# option for html output
knitr::opts_chunk$set(echo = TRUE)

## A meta-analysis combines the results of several scientic studies addressing the same question. 
## Though, individual study measurements that are reported may have some degree of error. 
## It is simply analysis of analyses that correspond to a shared topic. 
## There are two different approaches in Meta-analysis viz. meta-analysis using aggregate data (AD) 
## or individual participant data (IPD).Using an AD approach, summary data for the same outcome e.g. 
## prevalence rate of a disease,proportions from each study,are pooled for the statistical analysis 
## (Suvarnapathaki,2021). 

Review Systematic and Metanalysys (RSMA) - Analysis Stadistics

I. Descriptive statistics (data structure)

rm(list=ls(all=TRUE)) #Deletes all memory content

# Call of the packages 

library(readxl)
data_neumo1 <- read_excel("C:/Users/USER/Desktop/RSMA/data_neumo1.xlsx")
View(data_neumo1)

#install.packages(c("metafor", "meta"))
#install.packages("tidyverse")
library(metafor)
library(meta)
library(metadat)
library(tidyverse)
head(data_neumo1,114)
## # A tibble: 114 × 20
##    Sequence code  author       author2 year_…¹ contint   age   prev sample posit
##    <chr>    <chr> <chr>        <chr>     <dbl>   <dbl> <dbl>  <dbl>  <dbl> <dbl>
##  1 RSMA01   RS001 Abdullahi_2… Abdull…    2008       1     4 0.0467    107     5
##  2 RSMA02   RS001 Abdullahi_2… Abdull…    2008       1     2 0.0564    195    11
##  3 RSMA03   RS001 Abdullahi_2… Abdull…    2008       1     1 0.0640    406    26
##  4 RSMA04   RS002 Adetifa_2012 Adetifa    2012       1     4 0.0685    482    33
##  5 RSMA05   RS002 Adetifa_2012 Adetifa    2012       1     2 0.108     530    57
##  6 RSMA06   RS002 Adetifa_2012 Adetifa    2012       1     1 0.260     361    94
##  7 RSMA07   RS004 Adler_2019   Adler      2019       5     1 0.0654    795    52
##  8 RSMA08   RS010 Almeida_2014 Almeida    2014       5     4 0.0229   3361    77
##  9 RSMA09   RS015 Ansaldi_2013 Ansaldi    2013       5     4 0.02      283    56
## 10 RSMA10   RS017 Becker-Drep… Becker…    2015       2     4 0.0190    210     4
## # … with 104 more rows, 10 more variables: type_prev <dbl>, stage <dbl>,
## #   comorb <dbl>, type_morb <dbl>, meth_iden <dbl>, type_samp <dbl>,
## #   setting <dbl>, type_setting <dbl>, type_study <dbl>, quality <dbl>, and
## #   abbreviated variable name ¹​year_pub
glimpse(data_neumo1)
## Rows: 114
## Columns: 20
## $ Sequence     <chr> "RSMA01", "RSMA02", "RSMA03", "RSMA04", "RSMA05", "RSMA06…
## $ code         <chr> "RS001", "RS001", "RS001", "RS002", "RS002", "RS002", "RS…
## $ author       <chr> "Abdullahi_2008", "Abdullahi_2008", "Abdullahi_2008", "Ad…
## $ author2      <chr> "Abdullahi", "Abdullahi", "Abdullahi", "Adetifa", "Adetif…
## $ year_pub     <dbl> 2008, 2008, 2008, 2012, 2012, 2012, 2019, 2014, 2013, 201…
## $ contint      <dbl> 1, 1, 1, 1, 1, 1, 5, 5, 5, 2, 1, 2, 2, 6, 3, 3, 5, 5, 4, …
## $ age          <dbl> 4, 2, 1, 4, 2, 1, 1, 4, 4, 4, 1, 4, 4, 1, 4, 4, 2, 4, 1, …
## $ prev         <dbl> 0.046728972, 0.056410256, 0.064039409, 0.068464730, 0.107…
## $ sample       <dbl> 107, 195, 406, 482, 530, 361, 795, 3361, 283, 210, 600, 1…
## $ posit        <dbl> 5, 11, 26, 33, 57, 94, 52, 77, 56, 4, 108, 14, 41, 0, 17,…
## $ type_prev    <dbl> 2, 2, 2, 1, 1, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, …
## $ stage        <dbl> 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 1, 2, 2, 2, 2, 2, …
## $ comorb       <dbl> 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, …
## $ type_morb    <dbl> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 1, …
## $ meth_iden    <dbl> 1, 1, 1, 1, 1, 1, 1, 3, 2, 1, 1, 1, 2, 1, 3, 3, 1, 1, 1, …
## $ type_samp    <dbl> 1, 1, 1, 1, 1, 1, 2, 3, 1, 1, 2, 3, 3, 1, 1, 1, 1, 1, 4, …
## $ setting      <dbl> 2, 2, 2, 2, 2, 2, 1, 2, 1, 2, 1, 2, 2, 4, 1, 1, 1, 1, 2, …
## $ type_setting <dbl> 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 2, 10, 1, 1, 1, 1, 7,…
## $ type_study   <dbl> 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 2, 2, 4, 2, 2, 4, 4, 3, …
## $ quality      <dbl> 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 4, 4, 4, 4, 4, …
names(data_neumo1) <- c("Sequence", "code", "author", "year_pub", "contint", "age", "prev","sample", 
                        "posit", "type_prev", "stage", "comorb","type_morb","meth_iden","type_samp",
                        "setting","type_setting","type_study","quality")
## Warning: The `value` argument of `names<-` must have the same length as `x` as of tibble
## 3.0.0.
## ℹ `names` must have length 20, not 19.
## Warning: The `value` argument of `names<-` can't be empty as of tibble 3.0.0.
## ℹ Column 20 must be named.
glimpse(data_neumo1)
## Rows: 114
## Columns: 20
## $ Sequence     <chr> "RSMA01", "RSMA02", "RSMA03", "RSMA04", "RSMA05", "RSMA06…
## $ code         <chr> "RS001", "RS001", "RS001", "RS002", "RS002", "RS002", "RS…
## $ author       <chr> "Abdullahi_2008", "Abdullahi_2008", "Abdullahi_2008", "Ad…
## $ year_pub     <chr> "Abdullahi", "Abdullahi", "Abdullahi", "Adetifa", "Adetif…
## $ contint      <dbl> 2008, 2008, 2008, 2012, 2012, 2012, 2019, 2014, 2013, 201…
## $ age          <dbl> 1, 1, 1, 1, 1, 1, 5, 5, 5, 2, 1, 2, 2, 6, 3, 3, 5, 5, 4, …
## $ prev         <dbl> 4, 2, 1, 4, 2, 1, 1, 4, 4, 4, 1, 4, 4, 1, 4, 4, 2, 4, 1, …
## $ sample       <dbl> 0.046728972, 0.056410256, 0.064039409, 0.068464730, 0.107…
## $ posit        <dbl> 107, 195, 406, 482, 530, 361, 795, 3361, 283, 210, 600, 1…
## $ type_prev    <dbl> 5, 11, 26, 33, 57, 94, 52, 77, 56, 4, 108, 14, 41, 0, 17,…
## $ stage        <dbl> 2, 2, 2, 1, 1, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, …
## $ comorb       <dbl> 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 1, 2, 2, 2, 2, 2, …
## $ type_morb    <dbl> 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, …
## $ meth_iden    <dbl> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 1, …
## $ type_samp    <dbl> 1, 1, 1, 1, 1, 1, 1, 3, 2, 1, 1, 1, 2, 1, 3, 3, 1, 1, 1, …
## $ setting      <dbl> 1, 1, 1, 1, 1, 1, 2, 3, 1, 1, 2, 3, 3, 1, 1, 1, 1, 1, 4, …
## $ type_setting <dbl> 2, 2, 2, 2, 2, 2, 1, 2, 1, 2, 1, 2, 2, 4, 1, 1, 1, 1, 2, …
## $ type_study   <dbl> 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 2, 10, 1, 1, 1, 1, 7,…
## $ quality      <dbl> 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 2, 2, 4, 2, 2, 4, 4, 3, …
## $ NA           <dbl> 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 4, 4, 4, 4, 4, …
str(data_neumo1)
## tibble [114 × 20] (S3: tbl_df/tbl/data.frame)
##  $ Sequence    : chr [1:114] "RSMA01" "RSMA02" "RSMA03" "RSMA04" ...
##  $ code        : chr [1:114] "RS001" "RS001" "RS001" "RS002" ...
##  $ author      : chr [1:114] "Abdullahi_2008" "Abdullahi_2008" "Abdullahi_2008" "Adetifa_2012" ...
##  $ year_pub    : chr [1:114] "Abdullahi" "Abdullahi" "Abdullahi" "Adetifa" ...
##  $ contint     : num [1:114] 2008 2008 2008 2012 2012 ...
##  $ age         : num [1:114] 1 1 1 1 1 1 5 5 5 2 ...
##  $ prev        : num [1:114] 4 2 1 4 2 1 1 4 4 4 ...
##  $ sample      : num [1:114] 0.0467 0.0564 0.064 0.0685 0.1075 ...
##  $ posit       : num [1:114] 107 195 406 482 530 ...
##  $ type_prev   : num [1:114] 5 11 26 33 57 94 52 77 56 4 ...
##  $ stage       : num [1:114] 2 2 2 1 1 1 1 1 2 1 ...
##  $ comorb      : num [1:114] 1 1 1 2 2 2 2 2 2 2 ...
##  $ type_morb   : num [1:114] 2 2 2 2 2 2 2 2 2 2 ...
##  $ meth_iden   : num [1:114] 1 1 1 1 1 1 1 1 1 1 ...
##  $ type_samp   : num [1:114] 1 1 1 1 1 1 1 3 2 1 ...
##  $ setting     : num [1:114] 1 1 1 1 1 1 2 3 1 1 ...
##  $ type_setting: num [1:114] 2 2 2 2 2 2 1 2 1 2 ...
##  $ type_study  : num [1:114] 1 1 1 1 1 1 1 1 1 2 ...
##  $ quality     : num [1:114] 4 4 4 4 4 4 4 4 4 4 ...
##  $ NA          : num [1:114] 3 3 3 4 4 4 4 4 4 4 ...
summary(data_neumo1)
##    Sequence             code              author            year_pub        
##  Length:114         Length:114         Length:114         Length:114        
##  Class :character   Class :character   Class :character   Class :character  
##  Mode  :character   Mode  :character   Mode  :character   Mode  :character  
##                                                                             
##                                                                             
##                                                                             
##     contint          age             prev           sample       
##  Min.   :1997   Min.   :1.000   Min.   :1.000   Min.   :0.00000  
##  1st Qu.:2010   1st Qu.:1.000   1st Qu.:1.000   1st Qu.:0.04428  
##  Median :2014   Median :2.000   Median :1.500   Median :0.08091  
##  Mean   :2014   Mean   :3.053   Mean   :2.149   Mean   :0.10634  
##  3rd Qu.:2018   3rd Qu.:5.000   3rd Qu.:4.000   3rd Qu.:0.11851  
##  Max.   :2021   Max.   :6.000   Max.   :4.000   Max.   :0.47544  
##      posit          type_prev           stage           comorb     
##  Min.   :   8.0   Min.   :   0.00   Min.   :1.000   Min.   :1.000  
##  1st Qu.: 200.0   1st Qu.:  11.00   1st Qu.:1.000   1st Qu.:2.000  
##  Median : 383.0   Median :  29.00   Median :1.000   Median :2.000  
##  Mean   : 704.5   Mean   :  85.39   Mean   :1.421   Mean   :1.798  
##  3rd Qu.: 642.8   3rd Qu.:  69.75   3rd Qu.:2.000   3rd Qu.:2.000  
##  Max.   :8336.0   Max.   :1868.00   Max.   :3.000   Max.   :3.000  
##    type_morb       meth_iden       type_samp        setting     
##  Min.   :1.000   Min.   :1.000   Min.   :1.000   Min.   :1.000  
##  1st Qu.:2.000   1st Qu.:1.000   1st Qu.:1.000   1st Qu.:1.000  
##  Median :2.000   Median :1.000   Median :1.000   Median :1.000  
##  Mean   :1.807   Mean   :1.684   Mean   :1.281   Mean   :1.737  
##  3rd Qu.:2.000   3rd Qu.:1.000   3rd Qu.:1.000   3rd Qu.:3.000  
##  Max.   :2.000   Max.   :7.000   Max.   :3.000   Max.   :5.000  
##   type_setting     type_study        quality            NA       
##  Min.   :1.000   Min.   : 1.000   Min.   :1.000   Min.   :2.000  
##  1st Qu.:1.000   1st Qu.: 1.000   1st Qu.:2.000   1st Qu.:3.000  
##  Median :2.000   Median : 1.000   Median :4.000   Median :3.000  
##  Mean   :1.711   Mean   : 2.877   Mean   :3.342   Mean   :3.342  
##  3rd Qu.:2.000   3rd Qu.: 4.000   3rd Qu.:4.000   3rd Qu.:4.000  
##  Max.   :4.000   Max.   :10.000   Max.   :4.000   Max.   :4.000
convert <- which(data_neumo1$prev =="age")
data_neumo1$prev[convert] <- "age"
summary(data_neumo1$prev)
##    Length     Class      Mode 
##       114 character character
par(mfrow = c(2,4))
barplot(Age <- table(data_neumo1$prev))
barplot(Age <- table(data_neumo1$sample))
barplot(Age <- table(data_neumo1$type_samp))
barplot(Age <- table(data_neumo1$comorb))
barplot(Age <- table(data_neumo1$type_morb))
barplot(Age <- table(data_neumo1$meth_iden))

par(mfrow = c(2,4))

barplot(prev <- table(data_neumo1$age))
barplot(prev <- table(data_neumo1$sample))
barplot(prev <- table(data_neumo1$type_samp))
barplot(prev <- table(data_neumo1$comorb))
barplot(prev <- table(data_neumo1$type_morb))
barplot(prev <- table(data_neumo1$meth_iden))

par(mfrow = c(1,3))

hist(data_neumo1$age)

