look at demographics as controls, have seen trust in sci and analytical media consumption seen, but not sure where. What is the confounding factor (may be education?) check this!
table(!is.na(d$participant))
##
## TRUE
## 3860
table(!is.na(d$participant) & d$wave_1 == 1)
##
## TRUE
## 3626
table(!is.na(d$participant) & d$wave_2 == 2)
##
## TRUE
## 2749
table(!is.na(d$participant) & d$wave_3 == 3)
##
## TRUE
## 1655
describe(d$age)
describe(d$age[(!is.na(d$participant) & d$wave_1 == 1)])
describe(d$age[(!is.na(d$participant) & d$wave_2 == 2)])
describe(d$age[(!is.na(d$participant) & d$wave_3 == 3)])
t <- table(d$gender_factor[(!is.na(d$participant))])
round(prop.table(t), 3)
##
## custom female male
## 0.002 0.503 0.495
t <- table(d$gender_factor[(!is.na(d$participant) & d$wave_1 == 1)])
round(prop.table(t), 3)
##
## custom female male
## 0.002 0.503 0.495
t <- table(d$gender_factor[(!is.na(d$participant) & d$wave_2 == 2)])
round(prop.table(t), 3)
##
## custom female male
## 0.001 0.477 0.522
t <- table(d$gender_factor[(!is.na(d$participant) & d$wave_3 == 3)])
round(prop.table(t), 3)
##
## custom female male
## 0.001 0.466 0.533
(t <- table(d$race_factor))
##
## asian black latin natAmer other pacIsl white
## 293 446 288 27 47 16 2224
round(prop.table(t), 3)
##
## asian black latin natAmer other pacIsl white
## 0.088 0.133 0.086 0.008 0.014 0.005 0.666
(t <- table(d$race_factor[d$wave_1 == 1]))
##
## asian black latin natAmer other pacIsl white
## 293 446 288 27 47 16 2224
round(prop.table(t), 3)
##
## asian black latin natAmer other pacIsl white
## 0.088 0.133 0.086 0.008 0.014 0.005 0.666
(t <- table(d$race_factor[d$wave_2 == 2]))
##
## asian black latin natAmer other pacIsl white
## 236 308 197 21 32 10 1725
round(prop.table(t), 3)
##
## asian black latin natAmer other pacIsl white
## 0.093 0.122 0.078 0.008 0.013 0.004 0.682
(t <- table(d$race_factor[d$wave_3 == 3]))
##
## asian black latin natAmer other pacIsl white
## 128 177 114 7 14 4 1059
round(prop.table(t), 3)
##
## asian black latin natAmer other pacIsl white
## 0.085 0.118 0.076 0.005 0.009 0.003 0.705
(t <- table(d$party_factor))
##
## Democrat Independent Republican
## 1533 674 1238
round(prop.table(t), 3)
##
## Democrat Independent Republican
## 0.445 0.196 0.359
(t <- table(d$party_factor[d$wave_1 == 1]))
##
## Democrat Independent Republican
## 1533 674 1238
round(prop.table(t), 3)
##
## Democrat Independent Republican
## 0.445 0.196 0.359
(t <- table(d$party_factor[d$wave_2 == 2]))
##
## Democrat Independent Republican
## 1127 452 968
round(prop.table(t), 3)
##
## Democrat Independent Republican
## 0.442 0.177 0.380
(t <- table(d$party_factor[d$wave_3 == 3]))
##
## Democrat Independent Republican
## 680 260 581
round(prop.table(t), 3)
##
## Democrat Independent Republican
## 0.447 0.171 0.382
describe(d$education)
describe(d$education[d$wave_1 == 1])
describe(d$education[d$wave_2 == 2])
describe(d$education[d$wave_3 == 3])
Not included here, but asked in all 3 waves, media exposure asks participants to “Consider each of the media sources below. In general, how much do you get news about Covid-19 from each source?” on a scale from 1 (Not at all) to 3 (Somewhat) to 5 (A great deal).
Collected in wave 1 (July - August 2020), the first step to creating the analytical media index is multiplying individual analytic thinking scores for each media outlet by participant rated exposure to that outlet, Then taking the proportion of each of these products (i.e., dividing by the 12 possible US outlets to be exposed to)
foxAnalyticalIndex = (foxNewsExposure x foxAnalyticalScore) (foxAnalyticalIndex + cnnAnalyticalIndex + msnbcAnalyticalIndex + …) / 12 total outlets
describe(d$index_ANexp_w1)
Collected in wave 2 (November 2020), the creation of this index follows the same path as above with the exception of using wave 2 updated media analytical thinking scores and participant media exposure ratings.
describe(d$index_ANexp_w2)
describe(w2$analytic)
Collected in wave 3 (March 2022), the creation of this index follows the same path as above using updated participant media exposure ratings, but with the exception of using the average of wave 1 and wave 2 media analytical thinking scores.
describe(d$index_ANexp_w3)
Asked during our wave 1 survey (July-August 2020), symbolic ideology is an average of three items. They ask “How liberal/conservative…” (1) in general, (2) on social issues, and (3) on economic issues. Participants answered on a scale from -3 (Very liberal) to 0 (Moderate) to +3 (Very conservative).
##
## Reliability analysis
## Call: psych::alpha(x = data.frame(d$symbolic_beliefs_1, d$symbolic_beliefs_2,
## d$symbolic_beliefs_3), cumulative = F, na.rm = T, delete = T)
##
## raw_alpha std.alpha G6(smc) average_r S/N ase mean sd median_r
## 0.95 0.95 0.93 0.85 17 0.0016 0.11 1.6 0.86
##
## lower alpha upper 95% confidence boundaries
## 0.94 0.95 0.95
##
## Reliability if an item is dropped:
## raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r
## d.symbolic_beliefs_1 0.89 0.89 0.80 0.80 8.2 0.0035 NA
## d.symbolic_beliefs_2 0.92 0.92 0.86 0.86 12.1 0.0025 NA
## d.symbolic_beliefs_3 0.94 0.94 0.89 0.89 17.0 0.0018 NA
## med.r
## d.symbolic_beliefs_1 0.80
## d.symbolic_beliefs_2 0.86
## d.symbolic_beliefs_3 0.89
##
## Item statistics
## n raw.r std.r r.cor r.drop mean sd
## d.symbolic_beliefs_1 3462 0.97 0.97 0.95 0.92 0.081 1.7
## d.symbolic_beliefs_2 3463 0.95 0.95 0.91 0.88 -0.041 1.7
## d.symbolic_beliefs_3 3463 0.93 0.93 0.88 0.85 0.292 1.7
##
## Non missing response frequency for each item
## -3 -2 -1 0 1 2 3 miss
## d.symbolic_beliefs_1 0.07 0.13 0.08 0.38 0.10 0.13 0.10 0.1
## d.symbolic_beliefs_2 0.09 0.14 0.12 0.33 0.10 0.13 0.09 0.1
## d.symbolic_beliefs_3 0.06 0.11 0.09 0.35 0.13 0.16 0.11 0.1
Asked during our wave 3 survey (March 2022), trust in science is an average of 15-items. Examples range from trust in the scientific method (e.g., “We cannot trust science because it moves too slowly”) to trust in scientists themselves (e.g., “We should trust that scientists are being ethical in their work”). Participants answered on a scale from 1 (strongly disagree) to 3 (neutral) to 5 (strongly agree).
