We should do scale correction to permeability that has few inch of data do spread it on the whole Reservoir.
Upload Data.
data<-read.csv("C:/Office/karpur.csv",header=T)
summary(data)## depth caliper ind.deep ind.med
## Min. :5667 Min. :8.487 Min. : 6.532 Min. : 9.386
## 1st Qu.:5769 1st Qu.:8.556 1st Qu.: 28.799 1st Qu.: 27.892
## Median :5872 Median :8.588 Median :217.849 Median :254.383
## Mean :5873 Mean :8.622 Mean :275.357 Mean :273.357
## 3rd Qu.:5977 3rd Qu.:8.686 3rd Qu.:566.793 3rd Qu.:544.232
## Max. :6083 Max. :8.886 Max. :769.484 Max. :746.028
## gamma phi.N R.deep R.med
## Min. : 16.74 Min. :0.0150 Min. : 1.300 Min. : 1.340
## 1st Qu.: 40.89 1st Qu.:0.2030 1st Qu.: 1.764 1st Qu.: 1.837
## Median : 51.37 Median :0.2450 Median : 4.590 Median : 3.931
## Mean : 53.42 Mean :0.2213 Mean : 24.501 Mean : 21.196
## 3rd Qu.: 62.37 3rd Qu.:0.2640 3rd Qu.: 34.724 3rd Qu.: 35.853
## Max. :112.40 Max. :0.4100 Max. :153.085 Max. :106.542
## SP density.corr density phi.core
## Min. :-73.95 Min. :-0.067000 Min. :1.758 Min. :15.70
## 1st Qu.:-42.01 1st Qu.:-0.016000 1st Qu.:2.023 1st Qu.:23.90
## Median :-32.25 Median :-0.007000 Median :2.099 Median :27.60
## Mean :-30.98 Mean :-0.008883 Mean :2.102 Mean :26.93
## 3rd Qu.:-19.48 3rd Qu.: 0.002000 3rd Qu.:2.181 3rd Qu.:30.70
## Max. : 25.13 Max. : 0.089000 Max. :2.387 Max. :36.30
## k.core Facies
## Min. : 0.42 Length:819
## 1st Qu.: 657.33 Class :character
## Median : 1591.22 Mode :character
## Mean : 2251.91
## 3rd Qu.: 3046.82
## Max. :15600.00
At First , we should find the correlation between phi.core and phi.log
model1 <- lm(data$phi.core/100 ~ data$phi.N)
summary(model1)##
## Call:
## lm(formula = data$phi.core/100 ~ data$phi.N)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.135237 -0.030779 0.009432 0.033563 0.104025
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.30962 0.00485 63.846 <2e-16 ***
## data$phi.N -0.18207 0.02080 -8.753 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.04368 on 817 degrees of freedom
## Multiple R-squared: 0.08573, Adjusted R-squared: 0.08462
## F-statistic: 76.61 on 1 and 817 DF, p-value: < 2.2e-16
plot(data$phi.N,data$phi.core,xlab="phi.log",ylab="phi.core",axes = F)
axis(2,col = "darkgreen",col.axis="black")
axis(1,col = "darkgreen",col.axis="red")
abline(model1, lwd=3, col='green')Predict the core porosity corrected to the log scale by using phi.core and phi.log
phi.corel<-predict(model1,data)To Compare between core porosity and core porosity corrected to the log scale
#cbind(data$phi.core/100,phi.corel)Construction a relationship between permeability calculated from core and core porosity corrected to the log scale in order to get core premeability corrected to the log scale
model2<-lm(k.core~phi.corel+Facies-1,data=data)
summary(model2)##
## Call:
## lm(formula = k.core ~ phi.corel + Facies - 1, data = data)
##
## Residuals:
## Min 1Q Median 3Q Max
## -5613.4 -596.9 -130.3 475.0 10449.1
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## phi.corel 30268 6593 4.591 5.11e-06 ***
