Demographic information

med_data_recoded %>% summarise_at(vars(Age), list(mean = mean, sd = sd))
##      mean       sd
## 1 40.9951 14.87435
med_data_recoded %>% dplyr::count(Gender)
##   Gender   n
## 1 Female 102
## 2   Male 102
med_data_recoded %>% dplyr::count(Relstatus)
##   Relstatus  n
## 1  Divorced 12
## 2   Married 88
## 3     Never 38
## 4 Remarried  3
## 5 Separated  3
## 6    Single 56
## 7   Widowed  4
med_data_recoded %>% dplyr::count(Ethnicity)
##               Ethnicity   n
## 1    Asian/AsianBritish   6
## 2 Black...Black British   3
## 3        Mixed/Multiple   4
## 4                 Other   2
## 5                  PNTS   1
## 6                 White 188
med_data_recoded %>% dplyr::count(Education)
##   Education  n
## 1   A-level 53
## 2 Doctorate  2
## 3      GCSE 26
## 4  Postgrad 26
## 5 Undergrad 97
describeBy(med_data$Age, med_data_recoded$Gender, mat = TRUE)
##     item group1 vars   n     mean       sd median  trimmed     mad min max
## X11    1 Female    1 102 38.22549 13.28284     36 37.06098 14.8260  19  75
## X12    2   Male    1 102 43.76471 15.89830     40 43.25610 19.2738  19  82
##     range      skew   kurtosis       se
## X11    56 0.7048292 -0.2679939 1.315197
## X12    63 0.2531238 -0.9662789 1.574166

Internal consistency

med_data_recoded %>% dplyr::select(starts_with("TABS")) %>% 
                                   psych::alpha()
## 
## Reliability analysis   
## Call: psych::alpha(x = .)
## 
##   raw_alpha std.alpha G6(smc) average_r S/N    ase mean  sd median_r
##       0.96      0.97    0.98      0.49  28 0.0034  5.5 1.1     0.49
## 
##     95% confidence boundaries 
##          lower alpha upper
## Feldt     0.96  0.96  0.97
## Duhachek  0.96  0.96  0.97
## 
##  Reliability if an item is dropped:
##             raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## TABS_New_1       0.96      0.96    0.98      0.50  27   0.0035 0.017  0.49
## TABS_New_2       0.96      0.96    0.98      0.49  27   0.0036 0.017  0.49
## TABS_New_3       0.96      0.96    0.98      0.49  27   0.0036 0.017  0.49
## TABS_New_4       0.96      0.97    0.98      0.50  28   0.0035 0.017  0.50
## TABS_New_5       0.96      0.96    0.98      0.49  27   0.0036 0.017  0.49
## TABS_New_6       0.96      0.97    0.98      0.50  28   0.0035 0.017  0.50
## TABS_New_7       0.96      0.96    0.98      0.49  27   0.0035 0.018  0.49
## TABS_New_8       0.96      0.96    0.98      0.49  27   0.0036 0.018  0.49
## TABS_New_9       0.96      0.96    0.98      0.49  27   0.0036 0.017  0.49
## TABS_New_10      0.96      0.96    0.98      0.49  27   0.0036 0.017  0.49
## TABS_New_11      0.96      0.96    0.98      0.50  28   0.0035 0.018  0.50
## TABS_New_12      0.96      0.97    0.98      0.50  28   0.0035 0.017  0.50
## TABS_New_13      0.96      0.96    0.98      0.49  27   0.0036 0.016  0.49
## TABS_New_14      0.96      0.96    0.98      0.49  27   0.0036 0.017  0.49
## TABS_New_15      0.96      0.96    0.98      0.49  27   0.0035 0.017  0.49
## TABS_New_16      0.96      0.96    0.98      0.49  27   0.0035 0.017  0.49
## TABS_New_17      0.96      0.96    0.98      0.49  27   0.0036 0.017  0.49
## TABS_New_18      0.96      0.97    0.98      0.50  28   0.0035 0.017  0.50
## TABS_New_19      0.96      0.96    0.98      0.49  27   0.0035 0.017  0.50
## TABS_New_20      0.96      0.96    0.98      0.49  27   0.0035 0.018  0.49
## TABS_New_21      0.96      0.97    0.98      0.50  28   0.0035 0.017  0.50
## TABS_New_22      0.96      0.96    0.98      0.49  27   0.0035 0.017  0.49
## TABS_New_23      0.97      0.97    0.98      0.51  29   0.0034 0.015  0.51
## TABS_New_24      0.96      0.96    0.98      0.49  27   0.0036 0.018  0.49
## TABS_New_25      0.96      0.97    0.98      0.50  28   0.0035 