##
## Reliability analysis
## Call: psych::alpha(x = data.frame(d$sciTrust_1, d$sciTrust_2, d$sciTrust_3,
## d$sciTrust_4, d$sciTrust_5, d$sciTrust_6, d$sciTrust_7, d$sciTrust_8,
## d$sciTrust_9, d$sciTrust_10, d$sciTrust_11, d$sciTrust_12,
## d$sciTrust_13, d$sciTrust_14, d$sciTrust_15), cumulative = F,
## na.rm = T, delete = T)
##
## raw_alpha std.alpha G6(smc) average_r S/N ase mean sd median_r
## 0.94 0.94 0.95 0.5 15 0.0015 3.5 0.82 0.5
##
## lower alpha upper 95% confidence boundaries
## 0.94 0.94 0.94
##
## Reliability if an item is dropped:
## raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## d.sciTrust_1 0.94 0.94 0.95 0.51 15 0.0015 0.021 0.51
## d.sciTrust_2 0.93 0.93 0.95 0.49 14 0.0016 0.022 0.49
## d.sciTrust_3 0.93 0.93 0.95 0.50 14 0.0016 0.022 0.49
## d.sciTrust_4 0.93 0.93 0.95 0.50 14 0.0016 0.022 0.49
## d.sciTrust_5 0.93 0.93 0.95 0.49 14 0.0016 0.022 0.49
## d.sciTrust_6 0.94 0.93 0.95 0.51 14 0.0015 0.021 0.53
## d.sciTrust_7 0.93 0.93 0.95 0.50 14 0.0015 0.021 0.51
## d.sciTrust_8 0.94 0.94 0.95 0.51 15 0.0015 0.020 0.53
## d.sciTrust_9 0.94 0.94 0.95 0.51 15 0.0015 0.019 0.53
## d.sciTrust_10 0.94 0.93 0.95 0.51 14 0.0015 0.021 0.53
## d.sciTrust_11 0.93 0.93 0.95 0.49 13 0.0016 0.023 0.48
## d.sciTrust_12 0.93 0.93 0.95 0.50 14 0.0016 0.022 0.49
## d.sciTrust_13 0.93 0.93 0.95 0.49 13 0.0016 0.021 0.49
## d.sciTrust_14 0.93 0.93 0.95 0.50 14 0.0016 0.022 0.49
## d.sciTrust_15 0.93 0.93 0.95 0.51 14 0.0016 0.022 0.49
##
## Item statistics
## n raw.r std.r r.cor r.drop mean sd
## d.sciTrust_1 1077 0.65 0.64 0.60 0.59 3.3 1.16
## d.sciTrust_2 1077 0.81 0.80 0.79 0.78 3.2 1.23
## d.sciTrust_3 1075 0.78 0.77 0.75 0.74 3.6 1.11
## d.sciTrust_4 1075 0.72 0.70 0.68 0.66 3.2 1.19
## d.sciTrust_5 1075 0.81 0.80 0.79 0.77 3.5 1.19
## d.sciTrust_6 1077 0.68 0.70 0.68 0.63 3.7 1.00
## d.sciTrust_7 1071 0.72 0.74 0.73 0.68 3.6 1.01
## d.sciTrust_8 1073 0.64 0.66 0.64 0.58 3.6 1.06
## d.sciTrust_9 1076 0.62 0.64 0.62 0.57 3.5 0.96
## d.sciTrust_10 1077 0.68 0.69 0.68 0.63 3.5 1.06
## d.sciTrust_11 1075 0.83 0.83 0.81 0.80 3.5 1.19
## d.sciTrust_12 1075 0.76 0.75 0.73 0.71 3.2 1.19
## d.sciTrust_13 1075 0.84 0.83 0.83 0.81 3.3 1.17
## d.sciTrust_14 1072 0.73 0.72 0.69 0.68 3.2 1.19
## d.sciTrust_15 1073 0.70 0.70 0.68 0.66 3.8 1.04
##
## Non missing response frequency for each item
## 1 2 3 4 5 miss
## d.sciTrust_1 0.08 0.16 0.30 0.30 0.16 0.72
## d.sciTrust_2 0.11 0.17 0.27 0.28 0.16 0.72
## d.sciTrust_3 0.05 0.10 0.28 0.32 0.24 0.72
## d.sciTrust_4 0.09 0.18 0.32 0.24 0.18 0.72
## d.sciTrust_5 0.07 0.12 0.27 0.29 0.25 0.72
## d.sciTrust_6 0.04 0.07 0.26 0.41 0.22 0.72
## d.sciTrust_7 0.04 0.07 0.29 0.40 0.19 0.72
## d.sciTrust_8 0.06 0.08 0.27 0.41 0.18 0.72
## d.sciTrust_9 0.04 0.06 0.39 0.36 0.14 0.72
## d.sciTrust_10 0.05 0.09 0.30 0.38 0.18 0.72
## d.sciTrust_11 0.07 0.13 0.25 0.31 0.23 0.72
## d.sciTrust_12 0.09 0.17 0.31 0.26 0.16 0.72
## d.sciTrust_13 0.08 0.16 0.31 0.27 0.18 0.72
## d.sciTrust_14 0.09 0.18 0.31 0.25 0.17 0.72
## d.sciTrust_15 0.04 0.05 0.26 0.33 0.32 0.72
Collected during wave 1 (July - August 2020), media outlet LIWC analytic thinking scores captures the degree to which people use words that suggest formal, logical, and hierarchical thinking patterns. Column two is raw scores, and column three is standardized scores.