Prev_adults <- subset(data_neumo1, prev=="1" & age=="2")
dim(Prev_adults)
## [1] 17 20
print(Prev_adults)
## # A tibble: 17 × 20
##    Sequence code  author  year_…¹ contint   age prev  sample posit type_…² stage
##    <chr>    <chr> <chr>   <chr>     <dbl> <dbl> <chr>  <dbl> <dbl>   <dbl> <dbl>
##  1 RSMA35   RS032 Feola_… Feola      2016     2 1     0.0376   399      15     1
##  2 RSMA38   RS036 Gounde… Gounder    2014     2 1     0.142   8336    1183     2
##  3 RSMA41   RS038 Grant_… Grant      2016     2 1     0.118   2847     336     2
##  4 RSMA44   RS040 Hammit… Hammitt    2006     2 1     0.01     115      15     2
##  5 RSMA45   RS040 Hammit… Hammitt    2006     2 1     0.01     115      15     2
##  6 RSMA61   RS062 Millar… Millar     2008     2 1     0.139   1729     241     3
##  7 RSMA67   RS068 Onwubi… Onwubi…    2008     2 1     0.0343   175       6     1
##  8 RSMA80   RS078 Rodrig… Rodrig…    1997     2 1     0.168    321      54     2
##  9 RSMA81   RS078 Rodrig… Rodrig…    1997     2 1     0.0533   150       8     2
## 10 RSMA82   RS079 Rosen … Rosen      2007     2 1     0.0462    65       3     1
## 11 RSMA83   RS079 Rosen_… Rosen      2007     2 1     0.0476    63       3     1
## 12 RSMA84   RS081 Saravo… Saravo…    2007     2 1     0.015    200       3     1
## 13 RSMA85   RS081 Saravo… Saravo…    2007     2 1     0.03     200       6     1
## 14 RSMA86   RS081 Saravo… Saravo…    2007     2 1     0.11     200      22     1
## 15 RSMA87   RS083 Scott_… Scott      2012     2 1     0.109   2681     291     2
## 16 RSMA95   RS086 Sutcli… Sutcli…    2019     2 1     0.145    509      74     2
## 17 RSMA96   RS086 Sutcli… Sutcli…    2019     2 1     0.475    509     242     2
## # … with 9 more variables: comorb <dbl>, type_morb <dbl>, meth_iden <dbl>,
## #   type_samp <dbl>, setting <dbl>, type_setting <dbl>, type_study <dbl>,
## #   quality <dbl>, `` <dbl>, and abbreviated variable names ¹​year_pub,
## #   ²​type_prev

II. Effect size & Heterogeneity Analysis (Viechtbauer, 2010)

rm(list=ls(all=TRUE)) #Deletes all memory content

# Call of the packages 

library(readxl)
data_neumo1 <- read_excel("C:/Users/USER/Desktop/RSMA/data_neumo1.xlsx")
View(data_neumo1)

#install.packages(c("metafor", "meta"))
#install.packages("tidyverse")
library(metafor)
library(meta)
library(metadat)
library(tidyverse)

# Effect size (weighted average of the individual study)

# Calculation of effect size without transformation - raw proportion (xi/ni)

ies=escalc(xi=posit, ni=sample, data=data_neumo1, measure="PR")
pes=rma(yi, vi, data=ies)
print(pes)
## 
## Random-Effects Model (k = 114; tau^2 estimator: REML)
## 
## tau^2 (estimated amount of total heterogeneity): 0.0089 (SE = 0.0012)
## tau (square root of estimated tau^2 value):      0.0943
## I^2 (total heterogeneity / total variability):   99.54%
## H^2 (total variability / sampling variability):  216.40
## 
## Test for Heterogeneity:
## Q(df = 113) = 10041.1588, p-val < .0001
## 
## Model Results:
## 
## estimate      se     zval    pval   ci.lb   ci.ub      
##   0.1078  0.0090  11.9182  <.0001  0.0900  0.1255  *** 
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
# Calculation of effect size - second option - logit transformed proportion (log xi/(ni-xi))

ies=escalc(xi=posit, ni=sample, data=data_neumo1, measure="PLO")
pes=rma(yi, vi, data=ies)
print(pes)
## 
## Random-Effects Model (k = 114; tau^2 estimator: REML)
## 
## tau^2 (estimated amount of total heterogeneity): 0.8940 (SE = 0.1300)
## tau (square root of estimated tau^2 value):      0.9455
## I^2 (total heterogeneity / total variability):   98.29%
## H^2 (total variability / sampling variability):  58.32
## 
## Test for Heterogeneity:
## Q(df = 113) = 6139.8997, p-val < .0001
## 
## Model Results:
## 
## estimate      se      zval    pval    ci.lb    ci.ub      
##  -2.3800  0.0933  -25.5193  <.0001  -2.5627  -2.1972  *** 
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
# Calculation of effect size - logit transformed proportion (log xi/(ni-xi))

ies.logit=escalc(xi=posit, ni=sample, data=data_neumo1, measure="PLO")
pes.logit=rma(yi, vi, data=ies.logit)
pes=predict(pes.logit, transf=transf.ilogit)
print(pes)
## 
##    pred  ci.lb  ci.ub  pi.lb  pi.ub 
##  0.0847 0.0716 0.1000 0.0142 0.3734
# Calculation of effect size - arcsine transformed (asin (sqrt(xi/ni))

ies.logit=escalc(xi=posit, ni=sample, data=data_neumo1, measure="PAS")
pes.logit=rma(yi, vi, data=ies.logit)
pes=predict(pes.logit, transf=transf.ilogit)
print(pes)
## 
##    pred  ci.lb  ci.ub  pi.lb  pi.ub 
##  0.5765 0.5696 0.5834 0.5030 0.6468
# Calculation of effect size with transformation logit - third option

pes.logit=rma(yi, vi, data=ies, method="DL")
pes=predict(pes.logit, transf=transf.ilogit)
transf=transf.ilogit
print(pes)
## 
##    pred  ci.lb  ci.ub  pi.lb  pi.ub 
##  0.0851 0.0723 0.0999 0.0152 0.3592
# Calculation of effect size without transformation 
#(adjustments to proportions close to 0)

ies.logit=escalc(xi=posit, ni=sample, measure="PLO", data=data_neumo1)
pes.logit=rma(yi, vi, data=ies.logit, method="DL", level=95)
pes=predict(pes.logit, transf=transf.ilogit)
print(pes, digits=6)
## 
##      pred    ci.lb    ci.ub    pi.lb    pi.ub 
##  0.085092 0.072301 0.099903 0.015196 0.359216
# Heterogeneity calculation (variation between studies)

print(pes.logit, digits=4)
## 
## Random-Effects Model (k = 114; tau^2 estimator: DL)
## 
## tau^2 (estimated amount of total heterogeneity): 0.8318 (SE = 0.2624)
## tau (square root of estimated tau^2 value):      0.9121
## I^2 (total heterogeneity / total variability):   98.16%
## H^2 (total variability / sampling variability):  54.34
## 
## Test for Heterogeneity:
## Q(df = 113) = 6139.8997, p-val < .0001
## 
## Model Results:
## 
## estimate      se      zval    pval    ci.lb    ci.ub      
##  -2.3751  0.0902  -26.3312  <.0001  -2.5519  -2.1983  *** 
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
confint(pes.logit, digits=2)
## 
##        estimate ci.lb ci.ub 
## tau^2      0.83  0.77  1.49 
## tau        0.91  0.88  1.22 
## I^2(%)    98.16 98.03 98.97 
## H^2       54.34 50.64 96.68

III. Forest Plot (Effect size and grouping of the interest variable)

# II. Forest Plot (pooled estimate of the parameter)

rm(list=ls(all=TRUE)) #Deletes all memory content

# Call of the packages

library(readxl)
data_neumo1 <- read_excel("C:/Users/USER/Desktop/RSMA/data_neumo1.xlsx")
View(data_neumo1)

#install.packages(c("metafor", "meta"))
#install.packages("tidyverse")
library(metafor)
library(meta)
library(metadat)
library(tidyverse)

# Forest PLot without transformation 

pes.summary=metaprop(posit,sample,author,data=data_neumo1, sm="PRAW")
forest(pes.summary)

# Forest PLot with transformation loggit

pes.summary=metaprop(posit,sample,author, data=data_neumo1, sm="PLO")
forest(pes.summary)

# Forest PLot with transformation loggit - subgroup (age, sample, method and type sample)

ms2s <- update(pes.summary, byvar= age, print.byvar=TRUE)
forest(ms2s)

ms2s <- update(pes.summary, byvar= stage, print.byvar=TRUE)
forest(ms2s)

ms2s <- update(pes.summary, byvar= contint, print.byvar=TRUE)
forest(ms2s)

ms2s <- update(pes.summary, byvar= meth_iden, print.byvar=TRUE)
forest(ms2s)

ms2s <- update(pes.summary, byvar= type_samp, print.byvar=TRUE)
forest(ms2s)

ms2s <- update(pes.summary, byvar= type_prev, print.byvar=TRUE)
forest(ms2s) 

ms2s <- update(pes.summary, byvar= comorb, print.byvar=TRUE)
forest(ms2s)

ms2s <- update(pes.summary, byvar= setting, print.byvar=TRUE)
forest(ms2s)

ms2s <- update(pes.summary, byvar= type_study, print.byvar=TRUE)
forest(ms2s)

# Forest Plot d- fit 

pes.summary=metaprop(posit,sample,author, data=data_neumo1, sm="PR",
                     method.tau="DL", method.ci="NAsm")
forest(pes.summary,
       xlim=c(0,4),
       pscale=20,
       rightcols=FALSE,
       leftcols=c("author", "posit", "sample", "prev", "ci"),
       leftlabs=c("author", "posit", "sample", "prev", "95% C.I."),
       xlab="Prevalence of CC", smlab="",
       weight.study="random", squaresize=0.5, col.square="red",
       col.square.lines="green",
       col.diamond="maroon", col.diamond.lines="maroon",
       pooled.totals=FALSE,
       comb.fixed=FALSE,
       fs.hetstat=10,
       print.tau2=TRUE,
       print.Q=TRUE,
       print.pval.Q=TRUE,
       print.I2=TRUE,
       digits=2)

# Forest Plot d- fit 

pes.summary=metaprop(posit,sample,author, data=data_neumo1, sm="PLO",
                     method.tau="DL", method.ci="NAsm")
forest(pes.summary,
       xlim=c(0,4),
       pscale=20,
       rightcols=FALSE,
       leftcols=c("author", "posit", "sample", "prev","ci"),
       leftlabs=c("author", "posit", "sample", "prev", "95% C.I."),
       xlab="Prevalence of CC", smlab="",
       weight.study="random", squaresize=0.2, col.square="green",
       col.square.lines="red",
       col.diamond="maroon", col.diamond.lines="yellow",
       pooled.totals=TRUE,
       comb.fixed=TRUE,
       fs.hetstat=10,
       print.tau2=TRUE,
       print.Q=TRUE,
       print.pval.Q=TRUE,
       print.I2=TRUE,
       digits=2)

IV. Sensitivity Analysis (model adjustments)

# IV. Sensitivity Analysis (variation between studies)

rm(list=ls(all=TRUE)) #Deletes all memory content

# Call of the packages

library(readxl)
data_neumo1 <- read_excel("C:/Users/USER/Desktop/RSMA/data_neumo1.xlsx")
View(data_neumo1)

#install.packages(c("metafor", "meta"))
#install.packages("tidyverse")
library(metafor)
library(meta)
library(metadat)
library(tidyverse)

# transformation data

ies.logit=escalc(xi=posit, ni=sample, data=data_neumo1, measure="PLO")
pes.logit=rma(yi, vi, data=ies.logit)
pes=predict(pes.logit, transf=transf.ilogit)
print(pes)
## 
##    pred  ci.lb  ci.ub  pi.lb  pi.ub 
##  0.0847 0.0716 0.1000 0.0142 0.3734
# Accuracy of studies 

precision=sqrt(ies.logit$vi)
1/sqrt(ies.logit$vi)
##   [1]  2.1831984  3.2217212  4.9330493  5.5444264  7.1323076  8.3380781
##   [7]  6.9712798  8.6738654  6.7021435  1.9808608  9.4106323  3.4698703
##  [13]  4.9183331  0.7058246  4.0776926  3.8229211  2.2259178  2.8031163
##  [19]  6.0777968  8.5127864 11.6055385  5.4784187  2.0000000  0.9701425
##  [25]  3.1495465  4.2426407  2.3299295  2.1612618  0.6871843  3.1901208
##  [31]  0.7068421  6.3228802  6.0801994  4.9901088  3.7994855  5.9803600
##  [37]  8.7302309 31.8608701  9.6303222  4.9790470 17.2146922  2.8618176
##  [43]  3.4292272  3.6115756  3.6115756  7.8408211  7.9983086  4.1699392
##  [49]  5.2669743  2.4354792 13.4239708  9.0404077 10.1768744  6.5206332
##  [55]  6.7631010  3.6030290 17.9881944 10.3692527 11.0705058  9.5767338
##  [61] 14.4016579  7.3476497  5.0584278  7.3048641 11.2570533  5.6655701
##  [67]  2.4071323  2.7610740  2.9195084  5.4195190  5.2541777  6.8668098
##  [73]  4.1623311  9.6778661 33.8658477  0.9984114  0.7065471  3.8094528
##  [79]  4.9646752  6.7019317  2.7519690  1.6916082  1.6903085  1.7190113
##  [85]  2.4124676  4.4249294 16.1063465 14.8776905  5.5646994  2.6261287
##  [91]  8.7316908  8.6075207  6.5553201  6.4462434  7.9524619 11.2668996
##  [97] 20.6392747  3.3792536  7.4311355  4.8068764  3.1080322  6.5186266
## [103]  5.1164296  2.2186934  5.6690816  0.7067566  4.5869034  7.7907062
## [109]  8.0617879  3.3752637  4.5496071  3.4248100  3.0410722  4.2209113
sortvar=precision
pes.summary=metaprop(posit, sample, author, data=data_neumo1, sm="PLO")
forest(pes.summary)