0.018  0.50
## TABS_New_26      0.96      0.96    0.98      0.49  27   0.0035 0.017  0.49
## TABS_New_27      0.96      0.97    0.98      0.50  29   0.0034 0.016  0.50
## TABS_New_28      0.96      0.97    0.98      0.50  28   0.0035 0.017  0.50
## TABS_New_29      0.96      0.97    0.98      0.50  28   0.0035 0.018  0.50
## 
##  Item statistics 
##               n raw.r std.r r.cor r.drop mean   sd
## TABS_New_1  204  0.70  0.71  0.70   0.68  5.7 1.62
## TABS_New_2  204  0.81  0.81  0.81   0.80  5.4 1.59
## TABS_New_3  204  0.81  0.81  0.81   0.79  5.6 1.74
## TABS_New_4  204  0.69  0.68  0.67   0.66  5.7 1.70
## TABS_New_5  204  0.78  0.78  0.78   0.76  5.9 1.41
## TABS_New_6  204  0.62  0.63  0.61   0.59  5.9 1.60
## TABS_New_7  204  0.71  0.72  0.71   0.69  5.7 1.57
## TABS_New_8  204  0.75  0.75  0.74   0.73  5.5 1.68
## TABS_New_9  204  0.85  0.85  0.85   0.84  5.8 1.52
## TABS_New_10 204  0.83  0.83  0.83   0.81  5.4 1.74
## TABS_New_11 204  0.69  0.69  0.68   0.66  5.9 1.64
## TABS_New_12 204  0.64  0.65  0.64   0.61  6.0 1.49
## TABS_New_13 204  0.86  0.86  0.86   0.85  5.9 1.46
## TABS_New_14 204  0.79  0.79  0.79   0.77  5.8 1.64
## TABS_New_15 204  0.74  0.73  0.72   0.72  5.3 1.71
## TABS_New_16 204  0.74  0.72  0.72   0.71  4.5 1.81
## TABS_New_17 204  0.76  0.74  0.74   0.74  4.6 1.86
## TABS_New_18 204  0.71  0.69  0.68   0.68  4.4 1.86
## TABS_New_19 204  0.74  0.72  0.72   0.71  4.4 1.95
## TABS_New_20 204  0.76  0.77  0.77   0.75  5.8 1.33
## TABS_New_21 204  0.67  0.65  0.64   0.63  4.8 1.72
## TABS_New_22 204  0.75  0.73  0.73   0.73  4.3 1.93
## TABS_New_23 204  0.44  0.44  0.41   0.40  4.3 1.47
## TABS_New_24 204  0.77  0.76  0.76   0.75  5.5 1.56
## TABS_New_25 204  0.62  0.65  0.64   0.60  6.3 1.14
## TABS_New_26 204  0.72  0.75  0.75   0.71  6.4 1.03
## TABS_New_27 204  0.51  0.54  0.51   0.48  6.0 1.27
## TABS_New_28 204  0.61  0.64  0.63   0.59  6.4 0.86
## TABS_New_29 204  0.62  0.65  0.64   0.60  6.4 1.00
## 
## Non missing response frequency for each item
##                1    2    3    4    5    6    7 miss
## TABS_New_1  0.04 0.02 0.05 0.06 0.09 0.33 0.40    0
## TABS_New_2  0.03 0.03 0.07 0.09 0.22 0.25 0.30    0
## TABS_New_3  0.05 0.04 0.05 0.08 0.07 0.27 0.43    0
## TABS_New_4  0.05 0.03 0.04 0.07 0.07 0.30 0.44    0
## TABS_New_5  0.04 0.01 0.02 0.03 0.14 0.37 0.39    0
## TABS_New_6  0.05 0.01 0.03 0.06 0.08 0.31 0.46    0
## TABS_New_7  0.04 0.01 0.04 0.09 0.09 0.33 0.39    0
## TABS_New_8  0.04 0.03 0.08 0.09 0.11 0.31 0.33    0
## TABS_New_9  0.03 0.02 0.03 0.06 0.09 0.32 0.43    0
## TABS_New_10 0.05 0.04 0.08 0.12 0.09 0.31 0.31    0
## TABS_New_11 0.04 0.02 0.05 0.06 0.06 0.27 0.50    0
## TABS_New_12 0.03 0.02 0.04 0.04 0.07 0.28 0.50    0
## TABS_New_13 0.03 0.01 0.04 0.07 0.07 0.36 0.42    0
## TABS_New_14 0.04 0.03 0.03 0.09 0.08 0.27 0.46    0
## TABS_New_15 0.02 0.05 0.09 0.15 0.07 0.26 0.34    0
## TABS_New_16 0.10 0.06 0.09 0.23 0.18 0.21 0.14    0
## TABS_New_17 0.09 0.07 0.13 0.15 0.15 0.27 0.14    0
## TABS_New_18 0.08 0.09 0.18 0.21 0.11 0.17 0.17    0
## TABS_New_19 0.10 0.11 0.13 0.16 0.12 0.21 0.17    0
## TABS_New_20 0.02 0.01 0.01 0.14 0.12 0.34 0.35    0
## TABS_New_21 0.04 0.09 0.10 0.13 0.24 0.23 0.18    0
## TABS_New_22 0.10 0.11 0.13 0.24 0.09 0.17 0.17    0
## TABS_New_23 0.05 0.07 0.09 0.44 0.11 0.18 0.06    0
## TABS_New_24 0.02 0.05 0.04 0.10 0.19 0.24 0.36    0
## TABS_New_25 0.01 0.01 0.00 0.03 0.07 0.32 0.54    0
## TABS_New_26 0.00 0.01 0.02 0.02 0.06 0.27 0.61    0
## TABS_New_27 0.01 0.01 0.02 0.08 0.09 0.31 0.48    0
## TABS_New_28 0.00 0.00 0.01 0.02 0.06 0.29 0.60    0
## TABS_New_29 0.01 0.00 0.00 0.05 0.03 0.26 0.63    0
med_data_recoded %>% dplyr::select(starts_with("TMFS")) %>% 
                                   psych::alpha()