ggplot(data = w1, aes(x = mediaOutlet, y = analytic.s, fill = mediaOutlet)) +
ggtitle("Wave 1 Analytical Thinking Standardized") +
geom_bar(stat = "identity", position = position_dodge()) +
geom_text(aes(label = mediaOutlet), vjust = 1.6, color = "black", position = position_dodge(0.9), size = 3) +
theme_minimal() +
coord_cartesian(ylim = c(-3, 3))
ggplot(data = w1, aes(x = mediaOutlet, y = analytic, fill = mediaOutlet)) +
ggtitle("Wave 1 Analytical Thinking Raw") +
geom_bar(stat = "identity", position = position_dodge()) +
geom_text(aes(label = mediaOutlet), vjust = 1.6, color = "black", position = position_dodge(0.9), size = 3) +
theme_minimal() +
coord_cartesian(ylim = c(1, 100))
w1.x <- w1[,2:4]
w1.x[, 2:3] <- round(w1.x[, 2:3], 2)
w1.x
Collected during wave 2 (November 2020), media outlet LIWC analytic thinking scores captures the degree to which people use words that suggest formal, logical, and hierarchical thinking patterns. Column two is raw scores, and column three is standardized scores.
ggplot(data = w2, aes(x = mediaOutlet, y = analytic.s, fill = mediaOutlet)) +
ggtitle("Wave 2 + Analytical Thinking Standardized") +
geom_bar(stat = "identity", position = position_dodge()) +
geom_text(aes(label = mediaOutlet), vjust = 1.6, color = "black", position = position_dodge(0.9), size = 3) +
theme_minimal() +
coord_cartesian(ylim = c(-3, 3))
ggplot(data = w2, aes(x = mediaOutlet, y = analytic, fill = mediaOutlet)) +
ggtitle("Wave 2 + Analytical Thinking Raw") +
geom_bar(stat = "identity", position = position_dodge()) +
geom_text(aes(label = mediaOutlet), vjust = 1.6, color = "black", position = position_dodge(0.9), size = 3) +
theme_minimal() +
coord_cartesian(ylim = c(1, 100))
w2.x <- w2[,2:4]
w2.x[, 2:3] <- round(w2.x[, 2:3], 2)
w2.x
Collected during wave 1 (July - August 2020), participants were asked “would you get a Covid-19 vaccine?” and answered on a scale from -3 (Definitely would not get it) to 0 (Undecided) to +3 (Definitely would get it).
describe(d$vaxxIntentions_w1)
Collected during wave 2 (November 2020), participants were asked “If a Covid-19 vaccine were available today, would you get it?” and answered on a scale from -3 (Definitely would not get it) to 0 (Completely undecided) to +3 (Definitely would get it).
describe(d$vaxxIntentions_w2)
colnames(d)[which(names(d) == "avgvaxxIntentions")] <- "avgVaxxIntentions"
describe(d$avgVaxxIntentions)
cor.test(d$vaxxIntentions_w1, d$vaxxIntentions_w2)
##
## Pearson's product-moment correlation
##
## data: d$vaxxIntentions_w1 and d$vaxxIntentions_w2
## t = 53.555, df = 2493, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## 0.7126403 0.7491665
## sample estimates:
## cor
## 0.7314276
Collected during wave 3 (March 2022), vaccine behavior is a collective measure of branched questions given to participants.
1 = not vaccinated
2 = partially vaccinated (e.g., 1 Moderna shot, but not the 2nd)
3 = fully vaccinated (e.g., 1 Johnson & Johnson shot, or 2 Modern/Pfizer shots)
4 = fully vaccinated and boosted
describe(d$vaxxBehavior)
corr <- data.frame(d$age)
colnames(corr)[colnames(corr)=="d.age"] <- "age"
corr$edu <- d$education
corr$female_1 <- d$female_1 #leave in here even if not covariate used
corr$white_1 <- d$white_1
corr$ideology <- d$ideology
corr$index_w1 <- d$index_ANexp_w1
corr$index_w2 <- d$index_ANexp_w2
corr$index_w3<- d$index_ANexp_w3
corr$vaxxIntentions <- d$avgVaxxIntentions
corr$vaxxBehavior<- d$vaxxBehavior
corr2 <- cor(corr, use = "pairwise")
ggcorrplot(corr2, type = "lower",
lab = TRUE, title = "pairwise correlations")
Key aims: 1) Replication, proximity vaccine, 2) stronger causal evidence w/ longitudinal data
summary(m1 <- lm(vaxxIntentions_w2 ~ index_ANexp_w2.z * ideology.z + age.z + education.z + white_.5, data = d))
##
## Call:
## lm(formula = vaxxIntentions_w2 ~ index_ANexp_w2.z * ideology.z +
## age.z + education.z + white_.5, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.8466 -1.4224 0.0855 1.6579 4.3979
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.27442 0.04504 6.093 1.28e-09 ***
## index_ANexp_w2.z 0.42426 0.04302 9.862 < 2e-16 ***
## ideology.z -0.15717 0.04176 -3.764 0.000171 ***
## age.z 0.37731 0.04275 8.825 < 2e-16 ***
## education.z 0.14276 0.04531 3.150 0.001650 **
## white_.5 0.38117 0.09147 4.167 3.19e-05 ***
## index_ANexp_w2.z:ideology.z 0.04115 0.03771 1.091 0.275241
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.01 on 2441 degrees of freedom