## FaciesF1 -6523 1935 -3.371 0.000784 ***
## FaciesF10 -7140 1730 -4.128 4.04e-05 ***
## FaciesF2 -7650 1824 -4.195 3.04e-05 ***
## FaciesF3 -7102 1798 -3.949 8.52e-05 ***
## FaciesF5 -3008 1833 -1.641 0.101209
## FaciesF7 -6350 1848 -3.437 0.000619 ***
## FaciesF8 -4513 1731 -2.606 0.009315 **
## FaciesF9 -7093 1747 -4.060 5.37e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1546 on 810 degrees of freedom
## Multiple R-squared: 0.7652, Adjusted R-squared: 0.7626
## F-statistic: 293.2 on 9 and 810 DF, p-value: < 2.2e-16
par(mfrow=c(2,2))
plot(model2)Predict and plot the core permeability corrected to the log scale
k.corel<-predict(model2,data)
plot(k.corel, col="gold",ylab="K.core log (md)",xlab="Number of K")To Compare between core permeability and core permeability corrected to the log scale
#cbind(data$k.core,k.corel)Combine the new column of corrected permeability to the file
karpur2<-cbind(data,k.corel)
write.csv(karpur2,"karpur2.csv")
head(karpur2)## depth caliper ind.deep ind.med gamma phi.N R.deep R.med SP
## 1 5667.0 8.685 618.005 569.781 98.823 0.410 1.618 1.755 -56.587
## 2 5667.5 8.686 497.547 419.494 90.640 0.307 2.010 2.384 -61.916
## 3 5668.0 8.686 384.935 300.155 78.087 0.203 2.598 3.332 -55.861
## 4 5668.5 8.686 278.324 205.224 66.232 0.119 3.593 4.873 -41.860
## 5 5669.0 8.686 183.743 131.155 59.807 0.069 5.442 7.625 -34.934
## 6 5669.5 8.686 109.512 75.633 57.109 0.048 9.131 13.222 -39.769
## density.corr density phi.core k.core Facies k.corel
## 1 -0.033 2.205 33.9000 2442.590 F1 589.2371
## 2 -0.067 2.040 33.4131 3006.989 F1 1156.8516
## 3 -0.064 1.888 33.1000 3370.000 F1 1729.9769
## 4 -0.053 1.794 34.9000 2270.000 F1 2192.8857
## 5 -0.054 1.758 35.0644 2530.758 F1 2468.4267
## 6 -0.058 1.759 35.3152 2928.314 F1 2584.1540
#plot graph
par(mfrow=c(1,5))
plot(y=y<-(data$depth),ylim=rev(range(data$depth)),x=x<-(data$phi.core/100),type="l", col="gold", lwd = 5, pch=17, xlab='phi.core',
ylab='Depth, m', xlim=c(0.14,0.38), cex=1.5, cex.lab=1.5, cex.axis=1.2)
grid()
plot(y=y<-(data$depth),ylim=rev(range(data$depth)),x=x<-(data$ k.core),type="l", col="black", lwd = 5, pch=17, xlab='k.core',
ylab='Depth, m', xlim=c(0.22,15800.00), cex=1.5, cex.lab=1.5, cex.axis=1.2)
grid()
plot(y=y<-(data$depth),ylim=rev(range(data$depth)),x=x<-(data$ phi.N),type="l", col="red", lwd = 5, pch=17, xlab='phi.N',
ylab='Depth, m', xlim=c(0.012,0.510), cex=1.5, cex.lab=1.5, cex.axis=1.2)
grid()
plot(y=y<-(data$depth),ylim=rev(range(data$depth)),x=x<-(phi.corel),type="l", col="darkblue", lwd = 5, pch=17, xlab='phi.corel',
ylab='Depth, m', xlim=c(0.16,0.38), cex=1.5, cex.lab=1.5, cex.axis=1.2)
grid()
plot(y=y<-(data$depth),ylim=rev(range(data$depth)),x=x<-(k.corel),type="l", col="red", lwd = 5, pch=17, xlab='k.corel',
ylab='Depth, m', xlim=c(10,6400), cex=1.5, cex.lab=1.5, cex.axis=1.2)
grid()#plot histigram
par(mfrow=c(1,2))
hist(phi.corel,col='darkblue',main='')
hist(k.corel,col='green',main='')