# Outliers 

stud.res=rstudent(pes.logit)
abs.z=abs(stud.res$z)
stud.res[order(-abs.z)]
## 
##       resid     se       z 
## 31  -4.8329 1.6968 -2.8483 
## 106 -4.5519 1.6978 -2.6810 
## 96   2.3001 0.9282  2.4780 
## 76  -3.3868 1.3705 -2.4712 
## 77  -4.0808 1.6995 -2.4011 
## 21   2.1225 0.9329  2.2752 
## 17  -2.3364 1.0327 -2.2623 
## 97   2.0055 0.9329  2.1496 
## 13   2.0324 0.9549  2.1285 
## 75   1.9324 0.9339  2.0691 
## 50  -2.1017 1.0197 -2.0610 
## 56   1.9134 0.9773  1.9579 
## 14  -3.2473 1.7029 -1.9069 
## 99   1.7076 0.9488  1.7998 
## 104 -1.7883 1.0424 -1.7154 
## 62  -1.6139 0.9481 -1.7023 
## 55   1.5795 0.9534  1.6568 
## 84  -1.8186 1.1072 -1.6425 
## 18  -1.6450 1.0060 -1.6352 
## 43  -1.5249 0.9858 -1.5468 
## 114  1.4844 0.9735  1.5248 
## 15  -1.4329 0.9742 -1.4710 
## 10  -1.5744 1.0705 -1.4708 
## 8   -1.3874 0.9496 -1.4611 
## 22   1.3874 0.9628  1.4409 
## 53   1.3475 0.9507  1.4174 
## 6    1.3483 0.9532  1.4144 
## 52   1.3306 0.9524  1.3971 
## 16  -1.2680 0.9811 -1.2924 
## 32   1.1017 0.9624  1.1448 
## 85  -1.1054 1.0353 -1.0677 
## 78  -1.0217 0.9845 -1.0378 
## 9    0.9898 0.9623  1.0286 
## 54   0.9891 0.9629  1.0271 
## 20   0.9703 0.9580  1.0128 
## 101 -0.9750 1.0027 -0.9724 
## 23   1.0015 1.0748  0.9318 
## 67  -0.9661 1.0369 -0.9317 
## 11   0.8722 0.9577  0.9107 
## 72  -0.8681 0.9615 -0.9029 
## 73  -0.8732 0.9804 -0.8906 
## 35  -0.8704 0.9864 -0.8825 
## 94   0.7945 0.9651  0.8232 
## 80   0.7895 0.9642  0.8188 
## 64   0.7751 0.9625  0.8053 
## 49  -0.7191 0.9708 -0.7408 
## 93   0.7095 0.9654  0.7349 
## 107 -0.7133 0.9767 -0.7303 
## 102  0.6532 0.9660  0.6762 
## 95   0.6151 0.9622  0.6392 
## 68  -0.6332 1.0192 -0.6213 
## 38   0.5867 0.9547  0.6146 
## 1   -0.6403 1.0570 -0.6057 
## 98  -0.6039 0.9979 -0.6052 
## 61   0.5656 0.9568  0.5911 
## 82  -0.6528 1.1210 -0.5824 
## 12   0.5703 0.9967  0.5722 
## 110 -0.5557 0.9983 -0.5567 
## 83  -0.6198 1.1214 -0.5527 
## 79  -0.5276 0.9746 -0.5413 
## 90   0.5526 1.0272  0.5379 
## 70  -0.5166 0.9714 -0.5318 
## 69  -0.5081 1.0132 -0.5015 
## 44   0.4878 0.9939  0.4908 
## 45   0.4878 0.9939  0.4908 
## 81  -0.5002 1.0204 -0.4902 
## 105 -0.4726 0.9701 -0.4872 
## 66  -0.4500 0.9703 -0.4638 
## 2   -0.4404 1.0032 -0.4390 
## 109 -0.4094 0.9624 -0.4254 
## 36  -0.3958 0.9690 -0.4084 
## 111 -0.3899 0.9794 -0.3981 
## 58   0.3793 0.9601  0.3951 
## 41   0.3730 0.9571  0.3897 
## 37   0.3309 0.9622  0.3439 
## 88   0.3037 0.9579  0.3171 
## 3   -0.3043 0.9761 -0.3117 
## 34   0.2996 0.9762  0.3069 
## 60   0.2884 0.9612  0.3000 
## 86   0.2926 0.9817  0.2981 
## 7   -0.2815 0.9657 -0.2915 
## 87   0.2777 0.9576  0.2900 
## 51   0.2710 0.9585  0.2828 
## 24  -0.3941 1.4034 -0.2808 
## 5    0.2672 0.9658  0.2767 
## 108  0.2659 0.9642  0.2758 
## 29  -0.4544 1.7387 -0.2613 
## 28  -0.2749 1.0605 -0.2592 
## 4   -0.2320 0.9720 -0.2387 
## 91   0.2188 0.9625  0.2274 
## 59  -0.1843 0.9597 -0.1920 
## 26   0.1852 0.9841  0.1882 
## 19   0.1744 0.9697  0.1798 
## 39  -0.1688 0.9611 -0.1756 
## 33   0.1663 0.9697  0.1715 
## 25   0.1649 1.0067  0.1638 
## 112  0.1596 0.9990  0.1597 
## 103  0.1548 0.9754  0.1587 
## 92   0.1451 0.9628  0.1507 
## 65  -0.1325 0.9597 -0.1380 
## 30  -0.1353 1.0052 -0.1346 
## 113 -0.1301 1.0101 -0.1288 
## 100 -0.1219 0.9778 -0.1246 
## 27   0.1304 1.0469  0.1245 
## 57   0.1117 0.9575  0.1167 
## 74   0.0760 0.9614  0.0790 
## 71  -0.0651 0.9744 -0.0668 
## 42   0.0676 1.0171  0.0665 
## 89   0.0583 0.9725  0.0600 
## 40  -0.0375 0.9765 -0.0384 
## 46  -0.0296 0.9642 -0.0307 
## 63   0.0194 0.9759  0.0199 
## 47   0.0187 0.9639  0.0194 
## 48   0.0022 0.9852  0.0022
# Influence of outliers  

L1O=leave1out(pes.logit, transf=transf.ilogit); print(L1O)
## 
##     estimate     zval   pval  ci.lb  ci.ub         Q     Qp   tau2      I2 
## 1     0.0851 -25.3063 0.0000 0.0718 0.1005 6131.4779 0.0000 0.8987 98.3078 
## 2     0.0850 -25.2763 0.0000 0.0717 0.1004 6126.6199 0.0000 0.9012 98.3111 
## 3     0.0849 -25.2608 0.0000 0.0716 0.1004 6115.7120 0.0000 0.9029 98.3108 
## 4     0.0848 -25.2590 0.0000 0.0716 0.1003 6113.5583 0.0000 0.9035 98.3104 
## 5     0.0845 -25.2987 0.0000 0.0712 0.0999 6130.4595 0.0000 0.9042 98.3069 
## 6     0.0838 -25.6397 0.0000 0.0708 0.0989 6110.9155 0.0000 0.8856 98.2673 
## 7     0.0849 -25.2553 0.0000 0.0716 0.1003 6093.6187 0.0000 0.9032 98.3056 
## 8     0.0858 -25.4302 0.0000 0.0726 0.1013 5815.4783 0.0000 0.8798 98.2548 
## 9     0.0840 -25.4864 0.0000 0.0709 0.0992 6136.1755 0.0000 0.8949 98.2910 
## 10    0.0857 -25.4394 0.0000 0.0725 0.1011 6119.9387 0.0000 0.8824 98.2773 
## 11    0.0840 -25.4461 0.0000 0.0709 0.0993 6137.2999 0.0000 0.8972 98.2846 
## 12    0.0843 -25.3667 0.0000 0.0711 0.0996 6139.7003 0.0000 0.9015 98.3112 
## 13    0.0834 -26.0122 0.0000 0.0706 0.0983 6097.4426 0.0000 0.8619 98.2320 
## 14    0.0855 -25.5039 0.0000 0.0723 0.1009 6132.2044 0.0000 0.8838 98.2809 
## 15    0.0858 -25.4345 0.0000 0.0726 0.1012 6065.5634 0.0000 0.8802 98.2699 
## 16    0.0857 -25.3876 0.0000 0.0724 0.1011 6084.2701 0.0000 0.8854 98.2804 
## 17    0.0864 -25.6978 0.0000 0.0732 0.1017 6095.0306 0.0000 0.8563 98.2255 
## 18    0.0859 -25.4833 0.0000 0.0727 0.1013 6097.4579 0.0000 0.8762 98.2643 
## 19    0.0845 -25.2872 0.0000 0.0713 0.1000 6129.8120 0.0000 0.9044 98.3107 
## 20    0.0840 -25.4803 0.0000 0.0709 0.0993 6134.6604 0.0000 0.8952 98.2849 
## 21    0.0834 -26.1239 0.0000 0.0706 0.0982 5866.6536 0.0000 0.8545 98.1887 
## 22    0.0838 -25.6500 0.0000 0.0708 0.0989 6125.8946 0.0000 0.8850 98.2760 
## 23    0.0841 -25.4736 0.0000 0.0710 0.0994 6139.5385 0.0000 0.8964 98.3037 
## 24    0.0848 -25.3905 0.0000 0.0716 0.1002 6138.7897 0.0000 0.8983 98.3079 
## 25    0.0845 -25.3028 0.0000 0.0713 0.1000 6137.1040 0.0000 0.9037 98.3158 
## 26    0.0845 -25.2953 0.0000 0.0713 0.0999 6135.1971 0.0000 0.9041 98.3146 
## 27    0.0846 -25.3157 0.0000 0.0714 0.1000 6138.1680 0.0000 0.9030 98.3156 
## 28    0.0848 -25.2994 0.0000 0.0716 0.1003 6135.5332 0.0000 0.9018 98.3136 
## 29    0.0848 -25.4336 0.0000 0.0716 0.1002 6139.2789 0.0000 0.8968 98.3053 
## 30    0.0848 -25.2786 0.0000 0.0715 0.1002 6132.9122 0.0000 0.9034 98.3152 
## 31    0.0860 -25.6417 0.0000 0.0728 0.1013 6124.7300 0.0000 0.8691 98.2523 
## 32    0.0839 -25.5285 0.0000 0.0708 0.0991 6133.5285 0.0000 0.8924 98.2876 
## 33    0.0845 -25.2861 0.0000 0.0713 0.1000 6129.4913 0.0000 0.9045 98.3107 
## 34    0.0844 -25.3083 0.0000 0.0712 0.0998 6135.9582 0.0000 0.9038 98.3125 
## 35    0.0853 -25.3088 0.0000 0.0720 0.1008 6104.8864 0.0000 0.8949 98.2984 
## 36    0.0850 -25.2588 0.0000 0.0717 0.1004 6097.5290 0.0000 0.9021 98.3066 
## 37    0.0844 -25.3079 0.0000 0.0712 0.0998 6129.5739 0.0000 0.9039 98.3002 
## 38    0.0842 -25.3611 0.0000 0.0711 0.0996 6125.0128 0.0000 0.9016 98.0731 
## 39    0.0848 -25.2546 0.0000 0.0715 0.1002 6070.2736 0.0000 0.9041 98.2966 
## 40    0.0847 -25.2696 0.0000 0.0714 0.1001 6126.6019 0.0000 0.9043 98.3133 
## 41    0.0844 -25.3136 0.0000 0.0712 0.0998 6107.4113 0.0000 0.9037 98.2466 
## 42    0.0846 -25.2975 0.0000 0.0714 0.1000 6136.6771 0.0000 0.9036 98.3160 
## 43    0.0859 -25.4572 0.0000 0.0726 0.1013 6082.7180 0.0000 0.8782 98.2673 
## 44    0.0843 -25.3487 0.0000 0.0711 0.0997 6139.3211 0.0000 0.9023 98.3124 
## 45    0.0843 -25.3487 0.0000 0.0711 0.0997 6139.3211 0.0000 0.9023 98.3124 
## 46    0.0847 -25.2637 0.0000 0.0714 0.1001 6107.4724 0.0000 0.9046 98.3050 
## 47    0.0846 -25.2674 0.0000 0.0714 0.1001 6110.4621 0.0000 0.9047 98.3046 
## 48    0.0847 -25.2769 0.0000 0.0714 0.1001 6131.5570 0.0000 0.9042 98.3149 
## 49    0.0852 -25.2840 0.0000 0.0719 0.1007 6084.8674 0.0000 0.8975 98.3001 
## 50    0.0862 -25.6253 0.0000 0.0730 0.1016 6094.1751 0.0000 0.8627 98.2382 
## 51    0.0845 -25.2961 0.0000 0.0712 0.0999 6106.4687 0.0000 0.9043 98.2759 
## 52    0.0838 -25.6321 0.0000 0.0708 0.0989 6107.6173 0.0000 0.8860 98.2652 
## 53    0.0838 -25.6414 0.0000 0.0708 0.0989 6096.6428 0.0000 0.8854 98.2586 
## 54    0.0840 -25.4860 0.0000 0.0709 0.0992 6136.3939 0.0000 0.8949 98.2917 
## 55    0.0836 -25.7545 0.0000 0.0707 0.0987 6104.8789 0.0000 0.8784 98.2592 
## 56    0.0835 -25.8994 0.0000 0.0707 0.0985 6121.0223 0.0000 0.8695 98.2499 
## 57    0.0846 -25.2734 0.0000 0.0713 0.1000 6024.8936 0.0000 0.9048 98.2421 
## 58    0.0844 -25.3160 0.0000 0.0712 0.0998 6128.8492 0.0000 0.9036 98.2922 
## 59    0.0848 -25.2534 0.0000 0.0715 0.1003 6044.2123 0.0000 0.9040 98.2893 
## 60    0.0844 -25.3001 0.0000 0.0712 0.0999 6124.4170 0.0000 0.9042 98.2970 
## 61    0.0842 -25.3562 0.0000 0.0711 0.0996 6136.0889 0.0000 0.9019 98.2647 
## 62    0.0860 -25.5105 0.0000 0.0728 0.1014 5854.7467 0.0000 0.8718 98.2442 
## 63    0.0846 -25.2736 0.0000 0.0714 0.1001 6128.2079 0.0000 0.9044 98.3133 
## 64    0.0841 -25.4151 0.0000 0.0710 0.0994 6139.6044 0.0000 0.8989 98.2964 
## 65    0.0848 -25.2552 0.0000 0.0715 0.1002 6052.1519 0.0000 0.9043 98.2888 
## 66    0.0850 -25.2615 0.0000 0.0717 0.1005 6098.0397 0.0000 0.9015 98.3064 
## 67    0.0853 -25.3322 0.0000 0.0721 0.1008 6124.0851 0.0000 0.8938 98.2986 
## 68    0.0851 -25.2929 0.0000 0.0718 0.1006 6126.5737 0.0000 0.8989 98.3075 
## 69    0.0850 -25.2832 0.0000 0.0717 0.1005 6127.6635 0.0000 0.9004 98.3101 
## 70    0.0851 -25.2657 0.0000 0.0718 0.1005 6097.0543 0.0000 0.9006 98.3055 
## 71    0.0847 -25.2667 0.0000 0.0714 0.1002 6123.9576 0.0000 0.9043 98.3126 
## 72    0.0854 -25.3028 0.0000 0.0721 0.1008 6025.4433 0.0000 0.8945 98.2898 
## 73    0.0853 -25.3078 0.0000 0.0720 0.1008 6097.7231 0.0000 0.8947 98.2974 
## 74    0.0846 -25.2715 0.0000 0.0713 0.1000 6103.5913 0.0000 0.9048 98.2976 
## 75    0.0834 -25.9940 0.0000 0.0706 0.0983 4123.3113 0.0000 0.8628 97.9583 
## 76    0.0861 -25.6409 0.0000 0.0729 0.1014 6123.4444 0.0000 0.8667 98.2474 
## 77    0.0858 -25.5680 0.0000 0.0726 0.1011 6128.5852 0.0000 0.8767 98.2672 
## 78    0.0854 -25.3338 0.0000 0.0722 0.1009 6097.6044 0.0000 0.8916 98.2923 
## 79    0.0851 -25.2678 0.0000 0.0718 0.1005 6103.3109 0.0000 0.9005 98.3063 
## 80    0.0841 -25.4195 0.0000 0.0710 0.0994 6139.5464 0.0000 0.8987 98.2981 
## 81    0.0850 -25.2858 0.0000 0.0717 0.1005 6129.1700 0.0000 0.9004 98.3104 
## 82    0.0850 -25.3266 0.0000 0.0718 0.1005 6134.7455 0.0000 0.8984 98.3077 
## 83    0.0850 -25.3254 0.0000 0.0718 0.1005 6135.0019 0.0000 0.8987 98.3082 
## 84    0.0858 -25.4810 0.0000 0.0726 0.1012 6121.4548 0.0000 0.8789 98.2708 
## 85    0.0854 -25.3527 0.0000 0.0722 0.1009 6121.2500 0.0000 0.8912 98.2936 
## 86    0.0844 -25.3095 0.0000 0.0712 0.0999 6136.6950 0.0000 0.9038 98.3136 
## 87    0.0844 -25.2967 0.0000 0.0712 0.0999 6092.7519 0.0000 0.9043 98.2567 
## 88    0.0844 -25.3013 0.0000 0.0712 0.0998 6104.6502 0.0000 0.9042 98.2656 
## 89    0.0846 -25.2754 0.0000 0.0714 0.1001 6127.3125 0.0000 0.9045 98.3122 
## 90    0.0843 -25.3700 0.0000 0.0711 0.0997 6139.7528 0.0000 0.9014 98.3123 
## 91    0.0845 -25.2899 0.0000 0.0713 0.0999 6122.3553 0.0000 0.9045 98.3012 
## 92    0.0845 -25.2801 0.0000 0.0713 0.1000 6117.2375 0.0000 0.9047 98.3021 
## 93    0.0842 -25.3960 0.0000 0.0710 0.0995 6139.8962 0.0000 0.8999 98.3009 
## 94    0.0841 -25.4210 0.0000 0.0710 0.0994 6139.5353 0.0000 0.8986 98.2987 
## 95    0.0842 -25.3700 0.0000 0.0710 0.0996 6139.4434 0.0000 0.9012 98.2984 
## 96    0.0833 -26.2647 0.0000 0.0706 0.0980 5814.2283 0.0000 0.8453 98.1715 
## 97    0.0834 -26.0442 0.0000 0.0706 0.0983 5383.0439 0.0000 0.8596 98.1253 
## 98    0.0851 -25.2828 0.0000 0.0718 0.1006 6120.8024 0.0000 0.8993 98.3074 
## 99    0.0836 -25.8305 0.0000 0.0707 0.0986 6084.3226 0.0000 0.8735 98.2473 
## 100   0.0847 -25.2654 0.0000 0.0715 0.1002 6124.5153 0.0000 0.9040 98.3131 
## 101   0.0854 -25.3280 0.0000 0.0721 0.1008 6113.2571 0.0000 0.8931 98.2962 
## 102   0.0842 -25.3807 0.0000 0.0710 0.0995 6139.8064 0.0000 0.9007 98.3024 
## 103   0.0845 -25.2874 0.0000 0.0713 0.1000 6132.2195 0.0000 0.9044 98.3131 
## 104   0.0859 -25.5046 0.0000 0.0727 0.1013 6109.9472 0.0000 0.8750 98.2627 
## 105   0.0850 -25.2625 0.0000 0.0717 0.1005 6096.3240 0.0000 0.9012 98.3059 
## 106   0.0859 -25.6124 0.0000 0.0727 0.1012 6126.2358 0.0000 0.8721 98.2581 
## 107   0.0852 -25.2854 0.0000 0.0719 0.1007 6098.5359 0.0000 0.8976 98.3019 
## 108   0.0845 -25.2978 0.0000 0.0712 0.0999 6128.5545 0.0000 0.9042 98.3046 
## 109   0.0850 -25.2560 0.0000 0.0717 0.1005 6060.6732 0.0000 0.9020 98.2995 
## 110   0.0851 -25.2797 0.0000 0.0718 0.1005 6122.2290 0.0000 0.8999 98.3086 
## 111   0.0849 -25.2637 0.0000 0.0717 0.1004 6115.6821 0.0000 0.9020 98.3101 
## 112   0.0845 -25.2988 0.0000 0.0713 0.1000 6136.5266 0.0000 0.9039 98.3157 
## 113   0.0847 -25.2811 0.0000 0.0715 0.1002 6133.6295 0.0000 0.9033 98.3153 
## 114   0.0837 -25.6857 0.0000 0.0707 0.0988 6129.0787 0.0000 0.8829 98.2750 
##          H2 
## 1   59.0950 
## 2   59.2118 
## 3   59.1995 
## 4   59.1854 
## 5   59.0621 
## 6   57.7128 
## 7   59.0186 
## 8   57.2989 
## 9   58.5143 
## 10  58.0491 
## 11  58.2970 
## 12  59.2143 
## 13  56.5626 
## 14  58.1708 
## 15  57.8017 
## 16  58.1542 
## 17  56.3544 
## 18  57.6135 
## 19  59.1951 
## 20  58.3060 
## 21  55.2089 
## 22  58.0037 
## 23  58.9512 
## 24  59.0994 
## 25  59.3766 
## 26  59.3341 
## 27  59.3699 
## 28  59.2965 
## 29  59.0063 
## 30  59.3530 
## 31  57.2175 
## 32  58.3969 
## 33  59.1960 
## 34  59.2580 
## 35  58.7667 
## 36  59.0542 
## 37  58.8321 
## 38  51.8981 
## 39  58.7052 
## 40  59.2878 
## 41  57.0336 
## 42  59.3831 
## 43  57.7150 
## 44  59.2573 
## 45  59.2573 
## 46  58.9974 
## 47  58.9823 
## 48  59.3434 
## 49  58.8266 
## 50  56.7613 
## 51  58.0007 
## 52  57.6422 
## 53  57.4264 
## 54  58.5362 
## 55  57.4460 
## 56  57.1383 
## 57  56.8874 
## 58  58.5533 
## 59  58.4543 
## 60  58.7197 
## 61  57.6262 
## 62  56.9540 
## 63  59.2884 
## 64  58.7009 
## 65  58.4378 
## 66  59.0449 
## 67  58.7739 
## 68  59.0828 
## 69  59.1749 
## 70  59.0137 
## 71  59.2621 
## 72  58.4713 
## 73  58.7333 
## 74  58.7399 
## 75  48.9791 
## 76  57.0593 
## 77  57.7090 
## 78  58.5588 
## 79  59.0425 
## 80  58.7569 
## 81  59.1846 
## 82  59.0904 
## 83  59.1098 
## 84  57.8288 
## 85  58.6030 
## 86  59.2987 
## 87  57.3622 
## 88  57.6578 
## 89  59.2496 
## 90  59.2508 
## 91  58.8665 
## 92  58.8967 
## 93  58.8535 
## 94  58.7800 
## 95  58.7678 
## 96  54.6909 
## 97  53.3430 
## 98  59.0799 
## 99  57.0550 
## 100 59.2820 
## 101 58.6911 
## 102 58.9082 
## 103 59.2809 
## 104 57.5599 
## 105 59.0271 
## 106 57.4091 
## 107 58.8910 
## 108 58.9821 
## 109 58.8050 
## 110 59.1209 
## 111 59.1762 
## 112 59.3715 
## 113 59.3564 
## 114 57.9693
# Weight of influence of outliers