## (1412 observations deleted due to missingness)
## Multiple R-squared: 0.08306, Adjusted R-squared: 0.08081
## F-statistic: 36.85 on 6 and 2441 DF, p-value: < 2.2e-16
tab_model(m1,
show.df = T,
show.ci = .95,
show.se = T,
show.stat = T,
string.stat = "t",
string.se="SE",
string.est = "Est",
digits = 3)
| vaxxIntentions_w2 | ||||||
|---|---|---|---|---|---|---|
| Predictors | Est | SE | CI | t | p | df |
| (Intercept) | 0.274 | 0.045 | 0.186 – 0.363 | 6.093 | <0.001 | 2441.000 |
| index_ANexp_w2.z | 0.424 | 0.043 | 0.340 – 0.509 | 9.862 | <0.001 | 2441.000 |
| ideology.z | -0.157 | 0.042 | -0.239 – -0.075 | -3.764 | <0.001 | 2441.000 |
| age.z | 0.377 | 0.043 | 0.293 – 0.461 | 8.825 | <0.001 | 2441.000 |
| education.z | 0.143 | 0.045 | 0.054 – 0.232 | 3.150 | 0.002 | 2441.000 |
| white_.5 | 0.381 | 0.091 | 0.202 – 0.561 | 4.167 | <0.001 | 2441.000 |
|
index_ANexp_w2.z * ideology.z |
0.041 | 0.038 | -0.033 – 0.115 | 1.091 | 0.275 | 2441.000 |
| Observations | 2448 | |||||
| R2 / R2 adjusted | 0.083 / 0.081 | |||||
summary(m1 <- lm(vaxxIntentions_w2 ~ index_ANexp_w2.z * (ideology.z + age.z + education.z + white_.5), data = d))
##
## Call:
## lm(formula = vaxxIntentions_w2 ~ index_ANexp_w2.z * (ideology.z +
## age.z + education.z + white_.5), data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.9372 -1.3793 0.0754 1.6636 4.8060
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.26650 0.04632 5.754 9.81e-09 ***
## index_ANexp_w2.z 0.40611 0.04387 9.258 < 2e-16 ***
## ideology.z -0.17549 0.04235 -4.143 3.54e-05 ***
## age.z 0.37513 0.04272 8.781 < 2e-16 ***
## education.z 0.15714 0.04649 3.380 0.000735 ***
## white_.5 0.39014 0.09239 4.223 2.50e-05 ***
## index_ANexp_w2.z:ideology.z 0.04899 0.03809 1.286 0.198507
## index_ANexp_w2.z:age.z -0.13619 0.04446 -3.063 0.002216 **
## index_ANexp_w2.z:education.z -0.04115 0.03856 -1.067 0.286010
## index_ANexp_w2.z:white_.5 0.01528 0.08687 0.176 0.860437
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.006 on 2438 degrees of freedom
## (1412 observations deleted due to missingness)
## Multiple R-squared: 0.08729, Adjusted R-squared: 0.08393
## F-statistic: 25.91 on 9 and 2438 DF, p-value: < 2.2e-16
tab_model(m1,
show.df = T,
show.ci = .95,
show.se = T,
show.stat = T,
string.stat = "t",
string.se="SE",
string.est = "Est",
digits = 3)
| vaxxIntentions_w2 | ||||||
|---|---|---|---|---|---|---|
| Predictors | Est | SE | CI | t | p | df |
| (Intercept) | 0.266 | 0.046 | 0.176 – 0.357 | 5.754 | <0.001 | 2438.000 |
| index_ANexp_w2.z | 0.406 | 0.044 | 0.320 – 0.492 | 9.258 | <0.001 | 2438.000 |
| ideology.z | -0.175 | 0.042 | -0.259 – -0.092 | -4.143 | <0.001 | 2438.000 |
| age.z | 0.375 | 0.043 | 0.291 – 0.459 | 8.781 | <0.001 | 2438.000 |
| education.z | 0.157 | 0.046 | 0.066 – 0.248 | 3.380 | 0.001 | 2438.000 |
| white_.5 | 0.390 | 0.092 | 0.209 – 0.571 | 4.223 | <0.001 | 2438.000 |
|
index_ANexp_w2.z * ideology.z |
0.049 | 0.038 | -0.026 – 0.124 | 1.286 | 0.199 | 2438.000 |
| index_ANexp_w2.z * age.z | -0.136 | 0.044 | -0.223 – -0.049 | -3.063 | 0.002 | 2438.000 |
|
index_ANexp_w2.z * education.z |
-0.041 | 0.039 | -0.117 – 0.034 | -1.067 | 0.286 | 2438.000 |
|
index_ANexp_w2.z * white_.5 |
0.015 | 0.087 | -0.155 – 0.186 | 0.176 | 0.860 | 2438.000 |
| Observations | 2448 | |||||
| R2 / R2 adjusted | 0.087 / 0.084 | |||||
vaxxIntentions.w2 ~ inde.w2.z + ideology.z + age.z + white_.5 + education.z
trustExpert.w2 ~ index.w2.z + ideology.z + age.z + white_.5 + education.z
vaxxIntentions.w2 ~ trustExpert.w2.z + index.w2.z + ideology.z + age.z + white_.5 + education.z
indirect effect: https://quantpsy.org/sobel/sobel.htm
#model 1
m2.xy <- lm(vaxxIntentions_w2 ~ index_ANexp_w2.z + ideology.z + age.z + white_.5 + education.z, data = d)
# model 2
m2.xm <- lm(trustExpert_w2 ~ index_ANexp_w2.z + ideology.z + age.z + white_.5 + education.z, data = d)
# model 3
m2.xmy <- lm(vaxxIntentions_w2 ~ trustExpert_w2.z + index_ANexp_w2.z + ideology.z + age.z + white_.5 + education.z, data = d)
tab_model(m2.xy, m2.xm, m2.xmy,
show.ci = .95,
show.stat = T,
string.stat = "t",
string.se="SE",
string.est = "Est",
digits = 3)
| vaxxIntentions_w2 | trustExpert_w2 | vaxxIntentions_w2 | ||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Predictors | Est | CI | t | p | Est | CI | t | p | Est | CI | t | p |
