ***
## FaciesF7     95868      20496   4.677 3.40e-06 ***
## FaciesF8    130990      27786   4.714 2.86e-06 ***
## FaciesF9    111324      24050   4.629 4.28e-06 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1546 on 810 degrees of freedom
## Multiple R-squared:  0.7652, Adjusted R-squared:  0.7626 
## F-statistic: 293.2 on 9 and 810 DF,  p-value: < 2.2e-16
par(mfrow=c(2,2))
plot(model2)

Predict and plot the core permeability corrected to the log scale

k.corel<-predict(model2,data)
plot(k.corel,ylab="K.corel (md)",xlab="Samples (n)")

#cbind(data$k.core,k.corel)

Now, Data is represent as follow:

#plot graph
par(mfrow=c(1,5))
plot(y=y<-(data$depth),ylim=rev(range(data$depth)),x=x<-(data$phi.core/100),type="l", col="darkgreen", lwd = 5, pch=17, xlab='phi.core',
     ylab='Depth, m', xlim=c(0.14,0.38), cex=1.5, cex.lab=1.5, cex.axis=1.2)
grid()
plot(y=y<-(data$depth),ylim=rev(range(data$depth)),x=x<-(data$ k.core),type="l", col="gold", lwd = 5, pch=17, xlab='k.core',
     ylab='Depth, m', xlim=c(0.22,15800.00), cex=1.5, cex.lab=1.5, cex.axis=1.2)
grid()
plot(y=y<-(data$depth),ylim=rev(range(data$depth)),x=x<-(data$ phi.N),type="l", lwd = 5, pch=17, xlab='phi.N',
     ylab='Depth, m', xlim=c(0.012,0.510), cex=1.5, cex.lab=1.5, cex.axis=1.2)
grid()

plot(y=y<-(data$depth),ylim=rev(range(data$depth)),x=x<-(phi.corel),type="l", col="blue", lwd = 5, pch=17, xlab='phi.corel',
     ylab='Depth, m', xlim=c(0.16,0.38), cex=1.5, cex.lab=1.5, cex.axis=1.2)
grid()
plot(y=y<-(data$depth),ylim=rev(range(data$depth)),x=x<-(k.corel),type="l", col="red", lwd = 5, pch=17, xlab='k.corel',
     ylab='Depth, m', xlim=c(10,6400), cex=1.5, cex.lab=1.5, cex.axis=1.2)
grid()

#plot histigram
par(mfrow=c(2,2))
hist(data$phi.N,col='green',main='',xlab='Phi.N')
hist(data$k.core,col='blue',main='',xlab='k.core')
hist(phi.corel,col='green',main='')
hist(k.corel,col='blue',main='')

Combine the new column of corrected permeability to the file

karpur2<-cbind(data,k.corel)
write.csv(karpur2,"karpur2.csv")
head(karpur2)
##    depth caliper ind.deep ind.med  gamma phi.N R.deep  R.med      SP
## 1 5667.0   8.685  618.005 569.781 98.823 0.410  1.618  1.755 -56.587
## 2 5667.5   8.686  497.547 419.494 90.640 0.307  2.010  2.384 -61.916
## 3 5668.0   8.686  384.935 300.155 78.087 0.203  2.598  3.332 -55.861
## 4 5668.5   8.686  278.324 205.224 66.232 0.119  3.593  4.873 -41.860
## 5 5669.0   8.686  183.743 131.155 59.807 0.069  5.442  7.625 -34.934
## 6 5669.5   8.686  109.512  75.633 57.109 0.048  9.131 13.222 -39.769
##   density.corr density phi.core   k.core Facies   k.corel
## 1       -0.033   2.205  33.9000 2442.590     F1  589.2371
## 2       -0.067   2.040  33.4131 3006.989     F1 1156.8516
## 3       -0.064   1.888  33.1000 3370.000     F1 1729.9769
## 4       -0.053   1.794  34.9000 2270.000     F1 2192.8857
## 5       -0.054   1.758  35.0644 2530.758     F1 2468.4267
## 6       -0.058   1.759  35.3152 2928.314     F1 2584.1540