setwd("~/new/Bayes/Beyes/rjags/rjags1")
library('rjags')
## Loading required package: coda
## Linked to JAGS 3.4.0
## Loaded modules: basemod,bugs
df <- read.csv("gamma.csv")
class(df)
## [1] "data.frame"
plot(1:nrow(df),df$X,type="l")

gamma_code <- '
model
{
for (i in 1:N)
{
x[i] ~ dgamma(shape, rate)
}
shape ~ dgamma(0.0001, 0.0001)
rate ~ dgamma(0.0001, 0.0001)
}
'
writeLines(gamma_code,con="gamma.txt")
jags <- jags.model("gamma.txt",
data = list('x' = with(df, X),
'N' = nrow(df)),
n.chains = 4,
n.adapt = 1000)
## Compiling model graph
## Resolving undeclared variables
## Allocating nodes
## Graph Size: 504
##
## Initializing model
mcmc.samples <- coda.samples(jags,
c('shape', 'rate'),
5000,
thin = 5)
plot(mcmc.samples)

summary(mcmc.samples)
##
## Iterations = 1005:6000
## Thinning interval = 5
## Number of chains = 4
## Sample size per chain = 1000
##
## 1. Empirical mean and standard deviation for each variable,
## plus standard error of the mean:
##
## Mean SD Naive SE Time-series SE
## rate 0.00995 0.0006655 1.052e-05 1.824e-05
## shape 2.94497 0.1795265 2.839e-03 5.025e-03
##
## 2. Quantiles for each variable:
##
## 2.5% 25% 50% 75% 97.5%
## rate 0.008681 0.009489 0.009935 0.0104 0.0113
## shape 2.602190 2.824068 2.937613 3.0644 3.3007
# GLM values
# Conjugate values