| (Intercept) | 0.265 | 0.178 – 0.352 | 5.995 | <0.001 | 1.491 | 1.433 – 1.550 | 50.135 | <0.001 | 0.278 | 0.193 – 0.362 | 6.460 | <0.001 |
| index_ANexp_w2.z | 0.422 | 0.337 – 0.506 | 9.817 | <0.001 | 0.304 | 0.247 – 0.360 | 10.497 | <0.001 | 0.316 | 0.232 – 0.400 | 7.397 | <0.001 |
| ideology.z | -0.156 | -0.238 – -0.074 | -3.739 | <0.001 | -0.402 | -0.457 – -0.347 | -14.312 | <0.001 | -0.016 | -0.099 – 0.067 | -0.382 | 0.702 |
| age.z | 0.374 | 0.290 – 0.458 | 8.771 | <0.001 | 0.210 | 0.153 – 0.266 | 7.304 | <0.001 | 0.300 | 0.218 – 0.383 | 7.167 | <0.001 |
| white_.5 | 0.376 | 0.197 – 0.555 | 4.115 | <0.001 | 0.250 | 0.130 – 0.371 | 4.069 | <0.001 | 0.288 | 0.114 – 0.463 | 3.235 | 0.001 |
| education.z | 0.142 | 0.053 – 0.231 | 3.140 | 0.002 | 0.109 | 0.050 – 0.169 | 3.585 | <0.001 | 0.105 | 0.018 – 0.191 | 2.367 | 0.018 |
| trustExpert_w2.z | 0.516 | 0.432 – 0.601 | 11.948 | <0.001 | ||||||||
| Observations | 2448 | 2449 | 2448 | |||||||||
| R2 / R2 adjusted | 0.083 / 0.081 | 0.158 / 0.156 | 0.133 / 0.131 | |||||||||
vaxxIntentions.w2 ~ inde.w2.z * ideology.z + age.z + white_.5 + education.z
trustExpert.w2 ~ index.w2.z * ideology.z + age.z + white_.5 + education.z
vaxxIntentions.w2 ~ (trustExpert.w2.z + index.w2.z) * ideology.z + age.z + white_.5 + education.z
#model 1
m2.xy <- lm(vaxxIntentions_w2 ~ index_ANexp_w2.z * ideology.z + age.z + white_.5 + education.z, data = d)
# model 2
m2.xm <- lm(trustExpert_w2 ~ index_ANexp_w2.z * ideology.z + age.z + white_.5 + education.z, data = d)
# model 3
m2.xmy <- lm(vaxxIntentions_w2 ~ (trustExpert_w2.z + index_ANexp_w2.z) * ideology.z + age.z + white_.5 + education.z, data = d)
tab_model(m2.xy, m2.xm, m2.xmy,
show.ci = .95,
show.stat = T,
string.stat = "t",
string.se="SE",
string.est = "Est",
digits = 3)
| vaxxIntentions_w2 | trustExpert_w2 | vaxxIntentions_w2 | ||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Predictors | Est | CI | t | p | Est | CI | t | p | Est | CI | t | p |
| (Intercept) | 0.274 | 0.186 – 0.363 | 6.093 | <0.001 | 1.518 | 1.459 – 1.577 | 50.259 | <0.001 | 0.268 | 0.181 – 0.356 | 6.001 | <0.001 |
| index_ANexp_w2.z | 0.424 | 0.340 – 0.509 | 9.862 | <0.001 | 0.311 | 0.254 – 0.367 | 10.769 | <0.001 | 0.317 | 0.233 – 0.401 | 7.400 | <0.001 |
| ideology.z | -0.157 | -0.239 – -0.075 | -3.764 | <0.001 | -0.405 | -0.460 – -0.350 | -14.470 | <0.001 | -0.011 | -0.094 – 0.072 | -0.259 | 0.796 |
| age.z | 0.377 | 0.293 – 0.461 | 8.825 | <0.001 | 0.219 | 0.162 – 0.275 | 7.626 | <0.001 | 0.297 | 0.215 – 0.380 | 7.047 | <0.001 |
| white_.5 | 0.381 | 0.202 – 0.561 | 4.167 | <0.001 | 0.265 | 0.145 – 0.385 | 4.321 | <0.001 | 0.283 | 0.108 – 0.458 | 3.167 | 0.002 |
| education.z | 0.143 | 0.054 – 0.232 | 3.150 | 0.002 | 0.111 | 0.051 – 0.170 | 3.639 | <0.001 | 0.103 | 0.016 – 0.189 | 2.319 | 0.020 |
|
index_ANexp_w2.z * ideology.z |
0.041 | -0.033 – 0.115 | 1.091 | 0.275 | 0.114 | 0.065 – 0.164 | 4.527 | <0.001 | 0.014 | -0.061 – 0.090 | 0.374 | 0.709 |
| trustExpert_w2.z | 0.527 | 0.440 – 0.614 | 11.855 | <0.001 | ||||||||
|
trustExpert_w2.z * ideology.z |
-0.047 | -0.128 – 0.035 | -1.120 | 0.263 | ||||||||
| Observations | 2448 | 2449 | 2448 | |||||||||
| R2 / R2 adjusted | 0.083 / 0.081 | 0.165 / 0.163 | 0.134 / 0.131 | |||||||||
vaxxIntentions.w2 ~ inde.w2.z * (ideology.z + age.z + white_.5 + education.z)
trustExpert.w2 ~ index.w2.z * (ideology.z + age.z + white_.5 + education.z)
vaxxIntentions.w2 ~ (trustExpert.w2.z + index.w2.z) * (ideology.z + age.z + white_.5 + education.z)
#model 1
m2.xy <- lm(vaxxIntentions_w2 ~ index_ANexp_w2.z * (ideology.z + age.z + white_.5 + education.z), data = d)
# model 2
m2.xm <- lm(trustExpert_w2 ~ index_ANexp_w2.z * (ideology.z + age.z + white_.5 + education.z), data = d)
# model 3
m2.xmy <- lm(vaxxIntentions_w2 ~ (trustExpert_w2.z + index_ANexp_w2.z) * (ideology.z + age.z + white_.5 + education.z), data = d)
tab_model(m2.xy, m2.xm, m2.xmy,
show.ci = .95,
show.stat = T,
string.stat = "t",
string.se="SE",
string.est = "Est",
digits = 3)
| vaxxIntentions_w2 | trustExpert_w2 | vaxxIntentions_w2 | ||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Predictors | Est | CI | t | p | Est | CI | t | p | Est | CI | t | p |
| (Intercept) | 0.266 | 0.176 – 0.357 | 5.754 | <0.001 | 1.535 | 1.474 – 1.596 | 49.378 | <0.001 | 0.246 | 0.155 – 0.337 | 5.286 | <0.001 |