## 
## Reliability analysis   
## Call: psych::alpha(x = .)
## 
##   raw_alpha std.alpha G6(smc) average_r S/N   ase mean   sd median_r
##       0.86      0.87    0.86      0.52 6.6 0.015  5.5 0.65     0.54
## 
##     95% confidence boundaries 
##          lower alpha upper
## Feldt     0.83  0.86  0.89
## Duhachek  0.84  0.86  0.89
## 
##  Reliability if an item is dropped:
##        raw_alpha std.alpha G6(smc) average_r S/N alpha se  var.r med.r
## TMFS_1      0.83      0.83    0.81      0.50 4.9    0.018 0.0081  0.49
## TMFS_2      0.85      0.86    0.84      0.55 6.0    0.016 0.0065  0.57
## TMFS_3      0.84      0.85    0.83      0.53 5.6    0.017 0.0093  0.55
## TMFS_4      0.84      0.85    0.83      0.53 5.7    0.017 0.0080  0.55
## TMFS_5      0.82      0.83    0.81      0.49 4.8    0.020 0.0074  0.48
## TMFS_6      0.85      0.86    0.84      0.55 6.1    0.016 0.0067  0.56
## 
##  Item statistics 
##          n raw.r std.r r.cor r.drop mean   sd
## TMFS_1 204  0.82  0.83  0.81   0.74  5.6 0.73
## TMFS_2 204  0.73  0.73  0.65   0.60  5.6 0.86
## TMFS_3 204  0.78  0.77  0.70   0.65  5.2 0.96
## TMFS_4 204  0.78  0.76  0.69   0.65  5.1 0.96
## TMFS_5 204  0.85  0.85  0.83   0.77  5.4 0.81
## TMFS_6 204  0.70  0.72  0.64   0.59  5.8 0.69
## 
## Non missing response frequency for each item
##        1 2    3    4    5    6    7 miss
## TMFS_1 0 0 0.00 0.07 0.31 0.54 0.08    0
## TMFS_2 0 0 0.00 0.13 0.23 0.52 0.13    0
## TMFS_3 0 0 0.02 0.18 0.34 0.41 0.04    0
## TMFS_4 0 0 0.02 0.26 0.31 0.34 0.06    0
## TMFS_5 0 0 0.02 0.10 0.36 0.48 0.04    0
## TMFS_6 0 0 0.00 0.02 0.25 0.60 0.12    0
med_data_recoded %>% dplyr::select(starts_with("GES")) %>% 
                                   psych::alpha()
## 
## Reliability analysis   
## Call: psych::alpha(x = .)
## 
##   raw_alpha std.alpha G6(smc) average_r S/N    ase mean   sd median_r
##        0.9       0.9    0.92      0.26 8.7 0.0098  3.1 0.52     0.27
## 
##     95% confidence boundaries 
##          lower alpha upper
## Feldt     0.88   0.9  0.92
## Duhachek  0.88   0.9  0.92
## 
##  Reliability if an item is dropped:
##        raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## GES_1       0.89      0.89    0.91      0.25 8.1   0.0105 0.021  0.26
## GES_2       0.89      0.89    0.92      0.26 8.3   0.0102 0.022  0.27
## GES_3       0.90      0.89    0.91      0.26 8.3   0.0102 0.021  0.27
## GES_4       0.90      0.90    0.92      0.27 8.9   0.0098 0.021  0.28
## GES_5       0.89      0.89    0.91      0.25 8.1   0.0105 0.021  0.26
## GES_6       0.90      0.89    0.92      0.26 8.5   0.0100 0.021  0.28
## GES_7       0.89      0.89    0.91      0.25 8.2   0.0104 0.022  0.26
## GES_8       0.89      0.89    0.91      0.26 8.2   0.0103 0.022  0.26
## GES_9       0.90      0.90    0.92      0.27 9.0   0.0098 0.020  0.28
## GES_10      0.89      0.89    0.91      0.26 8.2   0.0104 0.021  0.26
## GES_11      0.90      0.90    0.92      0.26 8.6   0.0099 0.022  0.28
## GES_12      0.90      0.90    0.92      0.26 8.6   0.0098 0.022  0.28
## GES_13      0.89      0.89    0.91      0.25 8.0   0.0106 0.020  0.26
## GES_14      0.89      0.89    0.91      0.25 8.2   0.0104 0.021  0.26
## GES_15      0.90      0.90    0.92      0.27 8.9   0.0097 0.020  0.28
## GES_16      0.90      0.90    0.92      0.27 8.7   0.0098 0.021  0.28
## GES_17      0.90      0.90    0.92      0.26 8.6   0.0100 0.021  0.27
## GES_18      0.89      0.89    0.91      0.25 8.1   0.0105 