inf=influence(pes.logit)
print(inf); plot(inf)
## 
##     rstudent  dffits cook.d  cov.r tau2.del    QE.del    hat weight    dfbs inf 
## 1    -0.6057 -0.0502 0.0025 1.0129   0.8987 6131.4779 0.0079 0.7880 -0.0502     
## 2    -0.4390 -0.0355 0.0013 1.0165   0.9012 6126.6199 0.0088 0.8783 -0.0355     
## 3    -0.3117 -0.0231 0.0005 1.0187   0.9029 6115.7120 0.0093 0.9302 -0.0231     
## 4    -0.2387 -0.0156 0.0002 1.0195   0.9035 6113.5583 0.0094 0.9388 -0.0156     
## 5     0.2767  0.0353 0.0013 1.0203   0.9042 6130.4595 0.0095 0.9520  0.0353     
## 6     1.4144  0.1323 0.0173 1.0009   0.8856 6110.9155 0.0096 0.9575  0.1323     
## 7    -0.2915 -0.0212 0.0005 1.0193   0.9032 6093.6187 0.0095 0.9510 -0.0212     
## 8    -1.4611 -0.1555 0.0238 0.9949   0.8798 5815.4783 0.0096 0.9587 -0.1554     
## 9     1.0286  0.1015 0.0103 1.0106   0.8949 6136.1755 0.0095 0.9493  0.1015     
## 10   -1.4708 -0.1376 0.0188 0.9955   0.8824 6119.9387 0.0076 0.7571 -0.1378     
## 11    0.9107  0.0923 0.0085 1.0131   0.8972 6137.2999 0.0096 0.9608  0.0923     
## 12    0.5722  0.0603 0.0037 1.0169   0.9015 6139.7003 0.0089 0.8902  0.0602     
## 13    2.1285  0.1796 0.0312 0.9758   0.8619 6097.4426 0.0093 0.9299  0.1795     
## 14   -1.9069 -0.1121 0.0125 0.9924   0.8838 6132.2044 0.0030 0.2998 -0.1125     
## 15   -1.4710 -0.1524 0.0229 0.9948   0.8802 6065.5634 0.0091 0.9116 -0.1524     
## 16   -1.2924 -0.1304 0.0169 1.0001   0.8854 6084.2701 0.0090 0.9038 -0.1304     
## 17   -2.2623 -0.2330 0.0524 0.9685   0.8563 6095.0306 0.0079 0.7937 -0.2336     
## 18   -1.6352 -0.1660 0.0271 0.9899   0.8762 6097.4579 0.0085 0.8517 -0.1661     
## 19    0.1798  0.0259 0.0007 1.0205   0.9044 6129.8120 0.0094 0.9443  0.0259     
## 20    1.0128  0.1006 0.0101 1.0110   0.8952 6134.6604 0.0096 0.9581  0.1006     
## 21    2.2752  0.1918 0.0352 0.9683   0.8545 5866.6536 0.0096 0.9649  0.1915     
## 22    1.4409  0.1330 0.0175 1.0001   0.8850 6125.8946 0.0094 0.9380  0.1330     
## 23    0.9318  0.0835 0.0070 1.0102   0.8964 6139.5385 0.0076 0.7603  0.0835     
## 24   -0.2808 -0.0154 0.0002 1.0090   0.8983 6138.7897 0.0044 0.4446 -0.0153     
## 25    0.1638  0.0232 0.0005 1.0190   0.9037 6137.1040 0.0087 0.8743  0.0232     
## 26    0.1882  0.0262 0.0007 1.0199   0.9041 6135.1971 0.0092 0.9160  0.0262     
## 27    0.1245  0.0185 0.0003 1.0176   0.9030 6138.1680 0.0081 0.8067  0.0185     
## 28   -0.2592 -0.0168 0.0003 1.0161   0.9018 6135.5332 0.0078 0.7850 -0.0168     
## 29   -0.2613 -0.0118 0.0001 1.0058   0.8968 6139.2789 0.0029 0.2888 -0.0118     
## 30   -0.1346 -0.0051 0.0000 1.0187   0.9034 6132.9122 0.0088 0.8766 -0.0051     
## 31   -2.8483 -0.1741 0.0300 0.9771   0.8691 6124.7300 0.0030 0.3004 -0.1756     
## 32    1.1448  0.1107 0.0122 1.0080   0.8924 6133.5285 0.0095 0.9465  0.1107     
## 33    0.1715  0.0251 0.0006 1.0205   0.9045 6129.4913 0.0094 0.9444  0.0251     
## 34    0.3069  0.0376 0.0014 1.0198   0.9038 6135.9582 0.0093 0.9311  0.0376     
## 35   -0.8825 -0.0835 0.0070 1.0101   0.8949 6104.8864 0.0090 0.9030 -0.0835     
## 36   -0.4084 -0.0333 0.0011 1.0181   0.9021 6097.5290 0.0094 0.9434 -0.0333     
## 37    0.3439  0.0418 0.0018 1.0201   0.9039 6129.5739 0.0096 0.9589  0.0418     
## 38    0.6146  0.0670 0.0045 1.0179   0.9016 6125.0128 0.0097 0.9719  0.0670     
## 39   -0.1756 -0.0092 0.0001 1.0203   0.9041 6070.2736 0.0096 0.9613 -0.0092     
## 40   -0.0384  0.0045 0.0000 1.0202   0.9043 6126.6019 0.0093 0.9309  0.0045     
## 41    0.3897  0.0463 0.0022 1.0200   0.9037 6107.4113 0.0097 0.9693  0.0463     
## 42    0.0665  0.0139 0.0002 1.0187   0.9036 6136.6771 0.0086 0.8560  0.0139     
## 43   -1.5468 -0.1593 0.0250 0.9925   0.8782 6082.7180 0.0089 0.8884 -0.1593     
## 44    0.4908  0.0533 0.0029 1.0178   0.9023 6139.3211 0.0090 0.8961  0.0533     
## 45    0.4908  0.0533 0.0029 1.0178   0.9023 6139.3211 0.0090 0.8961  0.0533     
## 46   -0.0307  0.0055 0.0000 1.0208   0.9046 6107.4724 0.0096 0.9555  0.0055     
## 47    0.0194  0.0104 0.0001 1.0209   0.9047 6110.4621 0.0096 0.9562  0.0104     
## 48    0.0022  0.0084 0.0001 1.0199   0.9042 6131.5570 0.0091 0.9141  0.0084     
## 49   -0.7408 -0.0691 0.0048 1.0132   0.8975 6084.8674 0.0094 0.9352 -0.0691     
## 50   -2.0610 -0.2127 0.0439 0.9755   0.8627 6094.1751 0.0082 0.8186 -0.2131     
## 51    0.2828  0.0362 0.0013 1.0206   0.9043 6106.4687 0.0097 0.9669  0.0362     
## 52    1.3971  0.1312 0.0171 1.0014   0.8860 6107.6173 0.0096 0.9598  0.1311     
## 53    1.4174  0.1329 0.0175 1.0008   0.8854 6096.6428 0.0096 0.9625  0.1328     
## 54    1.0271  0.1013 0.0103 1.0106   0.8949 6136.3939 0.0095 0.9480  0.1013     
## 55    1.6568  0.1496 0.0220 0.9933   0.8784 6104.8789 0.0095 0.9497  0.1495     
## 56    1.9579  0.1658 0.0268 0.9834   0.8695 6121.0223 0.0090 0.8957  0.1658     
## 57    0.1167  0.0202 0.0004 1.0212   0.9048 6024.8936 0.0097 0.9696  0.0202     
## 58    0.3951  0.0466 0.0022 1.0199   0.9036 6128.8492 0.0096 0.9629  0.0467     
## 59   -0.1920 -0.0109 0.0001 1.0203   0.9040 6044.2123 0.0096 0.9641 -0.0109     
## 60    0.3000  0.0377 0.0014 1.0204   0.9042 6124.4170 0.0096 0.9612  0.0377     
## 61    0.5911  0.0647 0.0042 1.0181   0.9019 6136.0889 0.0097 0.9677  0.0647     
## 62   -1.7023 -0.1856 0.0336 0.9864   0.8718 5854.7467 0.0095 0.9532 -0.1855     
## 63    0.0199  0.0103 0.0001 1.0204   0.9044 6128.2079 0.0093 0.9322  0.0103     
## 64    0.8053  0.0829 0.0069 1.0148   0.8989 6139.6044 0.0095 0.9530  0.0829     
## 65   -0.1380 -0.0054 0.0000 1.0206   0.9043 6052.1519 0.0096 0.9644 -0.0054     
## 66   -0.4638 -0.0392 0.0015 1.0174   0.9015 6098.0397 0.0094 0.9402 -0.0392     
## 67   -0.9317 -0.0846 0.0072 1.0081   0.8938 6124.0851 0.0082 0.8155 -0.0846     
## 68   -0.6213 -0.0535 0.0029 1.0137   0.8989 6126.5737 0.0085 0.8484 -0.0535     
## 69   -0.5015 -0.0416 0.0017 1.0154   0.9004 6127.6635 0.0086 0.8601 -0.0416     
## 70   -0.5318 -0.0464 0.0022 1.0165   0.9006 6097.0543 0.0094 0.9372 -0.0464     
## 71   -0.0668  0.0017 0.0000 1.0202   0.9043 6123.9576 0.0094 0.9350  0.0017     
## 72   -0.9029 -0.0880 0.0077 1.0102   0.8945 6025.4433 0.0095 0.9504 -0.0880     
## 73   -0.8906 -0.0849 0.0072 1.0100   0.8947 6097.7231 0.0091 0.9139 -0.0849     
## 74    0.0790  0.0164 0.0003 1.0210   0.9048 6103.5913 0.0096 0.9614  0.0164     
## 75    2.0691  0.1794 0.0311 0.9772   0.8628 4123.3113 0.0097 0.9720  0.1792     
## 76   -2.4712 -0.1878 0.0348 0.9761   0.8667 6123.4444 0.0046 0.4585 -0.1892     
## 77   -2.4011 -0.1443 0.0207 0.9850   0.8767 6128.5852 0.0030 0.3002 -0.1452     
## 78   -1.0378 -0.1009 0.0102 1.0067   0.8916 6097.6044 0.0090 0.9033 -0.1009     
## 79   -0.5413 -0.0472 0.0022 1.0162   0.9005 6103.3109 0.0093 0.9307 -0.0473     
## 80    0.8188  0.0839 0.0071 1.0145   0.8987 6139.5464 0.0095 0.9493  0.0839     
## 81   -0.4902 -0.0402 0.0016 1.0153   0.9004 6129.1700 0.0085 0.8477 -0.0401     
## 82   -0.5824 -0.0454 0.0021 1.0117   0.8984 6134.7455 0.0070 0.6995 -0.0454     
## 83   -0.5527 -0.0427 0.0018 1.0120   0.8987 6135.0019 0.0070 0.6992 -0.0426     
## 84   -1.6425 -0.1504 0.0223 0.9913   0.8789 6121.4548 0.0071 0.7058 -0.1506     
## 85   -1.0677 -0.0990 0.0098 1.0054   0.8912 6121.2500 0.0082 0.8161 -0.0991     
## 86    0.2981  0.0366 0.0014 1.0196   0.9038 6136.6950 0.0092 0.9204  0.0366     
## 87    0.2900  0.0369 0.0014 1.0206   0.9043 6092.7519 0.0097 0.9688  0.0369     
## 88    0.3171  0.0395 0.0016 1.0205   0.9042 6104.6502 0.0097 0.9680  0.0395     
## 89    0.0600  0.0142 0.0002 1.0205   0.9045 6127.3125 0.0094 0.9390  0.0142     
## 90    0.5379  0.0554 0.0031 1.0162   0.9014 6139.7528 0.0084 0.8371  0.0554     
## 91    0.2274  0.0307 0.0010 1.0207   0.9045 6122.3553 0.0096 0.9589  0.0307     
## 92    0.1507  0.0233 0.0006 1.0209   0.9047 6117.2375 0.0096 0.9585  0.0233     
## 93    0.7349  0.0767 0.0059 1.0158   0.8999 6139.8962 0.0095 0.9482  0.0767     
## 94    0.8232  0.0842 0.0071 1.0144   0.8986 6139.5353 0.0095 0.9474  0.0842     
## 95    0.6392  0.0686 0.0047 1.0173   0.9012 6139.4434 0.0096 0.9560  0.0686     
## 96    2.4780  0.2038 0.0393 0.9588   0.8453 5814.2283 0.0096 0.9644  0.2035     
## 97    2.1496  0.1845 0.0327 0.9738   0.8596 5383.0439 0.0097 0.9704  0.1842     
## 98   -0.6052 -0.0529 0.0028 1.0146   0.8993 6120.8024 0.0089 0.8861 -0.0529     
## 99    1.7998  0.1599 0.0250 0.9882   0.8735 6084.3226 0.0095 0.9536  0.1598     
## 100  -0.1246 -0.0041 0.0000 1.0199   0.9040 6124.5153 0.0093 0.9280 -0.0041     
## 101  -0.9724 -0.0919 0.0084 1.0079   0.8931 6113.2571 0.0087 0.8720 -0.0919     
## 102   0.6762  0.0715 0.0052 1.0166   0.9007 6139.8064 0.0095 0.9480  0.0715     
## 103   0.1587  0.0237 0.0006 1.0203   0.9044 6132.2195 0.0093 0.9331  0.0237     
## 104  -1.7154 -0.1686 0.0279 0.9881   0.8750 6109.9472 0.0079 0.7928 -0.1688     
## 105  -0.4872 -0.0416 0.0017 1.0171   0.9012 6096.3240 0.0094 0.9402 -0.0417     
## 106  -2.6810 -0.1629 0.0263 0.9802   0.8721 6126.2358 0.0030 0.3003 -0.1641     
## 107  -0.7303 -0.0675 0.0046 1.0132   0.8976 6098.5359 0.0092 0.9238 -0.0675     
## 108   0.2758  0.0353 0.0013 1.0204   0.9042 6128.5545 0.0096 0.9553  0.0353     
## 109  -0.4254 -0.0353 0.0013 1.0181   0.9020 6060.6732 0.0096 0.9565 -0.0353     
## 110  -0.5567 -0.0478 0.0023 1.0152   0.8999 6122.2290 0.0089 0.8859 -0.0478     
## 111  -0.3981 -0.0320 0.0010 1.0178   0.9020 6115.6821 0.0092 0.9230 -0.0320     
## 112   0.1597  0.0230 0.0005 1.0194   0.9039 6136.5266 0.0089 0.8882  0.0230     
## 113  -0.1288 -0.0046 0.0000 1.0186   0.9033 6133.6295 0.0087 0.8679 -0.0046     
## 114   1.5248  0.1376 0.0187 0.9977   0.8829 6129.0787 0.0092 0.9155  0.1376