| index_ANexp_w2.z | 0.406 | 0.320 – 0.492 | 9.258 | <0.001 | 0.308 | 0.250 – 0.365 | 10.448 | <0.001 | 0.300 | 0.215 – 0.386 | 6.881 | <0.001 |
| ideology.z | -0.175 | -0.259 – -0.092 | -4.143 | <0.001 | -0.392 | -0.448 – -0.336 | -13.802 | <0.001 | -0.027 | -0.112 – 0.058 | -0.625 | 0.532 |
| age.z | 0.375 | 0.291 – 0.459 | 8.781 | <0.001 | 0.217 | 0.161 – 0.273 | 7.576 | <0.001 | 0.297 | 0.214 – 0.381 | 7.007 | <0.001 |
| white_.5 | 0.390 | 0.209 – 0.571 | 4.223 | <0.001 | 0.243 | 0.122 – 0.365 | 3.925 | <0.001 | 0.300 | 0.123 – 0.477 | 3.323 | 0.001 |
| education.z | 0.157 | 0.066 – 0.248 | 3.380 | 0.001 | 0.099 | 0.038 – 0.160 | 3.167 | 0.002 | 0.126 | 0.037 – 0.215 | 2.765 | 0.006 |
|
index_ANexp_w2.z * ideology.z |
0.049 | -0.026 – 0.124 | 1.286 | 0.199 | 0.106 | 0.055 – 0.156 | 4.129 | <0.001 | 0.023 | -0.053 – 0.099 | 0.596 | 0.551 |
| index_ANexp_w2.z * age.z | -0.136 | -0.223 – -0.049 | -3.063 | 0.002 | 0.039 | -0.019 – 0.098 | 1.323 | 0.186 | -0.129 | -0.218 – -0.040 | -2.836 | 0.005 |
|
index_ANexp_w2.z * white_.5 |
0.015 | -0.155 – 0.186 | 0.176 | 0.860 | 0.108 | -0.007 – 0.222 | 1.848 | 0.065 | -0.071 | -0.240 – 0.099 | -0.815 | 0.415 |
|
index_ANexp_w2.z * education.z |
-0.041 | -0.117 – 0.034 | -1.067 | 0.286 | 0.029 | -0.022 – 0.079 | 1.103 | 0.270 | -0.058 | -0.132 – 0.016 | -1.534 | 0.125 |
| trustExpert_w2.z | 0.502 | 0.410 – 0.594 | 10.724 | <0.001 | ||||||||
|
trustExpert_w2.z * ideology.z |
-0.060 | -0.144 – 0.024 | -1.408 | 0.159 | ||||||||
| trustExpert_w2.z * age.z | -0.056 | -0.147 – 0.034 | -1.217 | 0.224 | ||||||||
|
trustExpert_w2.z * white_.5 |
0.209 | 0.029 – 0.389 | 2.281 | 0.023 | ||||||||
|
trustExpert_w2.z * education.z |
0.055 | -0.025 – 0.136 | 1.343 | 0.179 | ||||||||
| Observations | 2448 | 2449 | 2448 | |||||||||
| R2 / R2 adjusted | 0.087 / 0.084 | 0.167 / 0.164 | 0.142 / 0.137 | |||||||||
summary(mb <- lm(vaxxIntentions_w2 ~ index_ANexp_w2.z * ideology.z + age.z + education.z + white_.5 + index_ANexp_w1.z + vaxxIntentions_w1.z, data = d))
##
## Call:
## lm(formula = vaxxIntentions_w2 ~ index_ANexp_w2.z * ideology.z +
## age.z + education.z + white_.5 + index_ANexp_w1.z + vaxxIntentions_w1.z,
## data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -5.1857 -0.8324 0.0467 0.9249 5.4213
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.27268 0.03187 8.556 < 2e-16 ***
## index_ANexp_w2.z 0.15245 0.04124 3.697 0.000223 ***
## ideology.z 0.11536 0.03012 3.831 0.000131 ***
## age.z 0.08994 0.03085 2.915 0.003586 **
## education.z -0.01642 0.03223 -0.510 0.610442
## white_.5 0.13952 0.06496 2.148 0.031825 *
## index_ANexp_w1.z -0.05699 0.04088 -1.394 0.163390
## vaxxIntentions_w1.z 1.52534 0.03100 49.211 < 2e-16 ***
## index_ANexp_w2.z:ideology.z -0.01819 0.02679 -0.679 0.497250
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.422 on 2439 degrees of freedom
## (1412 observations deleted due to missingness)
## Multiple R-squared: 0.5412, Adjusted R-squared: 0.5397
## F-statistic: 359.7 on 8 and 2439 DF, p-value: < 2.2e-16
tab_model(mb,
show.ci = .95,
show.stat = T,
string.stat = "t",
string.se="SE",
string.est = "Est",
digits = 3)
| vaxxIntentions_w2 | ||||
|---|---|---|---|---|
| Predictors | Est | CI | t | p |
| (Intercept) | 0.273 | 0.210 – 0.335 | 8.556 | <0.001 |
| index_ANexp_w2.z | 0.152 | 0.072 – 0.233 | 3.697 | <0.001 |
| ideology.z | 0.115 | 0.056 – 0.174 | 3.831 | <0.001 |
| age.z | 0.090 | 0.029 – 0.150 | 2.915 | 0.004 |
| education.z | -0.016 | -0.080 – 0.047 | -0.510 | 0.610 |
| white_.5 | 0.140 | 0.012 – 0.267 | 2.148 | 0.032 |
| index_ANexp_w1.z | -0.057 | -0.137 – 0.023 | -1.394 | 0.163 |
| vaxxIntentions_w1.z | 1.525 | 1.465 – 1.586 | 49.211 | <0.001 |
|
index_ANexp_w2.z * ideology.z |
-0.018 | -0.071 – 0.034 | -0.679 | 0.497 |
| Observations | 2448 | |||
| R2 / R2 adjusted | 0.541 / 0.540 | |||
summary(m.s2.b <- lm(trustExpert_w2 ~ index_ANexp_w2.z * ideology.z + age.z + education.z + white_.5 + index_ANexp_w1.z + trustExpert_w1.z, data = d))
##
## Call:
## lm(formula = trustExpert_w2 ~ index_ANexp_w2.z * ideology.z +
## age.z + education.z + white_.5 + index_ANexp_w1.z + trustExpert_w1.z,
## data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -5.9300 -0.4943 0.1684 0.6092 3.9935
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.48200 0.02430 60.984 < 2e-16 ***