0.021  0.26
## GES_19      0.89      0.89    0.91      0.25 8.0   0.0108 0.020  0.26
## GES_20      0.89      0.89    0.91      0.26 8.3   0.0103 0.021  0.26
## GES_21      0.89      0.89    0.91      0.25 8.1   0.0104 0.021  0.26
## GES_22      0.89      0.89    0.91      0.25 8.1   0.0105 0.021  0.26
## GES_23      0.89      0.89    0.91      0.25 8.2   0.0104 0.021  0.26
## GES_24      0.89      0.89    0.92      0.26 8.3   0.0102 0.022  0.27
## GES_25      0.90      0.90    0.92      0.27 9.1   0.0095 0.019  0.28
## 
##  Item statistics 
##          n raw.r std.r r.cor r.drop mean   sd
## GES_1  204  0.68  0.68  0.67   0.64  3.2 0.96
## GES_2  204  0.57  0.58  0.56   0.52  3.6 0.95
## GES_3  204  0.56  0.56  0.54   0.50  3.4 0.97
## GES_4  204  0.30  0.31  0.27   0.24  2.8 0.84
## GES_5  204  0.67  0.67  0.66   0.63  3.2 0.89
## GES_6  204  0.48  0.47  0.44   0.41  2.9 1.08
## GES_7  204  0.62  0.62  0.60   0.57  2.4 1.06
## GES_8  204  0.60  0.60  0.58   0.55  3.4 0.96
## GES_9  204  0.23  0.26  0.21   0.18  2.0 0.68
## GES_10 204  0.62  0.61  0.60   0.57  2.7 0.96
## GES_11 204  0.43  0.42  0.38   0.36  3.2 1.07
## GES_12 204  0.43  0.42  0.38   0.36  2.8 1.10
## GES_13 204  0.70  0.71  0.70   0.66  3.6 0.97
## GES_14 204  0.65  0.64  0.64   0.60  3.4 1.02
## GES_15 204  0.31  0.32  0.28   0.25  2.1 0.89
## GES_16 204  0.35  0.37  0.33   0.29  3.2 0.89
## GES_17 204  0.43  0.45  0.42   0.38  4.0 0.70
## GES_18 204  0.68  0.69  0.68   0.64  2.9 1.01
## GES_19 204  0.75  0.74  0.74   0.70  2.7 1.13
## GES_20 204  0.61  0.60  0.59   0.55  3.3 1.06
## GES_21 204  0.66  0.66  0.65   0.61  3.3 0.94
## GES_22 204  0.66  0.66  0.66   0.61  3.4 0.96
## GES_23 204  0.63  0.63  0.62   0.59  3.5 0.95
## GES_24 204  0.57  0.57  0.54   0.52  3.1 1.07
## GES_25 204  0.21  0.21  0.15   0.13  2.5 0.99
## 
## Non missing response frequency for each item
##           1    2    3    4    5 miss
## GES_1  0.04 0.21 0.32 0.39 0.04    0
## GES_2  0.03 0.13 0.20 0.53 0.11    0
## GES_3  0.03 0.15 0.32 0.39 0.11    0
## GES_4  0.04 0.35 0.42 0.17 0.01    0
## GES_5  0.01 0.25 0.32 0.39 0.03    0
## GES_6  0.10 0.26 0.29 0.29 0.05    0
## GES_7  0.19 0.42 0.18 0.19 0.02    0
## GES_8  0.04 0.17 0.21 0.53 0.05    0
## GES_9  0.22 0.63 0.13 0.01 0.00    0
## GES_10 0.10 0.35 0.31 0.23 0.01    0
## GES_11 0.04 0.26 0.25 0.35 0.10    0
## GES_12 0.08 0.42 0.20 0.24 0.06    0
## GES_13 0.03 0.14 0.17 0.54 0.12    0
## GES_14 0.04 0.18 0.14 0.56 0.08    0
## GES_15 0.26 0.50 0.17 0.06 0.01    0
## GES_16 0.01 0.22 0.33 0.40 0.04    0
## GES_17 0.01 0.02 0.11 0.65 0.22    0
## GES_18 0.06 0.34 0.28 0.27 0.04    0
## GES_19 0.14 0.34 0.25 0.22 0.06    0
## GES_20 0.05 0.18 0.27 0.38 0.11    0
## GES_21 0.03 0.19 0.30 0.42 0.06    0
## GES_22 0.03 0.14 0.28 0.46 0.09    0
## GES_23 0.02 0.14 0.28 0.45 0.11    0
## GES_24 0.07 0.24 0.25 0.38 0.06    0
## GES_25 0.17 0.34 0.31 0.17 0.01    0
med_data_recoded %>% dplyr::select("TABS_New_15", 
                                   "TABS_New_16", 
                                   "TABS_New_17", 
                                   "TABS_New_18", 
                                   "TABS_New_19", 
                                   "TABS_New_20", 
                                   "TABS_New_21", 
                                   "TABS_New_22", 
                                   "TABS_New_23", 
                                   "TABS_New_24") %>% 
                                    psych::alpha()