# Forest Plot - visualization of outliers

#l1o=leave1out(pes)
#yi=l1o$ estimate; vi=l1o$se^2
#forest(yi, vi,
       #slab=paste(data_neumo1$author, sep=","),
       #refline=pes$b,
       #xlab=c(ies.logit)
#print(pes.logit)

#l1o=leave1out(pes.logit)
#yi=l1o$estimate; vi=l1o$se^2
#forest(yi, vi, transf=transf.ilogit,
       #slab=paste(data_neumo1$author,sep=","),
       #refline=pes$pred,
       #xlab="Summary proportions leaving out each study")

V. Metaregresion

rm(list=ls(all=TRUE)) #Deletes all memory content

library(readxl)
data_neumo1 <- read_excel("C:/Users/USER/Desktop/RSMA/data_neumo1.xlsx")
View(data_neumo1)

# Call of the packages

#install.packages(c("metafor", "meta"))
#install.packages("PerformanceAnalytics")
library(metafor)
library(meta)
library(tidyverse)
library(metadat)
# Metaregression data structure

glimpse(data_neumo1)
## Rows: 114
## Columns: 20
## $ Sequence     <chr> "RSMA01", "RSMA02", "RSMA03", "RSMA04", "RSMA05", "RSMA06…
## $ code         <chr> "RS001", "RS001", "RS001", "RS002", "RS002", "RS002", "RS…
## $ author       <chr> "Abdullahi_2008", "Abdullahi_2008", "Abdullahi_2008", "Ad…
## $ author2      <chr> "Abdullahi", "Abdullahi", "Abdullahi", "Adetifa", "Adetif…
## $ year_pub     <dbl> 2008, 2008, 2008, 2012, 2012, 2012, 2019, 2014, 2013, 201…
## $ contint      <dbl> 1, 1, 1, 1, 1, 1, 5, 5, 5, 2, 1, 2, 2, 6, 3, 3, 5, 5, 4, …
## $ age          <dbl> 4, 2, 1, 4, 2, 1, 1, 4, 4, 4, 1, 4, 4, 1, 4, 4, 2, 4, 1, …
## $ prev         <dbl> 0.046728972, 0.056410256, 0.064039409, 0.068464730, 0.107…
## $ sample       <dbl> 107, 195, 406, 482, 530, 361, 795, 3361, 283, 210, 600, 1…
## $ posit        <dbl> 5, 11, 26, 33, 57, 94, 52, 77, 56, 4, 108, 14, 41, 0, 17,…
## $ type_prev    <dbl> 2, 2, 2, 1, 1, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, …
## $ stage        <dbl> 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 1, 2, 2, 2, 2, 2, …
## $ comorb       <dbl> 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, …
## $ type_morb    <dbl> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 1, …
## $ meth_iden    <dbl> 1, 1, 1, 1, 1, 1, 1, 3, 2, 1, 1, 1, 2, 1, 3, 3, 1, 1, 1, …
## $ type_samp    <dbl> 1, 1, 1, 1, 1, 1, 2, 3, 1, 1, 2, 3, 3, 1, 1, 1, 1, 1, 4, …
## $ setting      <dbl> 2, 2, 2, 2, 2, 2, 1, 2, 1, 2, 1, 2, 2, 4, 1, 1, 1, 1, 2, …
## $ type_setting <dbl> 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 2, 10, 1, 1, 1, 1, 7,…
## $ type_study   <dbl> 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 2, 2, 4, 2, 2, 4, 4, 3, …
## $ quality      <dbl> 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 4, 4, 4, 4, 4, …
# Multicollinearity Analysis

data_neumo1[,c("prev","year_pub","age","sample","stage","type_prev","comorb","type_morb", "meth_iden",
               "type_samp","quality")] %>% cor()
##                  prev    year_pub         age        sample        stage
## prev       1.00000000  0.10310418 -0.14669601  0.0905834527  0.097926321
## year_pub   0.10310418  1.00000000  0.27337796  0.1062859841  0.385707374
## age       -0.14669601  0.27337796  1.00000000 -0.1299246564  0.092943947
## sample     0.09058345  0.10628598 -0.12992466  1.0000000000  0.109530359
## stage      0.09792632  0.38570737  0.09294395  0.1095303594  1.000000000
## type_prev  0.23997288 -0.27648646 -0.19831317  0.1436559956 -0.045862759
## comorb    -0.12026995 -0.12263831  0.10634396  0.1525897404  0.075080440
## type_morb  0.11542366  0.19332116 -0.03889823 -0.1500740916 -0.003367930
## meth_iden -0.01252151  0.02793861  0.23635694 -0.0008169272  0.074169742
## type_samp  0.03547548  0.20328959  0.15208371 -0.0655212712 -0.000827407
## quality    0.02031117  0.10873628  0.13815777 -0.1099059245  0.110509045
##             type_prev      comorb   type_morb     meth_iden    type_samp
## prev       0.23997288 -0.12026995  0.11542366 -0.0125215147  0.035475481
## year_pub  -0.27648646 -0.12263831  0.19332116  0.0279386090  0.203289586
## age       -0.19831317  0.10634396 -0.03889823  0.2363569416  0.152083713
## sample     0.14365600  0.15258974 -0.15007409 -0.0008169272 -0.065521271
## stage     -0.04586276  0.07508044 -0.00336793  0.0741697419 -0.000827407
## type_prev  1.00000000  0.13322770 -0.11781620 -0.0121452734 -0.018265743
## comorb     0.13322770  1.00000000 -0.94364112  0.1123207495  0.206434119
## type_morb -0.11781620 -0.94364112  1.00000000 -0.0931527017 -0.208166261
## meth_iden -0.01214527  0.11232075 -0.09315270  1.0000000000  0.409617845
## type_samp -0.01826574  0.20643412 -0.20816626  0.4096178449  1.000000000
## quality   -0.21004191 -0.11163024  0.08786861 -0.0268484023  0.048143408
##               quality
## prev       0.02031117
## year_pub   0.10873628
## age        0.13815777
## sample    -0.10990592
## stage      0.11050905
## type_prev -0.21004191
## comorb    -0.11163024
## type_morb  0.08786861
## meth_iden -0.02684840
## type_samp  0.04814341
## quality    1.00000000
# Correlation graph (authors: Peterson y Carl 2020)

library(PerformanceAnalytics)

data_neumo1[,c("prev","year_pub","age","sample","stage","type_prev","comorb","type_morb", "meth_iden",
               "type_samp","quality")] %>% chart.Correlation()

warnings()

data_neumo1[,c("prev","age","comorb","type_morb", "meth_iden","type_samp")] %>% chart.Correlation()

warnings()