## index_ANexp_w2.z 0.11050 0.03139 3.520 0.000439 ***
## ideology.z -0.19312 0.02325 -8.305 < 2e-16 ***
## age.z 0.08264 0.02339 3.533 0.000419 ***
## education.z 0.01120 0.02459 0.455 0.648901
## white_.5 0.10984 0.04955 2.217 0.026733 *
## index_ANexp_w1.z 0.05347 0.03117 1.715 0.086389 .
## trustExpert_w1.z 0.89656 0.02483 36.111 < 2e-16 ***
## index_ANexp_w2.z:ideology.z 0.05412 0.02044 2.648 0.008157 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.084 on 2440 degrees of freedom
## (1411 observations deleted due to missingness)
## Multiple R-squared: 0.4605, Adjusted R-squared: 0.4587
## F-statistic: 260.3 on 8 and 2440 DF, p-value: < 2.2e-16
tab_model(m.s2.b,
show.df = T,
show.ci = .95,
show.se = T,
show.stat = T,
string.stat = "t",
string.se="SE",
string.est = "Est",
digits = 3)
| trustExpert_w2 | ||||||
|---|---|---|---|---|---|---|
| Predictors | Est | SE | CI | t | p | df |
| (Intercept) | 1.482 | 0.024 | 1.434 – 1.530 | 60.984 | <0.001 | 2440.000 |
| index_ANexp_w2.z | 0.111 | 0.031 | 0.049 – 0.172 | 3.520 | <0.001 | 2440.000 |
| ideology.z | -0.193 | 0.023 | -0.239 – -0.148 | -8.305 | <0.001 | 2440.000 |
| age.z | 0.083 | 0.023 | 0.037 – 0.129 | 3.533 | <0.001 | 2440.000 |
| education.z | 0.011 | 0.025 | -0.037 – 0.059 | 0.455 | 0.649 | 2440.000 |
| white_.5 | 0.110 | 0.050 | 0.013 – 0.207 | 2.217 | 0.027 | 2440.000 |
| index_ANexp_w1.z | 0.053 | 0.031 | -0.008 – 0.115 | 1.715 | 0.086 | 2440.000 |
| trustExpert_w1.z | 0.897 | 0.025 | 0.848 – 0.945 | 36.111 | <0.001 | 2440.000 |
|
index_ANexp_w2.z * ideology.z |
0.054 | 0.020 | 0.014 – 0.094 | 2.648 | 0.008 | 2440.000 |
| Observations | 2449 | |||||
| R2 / R2 adjusted | 0.460 / 0.459 | |||||
summary(m.s3.a <- lm(vaxxBehavior ~ index_ANexp_w3.z * ideology.z + age.z + education.z + white_.5, data = d))
##
## Call:
## lm(formula = vaxxBehavior ~ index_ANexp_w3.z * ideology.z + age.z +
## education.z + white_.5, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.1044 -0.3664 0.3046 0.7190 2.4337
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.20751 0.03947 81.268 < 2e-16 ***
## index_ANexp_w3.z 0.28388 0.03601 7.884 8.33e-15 ***
## ideology.z -0.23941 0.03328 -7.194 1.24e-12 ***
## age.z 0.25291 0.03667 6.897 9.44e-12 ***
## education.z 0.14832 0.03723 3.983 7.29e-05 ***
## white_.5 -0.04062 0.07848 -0.518 0.60485
## index_ANexp_w3.z:ideology.z 0.09972 0.03139 3.176 0.00154 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.065 on 990 degrees of freedom
## (2863 observations deleted due to missingness)
## Multiple R-squared: 0.1755, Adjusted R-squared: 0.1705
## F-statistic: 35.13 on 6 and 990 DF, p-value: < 2.2e-16
tab_model(m.s3.a,
show.df = T,
show.ci = .95,
show.se = T,
show.stat = T,
string.stat = "t",
string.se="SE",
string.est = "Est",
digits = 3)
| vaxxBehavior | ||||||
|---|---|---|---|---|---|---|
| Predictors | Est | SE | CI | t | p | df |
| (Intercept) | 3.208 | 0.039 | 3.130 – 3.285 | 81.268 | <0.001 | 990.000 |
| index_ANexp_w3.z | 0.284 | 0.036 | 0.213 – 0.355 | 7.884 | <0.001 | 990.000 |
| ideology.z | -0.239 | 0.033 | -0.305 – -0.174 | -7.194 | <0.001 | 990.000 |
| age.z | 0.253 | 0.037 | 0.181 – 0.325 | 6.897 | <0.001 | 990.000 |
| education.z | 0.148 | 0.037 | 0.075 – 0.221 | 3.983 | <0.001 | 990.000 |
| white_.5 | -0.041 | 0.078 | -0.195 – 0.113 | -0.518 | 0.605 | 990.000 |
|
index_ANexp_w3.z * ideology.z |
0.100 | 0.031 | 0.038 – 0.161 | 3.176 | 0.002 | 990.000 |
| Observations | 997 | |||||
| R2 / R2 adjusted | 0.176 / 0.171 | |||||
summary(m.s3.b <- lm(vaxxBehavior ~ index_ANexp_w3.z * ideology.z + age.z + education.z + white_.5 + avgANexp_w1w2.z + avgVaxxIntentions.z, data = d))
##
## Call:
## lm(formula = vaxxBehavior ~ index_ANexp_w3.z * ideology.z + age.z +
## education.z + white_.5 + avgANexp_w1w2.z + avgVaxxIntentions.z,
## data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.5013 -0.4539 0.1884 0.6307 2.1048
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.08361 0.03806 81.012 < 2e-16 ***
## index_ANexp_w3.z 0.19972 0.04692 4.256 2.29e-05 ***
## ideology.z -0.17276 0.03143 -5.497 5.02e-08 ***
## age.z 0.13209 0.03508 3.765 0.000177 ***
## education.z 0.11695 0.03536 3.307 0.000979 ***
## white_.5 -0.09751 0.07397 -1.318 0.187752
## avgANexp_w1w2.z -0.01496 0.04737 -0.316 0.752268
## avgVaxxIntentions.z 0.25332 0.01695 14.950 < 2e-16 ***
## index_ANexp_w3.z:ideology.z 0.05306 0.02952 1.797 0.072638 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.9492 on 907 degrees of freedom
## (2944 observations deleted due to missingness)
## Multiple R-squared: 0.337, Adjusted R-squared: 0.3312
## F-statistic: 57.64 on 8 and 907 DF, p-value: < 2.2e-16
tab_model(m.s3.b,
show.df = T,
show.ci = .95,
show.se = T,
show.stat = T,
string.stat = "t",
string.se="SE",
string.est = "Est",
digits = 3)
| vaxxBehavior | ||||||
|---|---|---|---|---|---|---|
| Predictors | Est | SE | CI | t | p | df |
| (Intercept) | 3.084 | 0.038 | 3.009 – 3.158 | 81.012 | <0.001 | 907.000 |
| index_ANexp_w3.z | 0.200 | 0.047 | 0.108 – 0.292 | 4.256 | <0.001 | 907.000 |
| ideology.z | -0.173 | 0.031 | -0.234 – -0.111 | -5.497 | <0.001 | 907.000 |
| age.z | 0.132 | 0.035 | 0.063 – 0.201 | 3.765 | <0.001 | 907.000 |
| education.z | 0.117 | 0.035 | 0.048 – 0.186 | 3.307 | 0.001 | 907.000 |
| white_.5 | -0.098 | 0.074 | -0.243 – 0.048 | -1.318 | 0.188 | 907.000 |
| avgANexp_w1w2.z | -0.015 | 0.047 | -0.108 – 0.078 | -0.316 | 0.752 | 907.000 |
| avgVaxxIntentions.z | 0.253 | 0.017 | 0.220 – 0.287 | 14.950 | <0.001 | 907.000 |