## 
## Reliability analysis   
## Call: psych::alpha(x = .)
## 
##   raw_alpha std.alpha G6(smc) average_r S/N    ase mean  sd median_r
##       0.93      0.93    0.94      0.58  14 0.0065  4.8 1.4     0.62
## 
##     95% confidence boundaries 
##          lower alpha upper
## Feldt     0.92  0.93  0.95
## Duhachek  0.92  0.93  0.95
## 
##  Reliability if an item is dropped:
##             raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## TABS_New_15      0.93      0.93    0.93      0.58  12   0.0070 0.023  0.60
## TABS_New_16      0.92      0.92    0.92      0.56  11   0.0076 0.021  0.60
## TABS_New_17      0.92      0.92    0.93      0.56  12   0.0075 0.023  0.61
## TABS_New_18      0.92      0.92    0.93      0.57  12   0.0074 0.022  0.60
## TABS_New_19      0.92      0.92    0.92      0.55  11   0.0079 0.020  0.60
## TABS_New_20      0.93      0.93    0.93      0.60  13   0.0066 0.021  0.64
## TABS_New_21      0.93      0.92    0.93      0.57  12   0.0072 0.023  0.62
## TABS_New_22      0.92      0.92    0.92      0.56  11   0.0076 0.022  0.60
## TABS_New_23      0.94      0.94    0.94      0.63  16   0.0060 0.009  0.64
## TABS_New_24      0.93      0.92    0.93      0.57  12   0.0072 0.024  0.62
## 
##  Item statistics 
##               n raw.r std.r r.cor r.drop mean  sd
## TABS_New_15 204  0.77  0.77  0.74   0.72  5.3 1.7
## TABS_New_16 204  0.86  0.86  0.85   0.82  4.5 1.8
## TABS_New_17 204  0.85  0.85  0.84   0.81  4.6 1.9
## TABS_New_18 204  0.84  0.83  0.81   0.79  4.4 1.9
## TABS_New_19 204  0.89  0.89  0.89   0.86  4.4 1.9
## TABS_New_20 204  0.66  0.67  0.63   0.60  5.8 1.3
## TABS_New_21 204  0.80  0.79  0.77   0.75  4.8 1.7
## TABS_New_22 204  0.87  0.86  0.85   0.82  4.3 1.9
## TABS_New_23 204  0.51  0.52  0.43   0.42  4.3 1.5
## TABS_New_24 204  0.81  0.82  0.80   0.77  5.5 1.6
## 
## Non missing response frequency for each item
##                1    2    3    4    5    6    7 miss
## TABS_New_15 0.02 0.05 0.09 0.15 0.07 0.26 0.34    0
## TABS_New_16 0.10 0.06 0.09 0.23 0.18 0.21 0.14    0
## TABS_New_17 0.09 0.07 0.13 0.15 0.15 0.27 0.14    0
## TABS_New_18 0.08 0.09 0.18 0.21 0.11 0.17 0.17    0
## TABS_New_19 0.10 0.11 0.13 0.16 0.12 0.21 0.17    0
## TABS_New_20 0.02 0.01 0.01 0.14 0.12 0.34 0.35    0
## TABS_New_21 0.04 0.09 0.10 0.13 0.24 0.23 0.18    0
## TABS_New_22 0.10 0.11 0.13 0.24 0.09 0.17 0.17    0
## TABS_New_23 0.05 0.07 0.09 0.44 0.11 0.18 0.06    0
## TABS_New_24 0.02 0.05 0.04 0.10 0.19 0.24 0.36    0

Preliminary analyses

# Descriptives
med_data_total %>% summarise_at(vars(TABS_Total, GES_Total, TMFS_Total, GS_subscale_Total), list(mean = mean, sd = sd, range = range))
##   TABS_Total_mean GES_Total_mean TMFS_Total_mean GS_subscale_Total_mean
## 1         159.451       76.63235        32.89706               47.83333
## 2         159.451       76.63235        32.89706               47.83333
##   TABS_Total_sd GES_Total_sd TMFS_Total_sd GS_subscale_Total_sd
## 1      32.34044     13.10763      3.889381              13.6772
## 2      32.34044     13.10763      3.889381              13.6772
##   TABS_Total_range GES_Total_range TMFS_Total_range GS_subscale_Total_range
## 1               52              39               20                      14
## 2              203             114               42                      70
# Correlation

corr <- corr.test(as.matrix(med_numeric_subset))
print(corr, short=FALSE)