# Adjusted multiple metaregression model 

m.qual <- rma(yi = prev,
              sei = age,
              data = data_neumo1,
              method = "ML",
              mods = ~ comorb,
              test = "knha")
m.qual
## 
## Mixed-Effects Model (k = 114; tau^2 estimator: ML)
## 
## tau^2 (estimated amount of residual heterogeneity):     0 (SE = 0.1853)
## tau (square root of estimated tau^2 value):             0
## I^2 (residual heterogeneity / unaccounted variability): 0.00%
## H^2 (unaccounted variability / sampling variability):   1.00
## R^2 (amount of heterogeneity accounted for):            0.00%
## 
## Test for Residual Heterogeneity:
## QE(df = 112) = 0.5508, p-val = 1.0000
## 
## Test of Moderators (coefficient 2):
## F(df1 = 1, df2 = 112) = 0.5342, p-val = 0.4664
## 
## Model Results:
## 
##          estimate      se     tval   df    pval    ci.lb   ci.ub      
## intrcpt    0.1409  0.0385   3.6614  112  0.0004   0.0647  0.2172  *** 
## comorb    -0.0154  0.0211  -0.7309  112  0.4664  -0.0572  0.0264      
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
m.qual <- rma(yi = prev,
              sei = age,
              data = data_neumo1,
              method = "ML",
              mods = ~ comorb,
              test = "knha")
m.qual
## 
## Mixed-Effects Model (k = 114; tau^2 estimator: ML)
## 
## tau^2 (estimated amount of residual heterogeneity):     0 (SE = 0.1853)
## tau (square root of estimated tau^2 value):             0
## I^2 (residual heterogeneity / unaccounted variability): 0.00%
## H^2 (unaccounted variability / sampling variability):   1.00
## R^2 (amount of heterogeneity accounted for):            0.00%
## 
## Test for Residual Heterogeneity:
## QE(df = 112) = 0.5508, p-val = 1.0000
## 
## Test of Moderators (coefficient 2):
## F(df1 = 1, df2 = 112) = 0.5342, p-val = 0.4664
## 
## Model Results:
## 
##          estimate      se     tval   df    pval    ci.lb   ci.ub      
## intrcpt    0.1409  0.0385   3.6614  112  0.0004   0.0647  0.2172  *** 
## comorb    -0.0154  0.0211  -0.7309  112  0.4664  -0.0572  0.0264      
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
m.qual <- rma(yi = prev,
              sei = age,
              data = data_neumo1,
              method = "ML",
              mods = ~ meth_iden,
              test = "knha")
m.qual
## 
## Mixed-Effects Model (k = 114; tau^2 estimator: ML)
## 
## tau^2 (estimated amount of residual heterogeneity):     0 (SE = 0.1853)
## tau (square root of estimated tau^2 value):             0
## I^2 (residual heterogeneity / unaccounted variability): 0.00%
## H^2 (unaccounted variability / sampling variability):   1.00
## R^2 (amount of heterogeneity accounted for):            0.00%
## 
## Test for Residual Heterogeneity:
## QE(df = 112) = 0.5500, p-val = 1.0000
## 
## Test of Moderators (coefficient 2):
## F(df1 = 1, df2 = 112) = 0.6976, p-val = 0.4054
## 
## Model Results:
## 
##            estimate      se    tval   df    pval    ci.lb   ci.ub      
## intrcpt      0.0961  0.0226  4.2484  112  <.0001   0.0513  0.1410  *** 
## meth_iden    0.0151  0.0180  0.8352  112  0.4054  -0.0207  0.0508      
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
m.qual <- rma(yi = prev,
              sei = age,
              data = data_neumo1,
              method = "ML",
              mods = ~ type_samp,
              test = "knha")
m.qual
## 
## Mixed-Effects Model (k = 114; tau^2 estimator: ML)
## 
## tau^2 (estimated amount of residual heterogeneity):     0 (SE = 0.1853)
## tau (square root of estimated tau^2 value):             0
## I^2 (residual heterogeneity / unaccounted variability): 0.00%
## H^2 (unaccounted variability / sampling variability):   1.00
## R^2 (amount of heterogeneity accounted for):            0.00%
## 
## Test for Residual Heterogeneity:
## QE(df = 112) = 0.5081, p-val = 1.0000
## 
## Test of Moderators (coefficient 2):
## F(df1 = 1, df2 = 112) = 9.9941, p-val = 0.0020
## 
## Model Results:
## 
##            estimate      se    tval   df    pval   ci.lb   ci.ub      
## intrcpt      0.0720  0.0156  4.6201  112  <.0001  0.0411  0.1029  *** 
## type_samp    0.0260  0.0082  3.1613  112  0.0020  0.0097  0.0423   ** 
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
m.qual <- rma(yi = prev,
              sei = age,
              data = data_neumo1,
              method = "ML",
              mods = ~ quality,
              test = "knha")
m.qual
## 
## Mixed-Effects Model (k = 114; tau^2 estimator: ML)
## 
## tau^2 (estimated amount of residual heterogeneity):     0 (SE = 0.1853)
## tau (square root of estimated tau^2 value):             0
## I^2 (residual heterogeneity / unaccounted variability): 0.00%
## H^2 (unaccounted variability / sampling variability):   1.00
## R^2 (amount of heterogeneity accounted for):            0.00%
## 
## Test for Residual Heterogeneity:
## QE(df = 112) = 0.5091, p-val = 1.0000
## 
## Test of Moderators (coefficient 2):
## F(df1 = 1, df2 = 112) = 9.7507, p-val = 0.0023
## 
## Model Results:
## 
##          estimate      se     tval   df    pval    ci.lb   ci.ub     
## intrcpt   -0.0652  0.0579  -1.1272  112  0.2621  -0.1799  0.0494     
## quality    0.0545  0.0175   3.1226  112  0.0023   0.0199  0.0891  ** 
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
# fitted model with several predictors

m.qual.rep <- rma(yi = prev, 
                  sei = age, 
                  data = data_neumo1, 
                  method = "ML", 
                  mods = ~ stage + comorb + meth_iden + type_samp + quality, 
                  test = "knha")
m.qual.rep
## 
## Mixed-Effects Model (k = 114; tau^2 estimator: ML)
## 
## tau^2 (estimated amount of residual heterogeneity):     0 (SE = 0.1853)
## tau (square root of estimated tau^2 value):             0
## I^2 (residual heterogeneity / unaccounted variability): 0.00%
## H^2 (unaccounted variability / sampling variability):   1.00
## R^2 (amount of heterogeneity accounted for):            0.00%
## 
## Test for Residual Heterogeneity:
## QE(df = 108) = 0.4774, p-val = 1.0000
## 
## Test of Moderators (coefficients 2:6):
## F(df1 = 5, df2 = 108) = 3.4390, p-val = 0.0064
## 
## Model Results:
## 
##            estimate      se     tval   df    pval    ci.lb   ci.ub    
## intrcpt     -0.0546  0.0809  -0.6744  108  0.5015  -0.2150  0.1058    
## stage        0.0074  0.0161   0.4586  108  0.6474  -0.0245  0.0392    
## comorb      -0.0167  0.0209  -0.7997  108  0.4257  -0.0581  0.0247    
## meth_iden    0.0139  0.0178   0.7815  108  0.4362  -0.0214  0.0492    
## type_samp    0.0197  0.0089   2.2291  108  0.0279   0.0022  0.0373  * 
## quality      0.0419  0.0188   2.2255  108  0.0281   0.0046  0.0792  * 
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
m.qual.rep <- rma(yi = prev, 
                  sei = type_samp, 
                  data = data_neumo1, 
                  method = "ML", 
                  mods = ~ age + stage + comorb + meth_iden + quality, 
                  test = "knha")
m.qual.rep
## 
## Mixed-Effects Model (k = 114; tau^2 estimator: ML)
## 
## tau^2 (estimated amount of residual heterogeneity):     0 (SE = 0.1586)
## tau (square root of estimated tau^2 value):             0
## I^2 (residual heterogeneity / unaccounted variability): 0.00%
## H^2 (unaccounted variability / sampling variability):   1.00
## R^2 (amount of heterogeneity accounted for):            0.00%
## 
## Test for Residual Heterogeneity:
## QE(df = 108) = 0.6680, p-val = 1.0000
## 
## Test of Moderators (coefficients 2:6):
## F(df1 = 5, df2 = 108) = 0.5575, p-val = 0.7323
## 
## Model Results:
## 
##            estimate      se     tval   df    pval    ci.lb   ci.ub    
## intrcpt      0.0909  0.0781   1.1642  108  0.2469  -0.0639  0.2456    
## age         -0.0025  0.0072  -0.3442  108  0.7314  -0.0168  0.0118    
## stage        0.0219  0.0184   1.1917  108  0.2360  -0.0145  0.0583    
## comorb      -0.0201  0.0207  -0.9743  108  0.3321  -0.0611  0.0208    
## meth_iden   -0.0078  0.0176  -0.4425  108  0.6590  -0.0427  0.0271    
## quality      0.0064  0.0186   0.3472  108  0.7291  -0.0304  0.0433    
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
m.qual.rep <- rma(yi = prev, 
                  sei = meth_iden, 
                  data = data_neumo1, 
                  method = "ML", 
                  mods = ~ age +stage + comorb + type_samp + quality, 
                  test = "knha")
m.qual.rep
## 
## Mixed-Effects Model (k = 114; tau^2 estimator: ML)
## 
## tau^2 (estimated amount of residual heterogeneity):     0 (SE = 0.1461)
## tau (square root of estimated tau^2 value):             0
## I^2 (residual heterogeneity / unaccounted variability): 0.00%
## H^2 (unaccounted variability / sampling variability):   1.00
## R^2 (amount of heterogeneity accounted for):            0.00%
## 
## Test for Residual Heterogeneity:
## QE(df = 108) = 0.8017, p-val = 1.0000
## 
## Test of Moderators (coefficients 2:6):
## F(df1 = 5, df2 = 108) = 1.3883, p-val = 0.2344
## 
## Model Results:
## 
##            estimate      se     tval   df    pval    ci.lb   ci.ub    
## intrcpt      0.0439  0.0798   0.5495  108  0.5838  -0.1144  0.2021    
## age         -0.0125  0.0070  -1.7868  108  0.0768  -0.0264  0.0014  . 
## stage        0.0253  0.0199   1.2732  108  0.2057  -0.0141  0.0646    
## comorb      -0.0173  0.0222  -0.7778  108  0.4384  -0.0613  0.0267    
## type_samp    0.0036  0.0089   0.4025  108  0.6881  -0.0141  0.0213    
## quality      0.0199  0.0184   1.0839  108  0.2808  -0.0165  0.0563    
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
m.qual.rep <- rma(yi = prev, 
                  sei = comorb, 
                  data = data_neumo1, 
                  method = "ML", 
                  mods = ~ age +stage + meth_iden + type_samp + quality, 
                  test = "knha")
m.qual.rep
## 
## Mixed-Effects Model (k = 114; tau^2 estimator: ML)
## 
## tau^2 (estimated amount of residual heterogeneity):     0 (SE = 0.2685)
## tau (square root of estimated tau^2 value):             0
## I^2 (residual heterogeneity / unaccounted variability): 0.00%
## H^2 (unaccounted variability / sampling variability):   1.00
## R^2 (amount of heterogeneity accounted for):            0.00%
## 
## Test for Residual Heterogeneity:
## QE(df = 108) = 0.4974, p-val = 1.0000
## 
## Test of Moderators (coefficients 2:6):
## F(df1 = 5, df2 = 108) = 0.7320, p-val = 0.6010
## 
## Model Results:
## 
##            estimate      se     tval   df    pval    ci.lb   ci.ub    
## intrcpt      0.0468  0.0818   0.5715  108  0.5688  -0.1155  0.2090    
## age         -0.0125  0.0083  -1.4927  108  0.1384  -0.0290  0.0041    
## stage        0.0211  0.0228   0.9236  108  0.3578  -0.0241  0.0663    
## meth_iden    0.0119  0.0192   0.6189  108  0.5373  -0.0262  0.0499    
## type_samp    0.0073  0.0102   0.7124  108  0.4778  -0.0130  0.0276    
## quality      0.0091  0.0208   0.4394  108  0.6613  -0.0321  0.0503    
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
# Comparison by ANNOVA of the two adjusted models

rm(list=ls(all=TRUE)) #Deletes all memory content

library(readxl)
data_neumo1 <- read_excel("C:/Users/USER/Desktop/RSMA/data_neumo1.xlsx")
View(data_neumo1)

# Call of the packages

#install.packages(c("metafor", "meta"))
#install.packages("PerformanceAnalytics")
library(metafor)
library(meta)
library(tidyverse)
library(metadat)

data_neumo1[,c("prev","year_pub","age","sample","stage","type_prev","comorb","type_morb", "meth_iden",
               "type_samp","quality")] %>% cor()
##                  prev    year_pub         age        sample        stage
## prev       1.00000000  0.10310418 -0.14669601  0.0905834527  0.097926321
## year_pub   0.10310418  1.00000000  0.27337796  0.1062859841  0.385707374
## age       -0.14669601  0.27337796  1.00000000 -0.1299246564  0.092943947
## sample     0.09058345  0.10628598 -0.12992466  1.0000000000  0.109530359
## stage      0.09792632  0.38570737  0.09294395  0.1095303594  1.000000000
## type_prev  0.23997288 -0.27648646 -0.19831317  0.1436559956 -0.045862759
## comorb    -0.12026995 -0.12263831  0.10634396  0.1525897404  0.075080440
## type_morb  0.11542366  0.19332116 -0.03889823 -0.1500740916 -0.003367930
## meth_iden -0.01252151  0.02793861  0.23635694 -0.0008169272  0.074169742
## type_samp  0.03547548  0.20328959  0.15208371 -0.0655212712 -0.000827407
## quality    0.02031117  0.10873628  0.13815777 -0.1099059245  0.110509045
##             type_prev      comorb   type_morb     meth_iden    type_samp
## prev       0.23997288 -0.12026995  0.11542366 -0.0125215147  0.035475481
## year_pub  -0.27648646 -0.12263831  0.19332116  0.0279386090  0.203289586
## age       -0.19831317  0.10634396 -0.03889823  0.2363569416  0.152083713
## sample     0.14365600  0.15258974 -0.15007409 -0.0008169272 -0.065521271
## stage     -0.04586276  0.07508044 -0.00336793  0.0741697419 -0.000827407
## type_prev  1.00000000  0.13322770 -0.11781620 -0.0121452734 -0.018265743
## comorb     0.13322770  1.00000000 -0.94364112  0.1123207495  0.206434119
## type_morb -0.11781620 -0.94364112  1.00000000 -0.0931527017 -0.208166261
## meth_iden -0.01214527  0.11232075 -0.09315270  1.0000000000  0.409617845
## type_samp -0.01826574  0.20643412 -0.20816626  0.4096178449  1.000000000
## quality   -0.21004191 -0.11163024  0.08786861 -0.0268484023  0.048143408
##               quality
## prev       0.02031117
## year_pub   0.10873628
## age        0.13815777
## sample    -0.10990592
## stage      0.11050905
## type_prev -0.21004191
## comorb    -0.11163024
## type_morb  0.08786861
## meth_iden -0.02684840
## type_samp  0.04814341
## quality    1.00000000
# Correlation graph (authors: Peterson y Carl 2020)

library(PerformanceAnalytics)

data_neumo1[,c("prev","year_pub","age","sample","stage","type_prev","comorb","type_morb", "meth_iden",
               "type_samp","quality")] %>% chart.Correlation()

warnings()

data_neumo1[,c("prev","age","comorb","type_morb", "meth_iden","type_samp")] %>% chart.Correlation()

warnings()

m.qual <- rma(yi = prev,
              sei = age,
              data = data_neumo1,
              method = "ML",
              mods = ~ comorb,
              test = "knha")
m.qual
## 
## Mixed-Effects Model (k = 114; tau^2 estimator: ML)
## 
## tau^2 (estimated amount of residual heterogeneity):     0 (SE = 0.1853)
## tau (square root of estimated tau^2 value):             0
## I^2 (residual heterogeneity / unaccounted variability): 0.00%
## H^2 (unaccounted variability / sampling variability):   1.00
## R^2 (amount of heterogeneity accounted for):            0.00%
## 
## Test for Residual Heterogeneity:
## QE(df = 112) = 0.5508, p-val = 1.0000
## 
## Test of Moderators (coefficient 2):
## F(df1 = 1, df2 = 112) = 0.5342, p-val = 0.4664
## 
## Model Results:
## 
##          estimate      se     tval   df    pval    ci.lb   ci.ub      
## intrcpt    0.1409  0.0385   3.6614  112  0.0004   0.0647  0.2172  *** 
## comorb    -0.0154  0.0211  -0.7309  112  0.4664  -0.0572  0.0264      
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
m.qual.rep <- rma(yi = prev, 
                  sei = age, 
                  data = data_neumo1, 
                  method = "ML", 
                  mods = ~ year_pub + stage + comorb + type_prev + meth_iden + type_samp + quality, 
                  test = "knha")
m.qual.rep
## 
## Mixed-Effects Model (k = 114; tau^2 estimator: ML)
## 
## tau^2 (estimated amount of residual heterogeneity):     0 (SE = 0.1853)
## tau (square root of estimated tau^2 value):             0
## I^2 (residual heterogeneity / unaccounted variability): 0.00%
## H^2 (unaccounted variability / sampling variability):   1.00
## R^2 (amount of heterogeneity accounted for):            0.00%
## 
## Test for Residual Heterogeneity:
## QE(df = 106) = 0.4420, p-val = 1.0000
## 
## Test of Moderators (coefficients 2:8):
## F(df1 = 7, df2 = 106) = 3.8180, p-val = 0.0010
## 
## Model Results:
## 
##            estimate      se     tval   df    pval     ci.lb    ci.ub     
## intrcpt     -7.6557  3.4527  -2.2173  106  0.0287  -14.5010  -0.8104   * 
## year_pub     0.0037  0.0017   2.1886  106  0.0308    0.0004   0.0071   * 
## stage       -0.0050  0.0168  -0.2981  106  0.7662   -0.0383   0.0283     
## comorb      -0.0159  0.0205  -0.7761  106  0.4394   -0.0565   0.0247     
## type_prev    0.0357  0.0150   2.3863  106  0.0188    0.0060   0.0654   * 
## meth_iden    0.0264  0.0185   1.4251  106  0.1571   -0.0103   0.0631     
## type_samp    0.0136  0.0089   1.5213  106  0.1312   -0.0041   0.0312     
## quality      0.0490  0.0184   2.6575  106  0.0091    0.0125   0.0856  ** 
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
# Comparison by ANNOVA of the two adjusted models

anova(m.qual, m.qual.rep)
## 
##         df      AIC      BIC     AICc    logLik    LRT   pval     QE  tau^2 
## Full     9 358.9783 383.6041 360.7091 -170.4892               0.4420 0.0000 
## Reduced  3 347.0871 355.2957 347.3053 -170.5436 0.1088 1.0000 0.5508 0.0000 
##             R^2 
## Full            
## Reduced 0.0000%
##### Analysis of model interactions