## Call:corr.test(x = as.matrix(med_numeric_subset))
## Correlation matrix 
##                   TABS_Total GES_Total TMFS_Total GS_subscale_Total
## TABS_Total              1.00     -0.68      -0.34              0.90
## GES_Total              -0.68      1.00       0.30             -0.73
## TMFS_Total             -0.34      0.30       1.00             -0.34
## GS_subscale_Total       0.90     -0.73      -0.34              1.00
## Sample Size 
## [1] 204
## Probability values (Entries above the diagonal are adjusted for multiple tests.) 
##                   TABS_Total GES_Total TMFS_Total GS_subscale_Total
## TABS_Total                 0         0          0                 0
## GES_Total                  0         0          0                 0
## TMFS_Total                 0         0          0                 0
## GS_subscale_Total          0         0          0                 0
## 
##  Confidence intervals based upon normal theory.  To get bootstrapped values, try cor.ci
##             raw.lower raw.r raw.upper raw.p lower.adj upper.adj
## TABS_-GES_T     -0.74 -0.68     -0.59     0     -0.76     -0.57
## TABS_-TMFS_     -0.46 -0.34     -0.21     0     -0.47     -0.19
## TABS_-GS__T      0.86  0.90      0.92     0      0.85      0.93
## GES_T-TMFS_      0.17  0.30      0.42     0      0.17      0.42
## GES_T-GS__T     -0.79 -0.73     -0.66     0     -0.80     -0.63
## TMFS_-GS__T     -0.46 -0.34     -0.22     0     -0.48     -0.19
# Assumptions
mvn(med_numeric_subset)
## $multivariateNormality
##            Test      HZ      p value MVN
## 1 Henze-Zirkler 1.58661 8.338628e-09  NO
## 
## $univariateNormality
##               Test          Variable Statistic   p value Normality
## 1 Anderson-Darling    TABS_Total        3.9693  <0.001      NO    
## 2 Anderson-Darling     GES_Total        0.4533  0.2685      YES   
## 3 Anderson-Darling    TMFS_Total        1.9545   1e-04      NO    
## 4 Anderson-Darling GS_subscale_Total    1.4903   7e-04      NO    
## 
## $Descriptives
##                     n      Mean   Std.Dev Median Min Max   25th   75th
## TABS_Total        204 159.45098 32.340439    165  52 203 143.00 184.00
## GES_Total         204  76.63235 13.107631     77  39 114  67.75  86.25
## TMFS_Total        204  32.89706  3.889381     33  20  42  30.00  36.00
## GS_subscale_Total 204  47.83333 13.677196     50  14  70  39.75  58.25
##                         Skew    Kurtosis
## TABS_Total        -1.1037014  1.12280572
## GES_Total         -0.1976592 -0.13028275
## TMFS_Total        -0.4016190 -0.05196759
## GS_subscale_Total -0.4391299 -0.55614049
boxplot(med_data_total$TABS)

boxplot(med_data_total$GS_subscale_Total)

# Descriptives by gender
med_data_total %>% group_by(Gender) %>% summarise_at(vars(TABS_Total, GES_Total, TMFS_Total, GS_subscale_Total), list(mean = mean, sd = sd))
## # A tibble: 2 × 9
##   Gender TABS_Total_mean GES_T…¹ TMFS_…² GS_su…³ TABS_…⁴ GES_T…⁵ TMFS_…⁶ GS_su…⁷
##   <fct>            <dbl>   <dbl>   <dbl>   <dbl>   <dbl>   <dbl>   <dbl>   <dbl>
## 1 Female            167.    75.4    32.4    50      26.1    12.6    4.12    12.7
## 2 Male              152.    77.9    33.4    45.7    36.1    13.6    3.59    14.3
## # … with abbreviated variable names ¹​GES_Total_mean, ²​TMFS_Total_mean,
## #   ³​GS_subscale_Total_mean, ⁴​TABS_Total_sd, ⁵​GES_Total_sd, ⁶​TMFS_Total_sd,
## #   ⁷​GS_subscale_Total_sd

Differences by gender

In support of our first hypothesis, independent sample t-tests revealed significantly more positive attitudes toward TGD people in women, relative to men, t(202) = -3.46, p <.001; Men: M = 151.81, SD = 36.10; Women: M = 167.09, SD = 26.10; Cohen’s d = -.49, 95% CI [-.77, -.21]. Women also showed significantly more positive gender and sex beliefs relative to men, t(202) = -2.29, p = .023; Men: M = 45.67, SD = 14.30; Women: M = 50.0, SD = 12.70; Cohen’s d = -.32, 95% CI [-.60, -.05]. There was no significant differences in terms of adhering to traditional gender norms, t(202) = 1.87, p = .064; Men: M = 33.40, SD = 3.59; Women: M = 32.40, SD = 4.12; Cohen’s d = .26, 95% CI [-.01, .54], or having gender essentialist views between men and women, t(202) = 1.40, p = .164; Men: M = 77.91, SD = 13.6; Women: M = 75.35, SD = 12.6; Cohen’s d = .20, 95% CI [-.08, .47].

# Differences in variables by gender

t.test(TABS_Total ~ Gender, med_data_total, var.equal = TRUE) # Men show significantly lower TABS total scores
## 
##  Two Sample t-test
## 
## data:  TABS_Total by Gender
## t = 3.463, df = 202, p-value = 0.0006519
## alternative hypothesis: true difference in means between group Female and group Male is not equal to 0
## 95 percent confidence interval:
##   6.577554 23.971466
## sample estimates:
## mean in group Female   mean in group Male 
##             167.0882             151.8137
t.test(GS_subscale_Total ~ Gender, med_data_total, var.equal = TRUE) # Men show significantly lower Gender total scores
## 
##  Two Sample t-test
## 
## data:  GS_subscale_Total by Gender
## t = 2.286, df = 202, p-value = 0.02329
## alternative hypothesis: true difference in means between group Female and group Male is not equal to 0
## 95 percent confidence interval:
##  0.595708 8.070959
## sample estimates:
## mean in group Female   mean in group Male 
##             50.00000             45.66667
t.test(TMFS_Total ~ Gender, med_data_total, var.equal = TRUE) # No significant difference in tendency to promote gender norms
## 
##  Two Sample t-test
## 
## data:  TMFS_Total by Gender
## t = -1.8654, df = 202, p-value = 0.06357
## alternative hypothesis: true difference in means between group Female and group Male is not equal to 0
## 95 percent confidence interval:
##  -2.07717806  0.05757022
## sample estimates:
## mean in group Female   mean in group Male 
##             32.39216             33.40196
t.test(GES_Total ~ Gender, med_data_total, var.equal = TRUE) # No significant differences in views of gender essentialism
## 
##  Two Sample t-test
## 
## data:  GES_Total by Gender
## t = -1.3974, df = 202, p-value = 0.1638
## alternative hypothesis: true difference in means between group Female and group Male is not equal to 0
## 95 percent confidence interval:
##  -6.169431  1.051784
## sample estimates:
## mean in group Female   mean in group Male 
##             75.35294             77.91176
cohen.d(med_data_total$TABS_Total, med_data_total$Gender)
## Call: cohen.d(x = med_data_total$TABS_Total, group = med_data_total$Gender)
## Cohen d statistic of difference between two means
##      lower effect upper
## [1,] -0.77  -0.49 -0.21
## 
## Multivariate (Mahalanobis) distance between groups
## [1] 0.49
## r equivalent of difference between two means
##  data 
## -0.24
cohen.d(med_data_total$GS_subscale_Total, med_data_total$Gender)
## Call: cohen.d(x = med_data_total$GS_subscale_Total, group = med_data_total$Gender)
## Cohen d statistic of difference between two means
##      lower effect upper
## [1,]  -0.6  -0.32 -0.05
## 
## Multivariate (Mahalanobis) distance between groups
## [1] 0.32
## r equivalent of difference between two means
##  data 
## -0.16
cohen.d(med_data_total$TMFS_Total, med_data_total$Gender)
## Call: cohen.d(x = med_data_total$TMFS_Total, group = med_data_total$Gender)
## Cohen d statistic of difference between two means
##      lower effect upper
## [1,] -0.01   0.26  0.54
## 
## Multivariate (Mahalanobis) distance between groups
## [1] 0.26
## r equivalent of difference between two means
## data 
## 0.13
cohen.d(med_data_total$GES_Total, med_data_total$Gender)
## Call: cohen.d(x = med_data_total$GES_Total, group = med_data_total$Gender)
## Cohen d statistic of difference between two means
##      lower effect upper
## [1,] -0.08    0.2  0.47
## 
## Multivariate (Mahalanobis) distance between groups
## [1] 0.2
## r equivalent of difference between two means
## data 
##  0.1

Mediation models

# TABS Total as outcome
model1 <- '
            TMFS_Total ~ a1*Gender
            GES_Total ~ a2*Gender + d21*TMFS_Total
            TABS_Total ~ cp*Gender + b1*TMFS_Total + b2*GES_Total
            # indirect and total effects
            ab1 := a1*d21*b2 # Serial indirect
            ab2 := a1*b1 # Through TMFS
            ab3 := a2*b2 # Through GES
         '
fit1 <- sem(model1, med_data_stan, se = "bootstrap", bootstrap = 10000)
## Warning in lav_model_nvcov_bootstrap(lavmodel = lavmodel, lavsamplestats =
## lavsamplestats, : lavaan WARNING: 9 bootstrap runs failed or did not converge.
summary(fit1)
## lavaan 0.6-12 ended normally after 1 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                         9
## 
##   Number of observations                           204
## 
## Model Test User Model:
##                                                       
##   Test statistic                                 0.000
##   Degrees of freedom                                 0
## 
## Parameter Estimates:
## 
##   Standard errors                            Bootstrap
##   Number of requested bootstrap draws            10000
##   Number of successful bootstrap draws            9991
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|)
##   TMFS_Total ~                                        
##     Gender    (a1)    0.260    0.140    1.860    0.063
##   GES_Total ~                                         
##     Gender    (a2)    0.120    0.133    0.904    0.366
##     TMFS_Ttl (d21)    0.291    0.080    3.639    0.000
##   TABS_Total ~                                        
##     Gender    (cp)   -0.316    0.095   -3.333    0.001
##     TMFS_Ttl  (b1)   -0.135    0.057   -2.376    0.018
##     GES_Totl  (b2)   -0.621    0.052  -11.925    0.000
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##    .TMFS_Total        0.978    0.094   10.462    0.000
##    .GES_Total         0.903    0.098    9.228    0.000
##    .TABS_Total        0.494    0.054    9.195    0.000
## 
## Defined Parameters:
##                    Estimate  Std.Err  z-value  P(>|z|)
##     ab1              -0.047    0.027   -1.704    0.088
##     ab2              -0.035    0.025   -1.382    0.167
##     ab3              -0.074    0.083   -0.892    0.372
parameterEstimates(fit1, boot.ci.type = "bca.simple")
##           lhs op        rhs label    est    se       z pvalue ci.lower ci.upper
## 1  TMFS_Total  ~     Gender    a1  0.260 0.140   1.860  0.063   -0.011    0.533
## 2   GES_Total  ~     Gender    a2  0.120 0.133   0.904  0.366   -0.140    0.382
## 3   GES_Total  ~ TMFS_Total   d21  0.291 0.080   3.639  0.000    0.129    0.441
## 4  TABS_Total  ~     Gender    cp -0.316 0.095  -3.333  0.001   -0.505   -0.136
## 5  TABS_Total  ~ TMFS_Total    b1 -0.135 0.057  -2.376  0.018   -0.254   -0.032
## 6  TABS_Total  ~  GES_Total    b2 -0.621 0.052 -11.925  0.000   -0.722   -0.519
## 7  TMFS_Total ~~ TMFS_Total        0.978 0.094  10.462  0.000    0.817    1.188
## 8   GES_Total ~~  GES_Total        0.903 0.098   9.228  0.000    0.736    1.125
## 9  TABS_Total ~~ TABS_Total        0.494 0.054   9.195  0.000    0.407    0.623
## 10     Gender ~~     Gender        0.250 0.000      NA     NA    0.250    0.250
## 11        ab1 :=  a1*d21*b2   ab1 -0.047 0.027  -1.704  0.088   -0.114   -0.003
## 12        ab2 :=      a1*b1   ab2 -0.035 0.025  -1.382  0.167   -0.109   -0.001
## 13        ab3 :=      a2*b2   ab3 -0.074 0.083  -0.892  0.372   -0.243    0.086
summary(lm(TABS_Total ~ Gender, med_data_stan))
## 
## Call:
## lm(formula = TABS_Total ~ Gender, data = med_data_stan)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.0863 -0.5529  0.2334  0.6775  1.5827 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  0.23615    0.09644   2.449 0.015188 *  
## GenderMale  -0.47230    0.13638  -3.463 0.000652 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.974 on 202 degrees of freedom
## Multiple R-squared:  0.05604,    Adjusted R-squared:  0.05137 
## F-statistic: 11.99 on 1 and 202 DF,  p-value: 0.0006519
# Gender/Sex Subscale as outcome
model2 <- '
            TMFS_Total ~ a1*Gender
            GES_Total ~ a2*Gender + d21*TMFS_Total
            GS_subscale_Total ~ cp*Gender + b1*TMFS_Total + b2*GES_Total
            # indirect and total effects
            ab1 := a1*d21*b2 # Serial indirect
            ab2 := a1*b1 # Through TMFS
            ab3 := a2*b2 # Through GES
         '
fit2 <- sem(model2, med_data_stan, se = "bootstrap", bootstrap = 10000)