# Add factor labels to 'comorbility'# 1 = SI # 2 = NO

levels(data_neumo1$comorb) = c("SI", "NO")

# Fit the meta-regression model

m.qual.rep.int <- rma(yi = prev, 
                      sei = age, 
                      data = data_neumo1, 
                      method = "REML", 
                      mods = ~ age * comorb, 
                      test = "knha")
m.qual.rep.int
## 
## Mixed-Effects Model (k = 114; tau^2 estimator: REML)
## 
## tau^2 (estimated amount of residual heterogeneity):     0 (SE = 0.1886)
## tau (square root of estimated tau^2 value):             0
## I^2 (residual heterogeneity / unaccounted variability): 0.00%
## H^2 (unaccounted variability / sampling variability):   1.00
## R^2 (amount of heterogeneity accounted for):            0.00%
## 
## Test for Residual Heterogeneity:
## QE(df = 110) = 0.5488, p-val = 1.0000
## 
## Test of Moderators (coefficients 2:4):
## F(df1 = 3, df2 = 110) = 0.3075, p-val = 0.8199
## 
## Model Results:
## 
##             estimate      se     tval   df    pval    ci.lb   ci.ub    
## intrcpt       0.1015  0.0948   1.0717  110  0.2862  -0.0862  0.2893    
## age           0.0342  0.0759   0.4508  110  0.6531  -0.1162  0.1845    
## comorb        0.0092  0.0509   0.1816  110  0.8563  -0.0916  0.1100    
## age:comorb   -0.0212  0.0403  -0.5263  110  0.5997  -0.1011  0.0587    
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
### Test de permutación

permutest(m.qual)
## Running 1000 iterations for an approximate permutation test.
## 
## Test of Moderators (coefficient 2):¹
## F(df1 = 1, df2 = 112) = 0.5342, p-val = 0.5850
## 
## Model Results:
## 
##          estimate      se     tval   df    pval¹    ci.lb   ci.ub    
## intrcpt    0.1409  0.0385   3.6614  112  0.2380    0.0647  0.2172    
## comorb    -0.0154  0.0211  -0.7309  112  0.5850   -0.0572  0.0264    
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## 1) p-values based on permutation testing
permutest(m.qual.rep)
## Running 1000 iterations for an approximate permutation test.
## 
## Test of Moderators (coefficients 2:8):¹
## F(df1 = 7, df2 = 106) = 3.8180, p-val = 0.0300
## 
## Model Results:
## 
##            estimate      se     tval   df    pval¹     ci.lb    ci.ub    
## intrcpt     -7.6557  3.4527  -2.2173  106  0.0870   -14.5010  -0.8104  . 
## year_pub     0.0037  0.0017   2.1886  106  0.0910     0.0004   0.0071  . 
## stage       -0.0050  0.0168  -0.2981  106  0.7830    -0.0383   0.0283    
## comorb      -0.0159  0.0205  -0.7761  106  0.5590    -0.0565   0.0247    
## type_prev    0.0357  0.0150   2.3863  106  0.0620     0.0060   0.0654  . 
## meth_iden    0.0264  0.0185   1.4251  106  0.2410    -0.0103   0.0631    
## type_samp    0.0136  0.0089   1.5213  106  0.2380    -0.0041   0.0312    
## quality      0.0490  0.0184   2.6575  106  0.0420     0.0125   0.0856  * 
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## 1) p-values based on permutation testing
# Add factor labels to 'method_identification'# 1 = Culture, # 2 = PCR, # 3 = Culture & PCR, # 4 = Others

levels(data_neumo1$meth_iden) = c("1", "2", "3","4")

# Fit the meta-regression model

m.qual.rep.int <- rma(yi = prev, 
                      sei = age, 
                      data = data_neumo1, 
                      method = "REML", 
                      mods = ~ age * meth_iden, 
                      test = "knha")
m.qual.rep.int
## 
## Mixed-Effects Model (k = 114; tau^2 estimator: REML)
## 
## tau^2 (estimated amount of residual heterogeneity):     0 (SE = 0.1885)
## tau (square root of estimated tau^2 value):             0
## I^2 (residual heterogeneity / unaccounted variability): 0.00%
## H^2 (unaccounted variability / sampling variability):   1.00
## R^2 (amount of heterogeneity accounted for):            0.00%
## 
## Test for Residual Heterogeneity:
## QE(df = 110) = 0.5461, p-val = 1.0000
## 
## Test of Moderators (coefficients 2:4):
## F(df1 = 3, df2 = 110) = 0.4919, p-val = 0.6887
## 
## Model Results:
## 
##                estimate      se     tval   df    pval    ci.lb   ci.ub    
## intrcpt          0.0745  0.0485   1.5352  110  0.1276  -0.0217  0.1707    
## age              0.0131  0.0329   0.3991  110  0.6906  -0.0521  0.0783    
## meth_iden        0.0389  0.0362   1.0743  110  0.2850  -0.0329  0.1107    
## age:meth_iden   -0.0151  0.0213  -0.7101  110  0.4792  -0.0574  0.0271    
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
### Test de permutación

permutest(m.qual)
## Running 1000 iterations for an approximate permutation test.
## 
## Test of Moderators (coefficient 2):¹
## F(df1 = 1, df2 = 112) = 0.5342, p-val = 0.5840
## 
## Model Results:
## 
##          estimate      se     tval   df    pval¹    ci.lb   ci.ub    
## intrcpt    0.1409  0.0385   3.6614  112  0.2400    0.0647  0.2172    
## comorb    -0.0154  0.0211  -0.7309  112  0.5840   -0.0572  0.0264    
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## 1) p-values based on permutation testing
permutest(m.qual.rep)
## Running 1000 iterations for an approximate permutation test.
## 
## Test of Moderators (coefficients 2:8):¹
## F(df1 = 7, df2 = 106) = 3.8180, p-val = 0.0310
## 
## Model Results:
## 
##            estimate      se     tval   df    pval¹     ci.lb    ci.ub    
## intrcpt     -7.6557  3.4527  -2.2173  106  0.0900   -14.5010  -0.8104  . 
## year_pub     0.0037  0.0017   2.1886  106  0.0880     0.0004   0.0071  . 
## stage       -0.0050  0.0168  -0.2981  106  0.8100    -0.0383   0.0283    
## comorb      -0.0159  0.0205  -0.7761  106  0.5650    -0.0565   0.0247    
## type_prev    0.0357  0.0150   2.3863  106  0.0580     0.0060   0.0654  . 
## meth_iden    0.0264  0.0185   1.4251  106  0.2650    -0.0103   0.0631    
## type_samp    0.0136  0.0089   1.5213  106  0.2390    -0.0041   0.0312    
## quality      0.0490  0.0184   2.6575  106  0.0360     0.0125   0.0856  * 
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## 1) p-values based on permutation testing
# Add factor labels to 'type_samp'# 1 = FNF, # 2 = FOF, # 3 = FNF+FOF, # 4 = FNF + Others, # 5 =FNF + Saliva, # 6 = Saliva, # 7 = FNF + Esputo

levels(data_neumo1$type_samp) = c("1", "2", "3","4","5","6","7")

# Fit the meta-regression model

m.qual.rep.int <- rma(yi = prev, 
                      sei = age, 
                      data = data_neumo1, 
                      method = "REML", 
                      mods = ~ age * type_samp, 
                      test = "knha")
m.qual.rep.int
## 
## Mixed-Effects Model (k = 114; tau^2 estimator: REML)
## 
## tau^2 (estimated amount of residual heterogeneity):     0 (SE = 0.1885)
## tau (square root of estimated tau^2 value):             0
## I^2 (residual heterogeneity / unaccounted variability): 0.00%
## H^2 (unaccounted variability / sampling variability):   1.00
## R^2 (amount of heterogeneity accounted for):            0.00%
## 
## Test for Residual Heterogeneity:
## QE(df = 110) = 0.4854, p-val = 1.0000
## 
## Test of Moderators (coefficients 2:4):
## F(df1 = 3, df2 = 110) = 5.1400, p-val = 0.0023
## 
## Model Results:
## 
##                estimate      se     tval   df    pval    ci.lb    ci.ub      
## intrcpt          0.0258  0.0339   0.7588  110  0.4496  -0.0415   0.0930      
## age              0.0339  0.0243   1.3963  110  0.1654  -0.0142   0.0821      
## type_samp        0.0580  0.0167   3.4729  110  0.0007   0.0249   0.0911  *** 
## age:type_samp   -0.0231  0.0107  -2.1601  110  0.0329  -0.0443  -0.0019    * 
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
### Test de permutación

permutest(m.qual)
## Running 1000 iterations for an approximate permutation test.
## 
## Test of Moderators (coefficient 2):¹
## F(df1 = 1, df2 = 112) = 0.5342, p-val = 0.5750
## 
## Model Results:
## 
##          estimate      se     tval   df    pval¹    ci.lb   ci.ub    
## intrcpt    0.1409  0.0385   3.6614  112  0.2480    0.0647  0.2172    
## comorb    -0.0154  0.0211  -0.7309  112  0.5750   -0.0572  0.0264    
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## 1) p-values based on permutation testing
permutest(m.qual.rep)
## Running 1000 iterations for an approximate permutation test.
## 
## Test of Moderators (coefficients 2:8):¹
## F(df1 = 7, df2 = 106) = 3.8180, p-val = 0.0350
## 
## Model Results:
## 
##            estimate      se     tval   df    pval¹     ci.lb    ci.ub    
## intrcpt     -7.6557  3.4527  -2.2173  106  0.0950   -14.5010  -0.8104  . 
## year_pub     0.0037  0.0017   2.1886  106  0.0980     0.0004   0.0071  . 
## stage       -0.0050  0.0168  -0.2981  106  0.8030    -0.0383   0.0283    
## comorb      -0.0159  0.0205  -0.7761  106  0.5500    -0.0565   0.0247    
## type_prev    0.0357  0.0150   2.3863  106  0.0630     0.0060   0.0654  . 
## meth_iden    0.0264  0.0185   1.4251  106  0.2450    -0.0103   0.0631    
## type_samp    0.0136  0.0089   1.5213  106  0.2370    -0.0041   0.0312    
## quality      0.0490  0.0184   2.6575  106  0.0420     0.0125   0.0856  * 
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## 1) p-values based on permutation testing
# Fit the meta-regression model to 'age' # 1 = All, # 2 = young, # 3 = middle, # 4 = older

levels(data_neumo1$age) = c("1", "2", "3","4")

# Fit the meta-regression model

m.qual.rep.int <- rma(yi = prev, 
                      sei = meth_iden, 
                      data = data_neumo1, 
                      method = "REML", 
                      mods = ~ meth_iden * type_samp, 
                      test = "knha")
m.qual.rep.int
## 
## Mixed-Effects Model (k = 114; tau^2 estimator: REML)
## 
## tau^2 (estimated amount of residual heterogeneity):     0 (SE = 0.1477)
## tau (square root of estimated tau^2 value):             0
## I^2 (residual heterogeneity / unaccounted variability): 0.00%
## H^2 (unaccounted variability / sampling variability):   1.00
## R^2 (amount of heterogeneity accounted for):            0.00%
## 
## Test for Residual Heterogeneity:
## QE(df = 110) = 0.8521, p-val = 1.0000
## 
## Test of Moderators (coefficients 2:4):
## F(df1 = 3, df2 = 110) = 0.0503, p-val = 0.9850
## 
## Model Results:
## 
##                      estimate      se     tval   df    pval    ci.lb   ci.ub    
## intrcpt                0.0891  0.0704   1.2653  110  0.2085  -0.0504  0.2286    
## meth_iden              0.0122  0.0656   0.1855  110  0.8532  -0.1179  0.1422    
## type_samp              0.0034  0.0250   0.1357  110  0.8923  -0.0461  0.0529    
## meth_iden:type_samp   -0.0012  0.0206  -0.0606  110  0.9518  -0.0421  0.0396    
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
### Permutation test

permutest(m.qual)
## Running 1000 iterations for an approximate permutation test.
## 
## Test of Moderators (coefficient 2):¹
## F(df1 = 1, df2 = 112) = 0.5342, p-val = 0.5800
## 
## Model Results:
## 
##          estimate      se     tval   df    pval¹    ci.lb   ci.ub    
## intrcpt    0.1409  0.0385   3.6614  112  0.2200    0.0647  0.2172    
## comorb    -0.0154  0.0211  -0.7309  112  0.5800   -0.0572  0.0264    
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## 1) p-values based on permutation testing
permutest(m.qual.rep)
## Running 1000 iterations for an approximate permutation test.
## 
## Test of Moderators (coefficients 2:8):¹
## F(df1 = 7, df2 = 106) = 3.8180, p-val = 0.0330
## 
## Model Results:
## 
##            estimate      se     tval   df    pval¹     ci.lb    ci.ub    
## intrcpt     -7.6557  3.4527  -2.2173  106  0.0740   -14.5010  -0.8104  . 
## year_pub     0.0037  0.0017   2.1886  106  0.0770     0.0004   0.0071  . 
## stage       -0.0050  0.0168  -0.2981  106  0.8030    -0.0383   0.0283    
## comorb      -0.0159  0.0205  -0.7761  106  0.5380    -0.0565   0.0247    
## type_prev    0.0357  0.0150   2.3863  106  0.0700     0.0060   0.0654  . 
## meth_iden    0.0264  0.0185   1.4251  106  0.2490    -0.0103   0.0631    
## type_samp    0.0136  0.0089   1.5213  106  0.2260    -0.0041   0.0312    
## quality      0.0490  0.0184   2.6575  106  0.0370     0.0125   0.0856  * 
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## 1) p-values based on permutation testing
## Multiple model inference

if (!require("devtools")) {
  install.packages("devtools")
}
devtools::install_github("MathiasHarrer/dmetar")