## Warning in lav_model_nvcov_bootstrap(lavmodel = lavmodel, lavsamplestats =
## lavsamplestats, : lavaan WARNING: 7 bootstrap runs failed or did not converge.
summary(fit2)
## lavaan 0.6-12 ended normally after 1 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                         9
## 
##   Number of observations                           204
## 
## Model Test User Model:
##                                                       
##   Test statistic                                 0.000
##   Degrees of freedom                                 0
## 
## Parameter Estimates:
## 
##   Standard errors                            Bootstrap
##   Number of requested bootstrap draws            10000
##   Number of successful bootstrap draws            9993
## 
## Regressions:
##                       Estimate  Std.Err  z-value  P(>|z|)
##   TMFS_Total ~                                           
##     Gender    (a1)       0.260    0.139    1.863    0.062
##   GES_Total ~                                            
##     Gender    (a2)       0.120    0.131    0.914    0.360
##     TMFS_Ttl (d21)       0.291    0.081    3.579    0.000
##   GS_subscale_Total ~                                    
##     Gender    (cp)      -0.149    0.091   -1.645    0.100
##     TMFS_Ttl  (b1)      -0.131    0.054   -2.429    0.015
##     GES_Totl  (b2)      -0.684    0.047  -14.507    0.000
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##    .TMFS_Total        0.978    0.095   10.296    0.000
##    .GES_Total         0.903    0.098    9.186    0.000
##    .GS_subscal_Ttl    0.442    0.043   10.376    0.000
## 
## Defined Parameters:
##                    Estimate  Std.Err  z-value  P(>|z|)
##     ab1              -0.052    0.030   -1.727    0.084
##     ab2              -0.034    0.024   -1.421    0.155
##     ab3              -0.082    0.090   -0.908    0.364
parameterEstimates(fit2, boot.ci.type = "bca.simple")
##                  lhs op               rhs label    est    se       z pvalue
## 1         TMFS_Total  ~            Gender    a1  0.260 0.139   1.863  0.062
## 2          GES_Total  ~            Gender    a2  0.120 0.131   0.914  0.360
## 3          GES_Total  ~        TMFS_Total   d21  0.291 0.081   3.579  0.000
## 4  GS_subscale_Total  ~            Gender    cp -0.149 0.091  -1.645  0.100
## 5  GS_subscale_Total  ~        TMFS_Total    b1 -0.131 0.054  -2.429  0.015
## 6  GS_subscale_Total  ~         GES_Total    b2 -0.684 0.047 -14.507  0.000
## 7         TMFS_Total ~~        TMFS_Total        0.978 0.095  10.296  0.000
## 8          GES_Total ~~         GES_Total        0.903 0.098   9.186  0.000
## 9  GS_subscale_Total ~~ GS_subscale_Total        0.442 0.043  10.376  0.000
## 10            Gender ~~            Gender        0.250 0.000      NA     NA
## 11               ab1 :=         a1*d21*b2   ab1 -0.052 0.030  -1.727  0.084
## 12               ab2 :=             a1*b1   ab2 -0.034 0.024  -1.421  0.155
## 13               ab3 :=             a2*b2   ab3 -0.082 0.090  -0.908  0.364
##    ci.lower ci.upper
## 1    -0.015    0.534
## 2    -0.140    0.378
## 3     0.127    0.444
## 4    -0.321    0.030
## 5    -0.235   -0.022
## 6    -0.777   -0.590
## 7     0.815    1.189
## 8     0.735    1.130
## 9     0.372    0.544
## 10    0.250    0.250
## 11   -0.124   -0.004
## 12   -0.100   -0.001
## 13   -0.261    0.094
summary(lm(GS_subscale_Total ~ Gender, med_data_stan))
## 
## Call:
## lm(formula = GS_subscale_Total ~ Gender, data = med_data_stan)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -2.3397 -0.6580  0.1462  0.6946  1.7791 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)  
## (Intercept)   0.1584     0.0980   1.616   0.1076  
## GenderMale   -0.3168     0.1386  -2.286   0.0233 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.9898 on 202 degrees of freedom
## Multiple R-squared:  0.02522,    Adjusted R-squared:  0.02039 
## F-statistic: 5.226 on 1 and 202 DF,  p-value: 0.02329