#install.packages("metafor")
#install.packages("ggplot2")
#install.packages("MuMIn")
library(metafor)
library(ggplot2)
library(MuMIn)
library(dmetar)

multimodel.inference(TE = "prev", 
                     seTE = "age",
                     data = data_neumo1,
                     predictors = c("year_pub", "stage", "comorb","type_prev", "meth_iden", 
                     "type_samp","quality"),
                     interaction = FALSE)
## 
  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |=                                                                     |   1%
  |                                                                            
  |=                                                                     |   2%
  |                                                                            
  |==                                                                    |   2%
  |                                                                            
  |==                                                                    |   3%
  |                                                                            
  |===                                                                   |   4%
  |                                                                            
  |===                                                                   |   5%
  |                                                                            
  |====                                                                  |   5%
  |                                                                            
  |====                                                                  |   6%
  |                                                                            
  |=====                                                                 |   7%
  |                                                                            
  |=====                                                                 |   8%
  |                                                                            
  |======                                                                |   9%
  |                                                                            
  |=======                                                               |   9%
  |                                                                            
  |=======                                                               |  10%
  |                                                                            
  |========                                                              |  11%
  |                                                                            
  |========                                                              |  12%
  |                                                                            
  |=========                                                             |  12%
  |                                                                            
  |=========                                                             |  13%
  |                                                                            
  |==========                                                            |  14%
  |                                                                            
  |==========                                                            |  15%
  |                                                                            
  |===========                                                           |  16%
  |                                                                            
  |============                                                          |  17%
  |                                                                            
  |=============                                                         |  18%
  |                                                                            
  |=============                                                         |  19%
  |                                                                            
  |==============                                                        |  20%
  |                                                                            
  |===============                                                       |  21%
  |                                                                            
  |===============                                                       |  22%
  |                                                                            
  |================                                                      |  23%
  |                                                                            
  |=================                                                     |  24%
  |                                                                            
  |==================                                                    |  25%
  |                                                                            
  |==================                                                    |  26%
  |                                                                            
  |===================                                                   |  27%
  |                                                                            
  |====================                                                  |  28%
  |                                                                            
  |====================                                                  |  29%
  |                                                                            
  |=====================                                                 |  30%
  |                                                                            
  |======================                                                |  31%
  |                                                                            
  |======================                                                |  32%
  |                                                                            
  |=======================                                               |  33%
  |                                                                            
  |========================                                              |  34%
  |                                                                            
  |=========================                                             |  35%
  |                                                                            
  |=========================                                             |  36%
  |                                                                            
  |==========================                                            |  37%
  |                                                                            
  |==========================                                            |  38%
  |                                                                            
  |===========================                                           |  38%
  |                                                                            
  |===========================                                           |  39%
  |                                                                            
  |============================                                          |  40%
  |                                                                            
  |============================                                          |  41%
  |                                                                            
  |=============================                                         |  41%
  |                                                                            
  |==============================                                        |  42%
  |                                                                            
  |==============================                                        |  43%
  |                                                                            
  |===============================                                       |  44%
  |                                                                            
  |===============================                                       |  45%
  |                                                                            
  |================================                                      |  45%
  |                                                                            
  |================================                                      |  46%
  |                                                                            
  |=================================                                     |  47%
  |                                                                            
  |=================================                                     |  48%
  |                                                                            
  |==================================                                    |  48%
  |                                                                            
  |==================================                                    |  49%
  |                                                                            
  |===================================                                   |  50%
  |                                                                            
  |====================================                                  |  51%
  |                                                                            
  |====================================                                  |  52%
  |                                                                            
  |=====================================                                 |  52%
  |                                                                            
  |=====================================                                 |  53%
  |                                                                            
  |======================================                                |  54%
  |                                                                            
  |======================================                                |  55%
  |                                                                            
  |=======================================                               |  55%
  |                                                                            
  |=======================================                               |  56%
  |                                                                            
  |========================================                              |  57%
  |                                                                            
  |========================================                              |  58%
  |                                                                            
  |=========================================                             |  59%
  |                                                                            
  |==========================================                            |  59%
  |                                                                            
  |==========================================                            |  60%
  |                                                                            
  |===========================================                           |  61%
  |                                                                            
  |===========================================                           |  62%
  |                                                                            
  |============================================                          |  62%
  |                                                                            
  |============================================                          |  63%
  |                                                                            
  |=============================================                         |  64%
  |                                                                            
  |=============================================                         |  65%
  |                                                                            
  |==============================================                        |  66%
  |                                                                            
  |===============================================                       |  67%
  |                                                                            
  |================================================                      |  68%
  |                                                                            
  |================================================                      |  69%
  |                                                                            
  |=================================================                     |  70%
  |                                                                            
  |==================================================                    |  71%
  |                                                                            
  |==================================================                    |  72%
  |                                                                            
  |===================================================                   |  73%
  |                                                                            
  |====================================================                  |  74%
  |                                                                            
  |====================================================                  |  75%
  |                                                                            
  |=====================================================                 |  76%
  |                                                                            
  |======================================================                |  77%
  |                                                                            
  |=======================================================               |  78%
  |                                                                            
  |=======================================================               |  79%
  |                                                                            
  |========================================================              |  80%
  |                                                                            
  |=========================================================             |  81%
  |                                                                            
  |=========================================================             |  82%
  |                                                                            
  |==========================================================            |  83%
  |                                                                            
  |===========================================================           |  84%
  |                                                                            
  |============================================================          |  85%
  |                                                                            
  |============================================================          |  86%
  |                                                                            
  |=============================================================         |  87%
  |                                                                            
  |=============================================================         |  88%
  |                                                                            
  |==============================================================        |  88%
  |                                                                            
  |==============================================================        |  89%
  |                                                                            
  |===============================================================       |  90%
  |                                                                            
  |===============================================================       |  91%
  |                                                                            
  |================================================================      |  91%
  |                                                                            
  |=================================================================     |  92%
  |                                                                            
  |=================================================================     |  93%
  |                                                                            
  |==================================================================    |  94%
  |                                                                            
  |==================================================================    |  95%
  |                                                                            
  |===================================================================   |  95%
  |                                                                            
  |===================================================================   |  96%
  |                                                                            
  |====================================================================  |  97%
  |                                                                            
  |====================================================================  |  98%
  |                                                                            
  |===================================================================== |  98%
  |                                                                            
  |===================================================================== |  99%
## 
## 
## Multimodel Inference: Final Results
## --------------------------
## 
##  - Number of fitted models: 128
##  - Full formula: ~ year_pub + stage + comorb + type_prev + meth_iden + type_samp + quality
##  - Coefficient significance test: knha
##  - Interactions modeled: no
##  - Evaluation criterion: AICc 
## 
## 
## Best 5 Models
## --------------------------
## 
## 
## Global model call: metafor::rma(yi = TE, sei = seTE, mods = form, data = glm.data, 
##     method = method, test = test)
## ---
## Model selection table 
##     (Int)      cmr mth_idn     qlt typ_prv typ_smp  yer_pub df   logLik  AICc
## 56      + -0.01838 0.01226 0.04699 0.02769 0.01863           7 -162.931 340.9
## 55      +          0.01313 0.05000 0.02649 0.01724           6 -164.083 341.0
## 119     +          0.02646 0.05122 0.03446 0.01240 0.003595  7 -162.957 341.0
## 40      + -0.01495 0.01416 0.04272         0.01981           6 -164.097 341.0
## 120     + -0.01718 0.02552 0.04840 0.03550 0.01376 0.003558  8 -161.815 341.0
##     delta weight
## 56   0.00  0.205
## 55   0.03  0.201
## 119  0.05  0.199
## 40   0.06  0.198
## 120  0.08  0.196
## Models ranked by AICc(x) 
## 
## 
## Multimodel Inference Coefficients
## --------------------------
## 
## 
##               Estimate  Std. Error   z value  Pr(>|z|)
## intrcpt   -3.223649014 4.091822547 0.7878272 0.4307978
## comorb    -0.009023724 0.017776636 0.5076171 0.6117219
## meth_iden  0.011384944 0.018147954 0.6273403 0.5304362
## quality    0.026939868 0.028619950 0.9412968 0.3465528
## type_prev  0.015347016 0.018793692 0.8166046 0.4141544
## type_samp  0.011587034 0.012462604 0.9297443 0.3525035
## year_pub   0.001593749 0.002030993 0.7847144 0.4326210
## stage      0.001697317 0.012543606 0.1353133 0.8923641
## 
## 
## Predictor Importance
## --------------------------
## 
## 
##       model importance
## 1 meth_iden  0.5844712
## 2 type_samp  0.5606120
## 3   quality  0.5388151
## 4 type_prev  0.5122403
## 5    comorb  0.5082750
## 6  year_pub  0.4930939
## 7     stage  0.4868201

VI. Analysis of publication bias

rm(list=ls(all=TRUE)) #Deletes all memory content

library(readxl)
data_neumo1 <- read_excel("C:/Users/USER/Desktop/RSMA/data_neumo1.xlsx")
View(data_neumo1)

# Call of the packages

#install.packages("metafor")
#install.packages("meta")
library(metafor)
library(meta)
library(ggplot2)
library(MuMIn)
library(dmetar)

# Effect size with transformation logit 

ies.logit=escalc(xi=posit, ni=sample, data=data_neumo1, measure="PLO")
pes.logit=rma(yi, vi, data=ies.logit)
pes=predict(pes.logit, transf=transf.ilogit)
print(pes) 
## 
##    pred  ci.lb  ci.ub  pi.lb  pi.ub 
##  0.0847 0.0716 0.1000 0.0142 0.3734
# Publication bias analysis

# funnel.meta(pes.logit) # revisar código

funnel(pes.logit, yaxis="sei")

# rank (pes.logit) #revisar el codigo

regtest(pes.logit, model="rma", predictor="sei") ## Bias estimator - Egger test.
## 
## Regression Test for Funnel Plot Asymmetry
## 
## Model:     mixed-effects meta-regression model
## Predictor: standard error
## 
## Test for Funnel Plot Asymmetry: z = -7.8078, p < .0001
## Limit Estimate (as sei -> 0):   b = -1.6211 (CI: -1.8604, -1.3818)

R session information

In the reproducible research framework, an important step is to save all the versions of the packages used to perform analysis. They must be provided when submitting a paper.

sessionInfo()

R version 4.2.2 (2022-10-31 ucrt) Platform: x86_64-w64-mingw32/x64 (64-bit) Running under: Windows 10 x64 (build 19044)

Matrix products: default

locale: [1] LC_COLLATE=English_United Kingdom.utf8 [2] LC_CTYPE=English_United Kingdom.utf8
[3] LC_MONETARY=English_United Kingdom.utf8 [4] LC_NUMERIC=C
[5] LC_TIME=English_United Kingdom.utf8

attached base packages: [1] stats graphics grDevices utils datasets methods base

other attached packages: [1] dmetar_0.0.9000 MuMIn_1.47.1
[3] devtools_2.4.5 usethis_2.1.6
[5] PerformanceAnalytics_2.0.4 xts_0.12.2
[7] zoo_1.8-11 forcats_0.5.2
[9] stringr_1.4.1 dplyr_1.0.10
[11] purrr_0.3.5 readr_2.1.3
[13] tidyr_1.2.1 tibble_3.1.8
[15] ggplot2_3.4.0 tidyverse_1.3.2
[17] meta_6.0-0 metafor_3.8-1
[19] metadat_1.2-0 Matrix_1.5-1
[21] readxl_1.4.1

loaded via a namespace (and not attached): [1] googledrive_2.0.0 minqa_1.2.5 colorspace_2.0-3
[4] class_7.3-20 modeltools_0.2-23 ellipsis_0.3.2
[7] mclust_6.0.0 fs_1.5.2 rstudioapi_0.14
[10] farver_2.1.1 remotes_2.4.2 flexmix_2.3-18
[13] ggrepel_0.9.2 fansi_1.0.3 lubridate_1.9.0
[16] mathjaxr_1.6-0 xml2_1.3.3 splines_4.2.2
[19] robustbase_0.95-0 cachem_1.0.6 knitr_1.41
[22] pkgload_1.3.2 jsonlite_1.8.3 nloptr_2.0.3
[25] broom_1.0.1 kernlab_0.9-31 cluster_2.1.4
[28] dbplyr_2.2.1 shiny_1.7.3 compiler_4.2.2
[31] httr_1.4.4 backports_1.4.1 assertthat_0.2.1
[34] fastmap_1.1.0 gargle_1.2.1 cli_3.4.1
[37] later_1.3.0 htmltools_0.5.3 prettyunits_1.1.1
[40] tools_4.2.2 gtable_0.3.1 glue_1.6.2
[43] Rcpp_1.0.9 cellranger_1.1.0 jquerylib_0.1.4
[46] vctrs_0.5.1 nlme_3.1-160 fpc_2.2-9
[49] xfun_0.35 ps_1.7.2 lme4_1.1-31
[52] rvest_1.0.3 timechange_0.1.1 mime_0.12
[55] miniUI_0.1.1.1 CompQuadForm_1.4.3 lifecycle_1.0.3
[58] googlesheets4_1.0.1 DEoptimR_1.0-11 MASS_7.3-58.1
[61] scales_1.2.1 hms_1.1.2 promises_1.2.0.1
[64] parallel_4.2.2 curl_4.3.3 yaml_2.3.6
[67] gridExtra_2.3 memoise_2.0.1 pbapply_1.6-0
[70] sass_0.4.4 stringi_1.7.8 highr_0.9
[73] poibin_1.5 boot_1.3-28 pkgbuild_1.4.0
[76] prabclus_2.3-2 rlang_1.0.6 pkgconfig_2.0.3
[79] evaluate_0.18 lattice_0.20-45 labeling_0.4.2
[82] htmlwidgets_1.5.4 tidyselect_1.2.0 processx_3.8.0
[85] magrittr_2.0.3 R6_2.5.1 generics_0.1.3
[88] profvis_0.3.7 DBI_1.1.3 pillar_1.8.1
[91] haven_2.5.1 withr_2.5.0 nnet_7.3-18
[94] abind_1.4-5 modelr_0.1.10 crayon_1.5.2
[97] utf8_1.2.2 tzdb_0.3.0 rmarkdown_2.18
[100] urlchecker_1.0.1 grid_4.2.2 netmeta_2.6-0
[103] callr_3.7.3 diptest_0.76-0 reprex_2.0.2
[106] digest_0.6.30 xtable_1.8-4 httpuv_1.6.6
[109] stats4_4.2.2 munsell_0.5.0 bslib_0.4.1
[112] magic_1.6-1 sessioninfo_1.2.2 quadprog_1.5-8