|
index_ANexp_w3.z * ideology.z |
0.053 | 0.030 | -0.005 – 0.111 | 1.797 | 0.073 | 907.000 |
| Observations | 916 | |||||
| R2 / R2 adjusted | 0.337 / 0.331 | |||||
sobel test: https://quantpsy.org/sobel/sobel.htm
vaxxBehavior ~ index.w3.z + ideology.z + age.z + white_.5 + education.z
trustSci ~ index.w3.z + ideology.z + age.z + white_.5 + education.z
vaxxBehavior ~ trustSci.z + index.w3.z + ideology.z + age.z + white_.5 + education.z
summary(m4.xy <- lm(vaxxBehavior ~ index_ANexp_w3.z + ideology.z + age.z + white_.5 + education.z, data = d))
##
## Call:
## lm(formula = vaxxBehavior ~ index_ANexp_w3.z + ideology.z + age.z +
## white_.5 + education.z, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.3665 -0.3807 0.3173 0.7568 2.3831
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.18244 0.03885 81.920 < 2e-16 ***
## index_ANexp_w3.z 0.27464 0.03605 7.618 6.02e-14 ***
## ideology.z -0.24213 0.03342 -7.246 8.65e-13 ***
## age.z 0.24371 0.03672 6.637 5.26e-11 ***
## white_.5 -0.04550 0.07883 -0.577 0.564
## education.z 0.15482 0.03735 4.145 3.68e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.07 on 991 degrees of freedom
## (2863 observations deleted due to missingness)
## Multiple R-squared: 0.1671, Adjusted R-squared: 0.1629
## F-statistic: 39.77 on 5 and 991 DF, p-value: < 2.2e-16
summary(m4.xm <- lm(trustSci ~ index_ANexp_w3.z + ideology.z + age.z + white_.5 + education.z, data = d))
##
## Call:
## lm(formula = trustSci ~ index_ANexp_w3.z + ideology.z + age.z +
## white_.5 + education.z, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.37123 -0.45216 0.00732 0.51357 1.78295
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.40205 0.02616 130.047 < 2e-16 ***
## index_ANexp_w3.z 0.05183 0.02427 2.135 0.032971 *
## ideology.z -0.36310 0.02244 -16.181 < 2e-16 ***
## age.z 0.10092 0.02477 4.075 4.98e-05 ***
## white_.5 0.23917 0.05308 4.506 7.41e-06 ***
## education.z 0.08401 0.02505 3.353 0.000828 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.7177 on 987 degrees of freedom
## (2867 observations deleted due to missingness)
## Multiple R-squared: 0.2461, Adjusted R-squared: 0.2423
## F-statistic: 64.43 on 5 and 987 DF, p-value: < 2.2e-16
summary(m4.xmy <- lm(vaxxBehavior ~ trustSci.z + index_ANexp_w3.z + ideology.z + age.z + white_.5 + education.z, data = d))
##
## Call:
## lm(formula = vaxxBehavior ~ trustSci.z + index_ANexp_w3.z + ideology.z +
## age.z + white_.5 + education.z, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.6413 -0.4671 0.2718 0.6970 2.1198
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.20689 0.03736 85.836 < 2e-16 ***
## trustSci.z 0.36369 0.03725 9.764 < 2e-16 ***
## index_ANexp_w3.z 0.24583 0.03482 7.060 3.13e-12 ***
## ideology.z -0.08459 0.03603 -2.348 0.019092 *
## age.z 0.20110 0.03558 5.651 2.08e-08 ***
## white_.5 -0.15989 0.07651 -2.090 0.036901 *
## education.z 0.11879 0.03590 3.309 0.000969 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.022 on 984 degrees of freedom
## (2869 observations deleted due to missingness)
## Multiple R-squared: 0.2414, Adjusted R-squared: 0.2368
## F-statistic: 52.19 on 6 and 984 DF, p-value: < 2.2e-16
tab_model(m4.xy, m4.xm, m4.xmy,
show.df = T,
show.ci = .95,
show.se = T,
show.stat = T,
string.stat = "t",
string.se="SE",
string.est = "Est",
digits = 3)
| vaxxBehavior | trustSci | vaxxBehavior | ||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Predictors | Est | SE | CI | t | p | df | Est | SE | CI | t | p | df | Est | SE | CI | t | p | df |
| (Intercept) | 3.182 | 0.039 | 3.106 – 3.259 | 81.920 | <0.001 | 991.000 | 3.402 | 0.026 | 3.351 – 3.453 | 130.047 | <0.001 | 987.000 | 3.207 | 0.037 | 3.134 – 3.280 | 85.836 | <0.001 | 984.000 |
| index_ANexp_w3.z | 0.275 | 0.036 | 0.204 – 0.345 | 7.618 | <0.001 | 991.000 | 0.052 | 0.024 | 0.004 – 0.099 | 2.135 | 0.033 | 987.000 | 0.246 | 0.035 | 0.178 – 0.314 | 7.060 | <0.001 | 984.000 |
| ideology.z | -0.242 | 0.033 | -0.308 – -0.177 | -7.246 | <0.001 | 991.000 | -0.363 | 0.022 | -0.407 – -0.319 | -16.181 | <0.001 | 987.000 | -0.085 | 0.036 | -0.155 – -0.014 | -2.348 | 0.019 | 984.000 |
| age.z | 0.244 | 0.037 | 0.172 – 0.316 | 6.637 | <0.001 | 991.000 | 0.101 | 0.025 | 0.052 – 0.150 | 4.075 | <0.001 | 987.000 | 0.201 | 0.036 | 0.131 – 0.271 | 5.651 | <0.001 | 984.000 |
| white_.5 | -0.045 | 0.079 | -0.200 – 0.109 | -0.577 | 0.564 | 991.000 | 0.239 | 0.053 | 0.135 – 0.343 | 4.506 | <0.001 | 987.000 | -0.160 | 0.077 | -0.310 – -0.010 | -2.090 | 0.037 | 984.000 |
| education.z | 0.155 | 0.037 | 0.082 – 0.228 | 4.145 | <0.001 | 991.000 | 0.084 | 0.025 | 0.035 – 0.133 | 3.353 | 0.001 | 987.000 | 0.119 | 0.036 | 0.048 – 0.189 | 3.309 | 0.001 | 984.000 |
| trustSci.z | 0.364 | 0.037 | 0.291 – 0.437 | 9.764 | <0.001 | 984.000 | ||||||||||||
| Observations | 997 | 993 | 991 | |||||||||||||||
| R2 / R2 adjusted | 0.167 / 0.163 | 0.246 / 0.242 | 0.241 / 0.237 | |||||||||||||||
vaxxBehavior ~ index.w3.z * ideology.z + age.z + white_.5 + education.z
trustSci ~ index.w3.z * ideology.z + age.z + white_.5 + education.z
vaxxBehavior ~ (trustSci.z + index.w3.z) * ideology.z + age.z + white_.5 + education.z
summary(m4.xy <- lm(vaxxBehavior ~ index_ANexp_w3.z * ideology.z + age.z + white_.5 + education.z, data = d))
##
## Call:
## lm(formula = vaxxBehavior ~ index_ANexp_w3.z * ideology.z + age.z +
## white_.5 + education.z, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.1044 -0.3664 0.3046 0.7190 2.4337
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.20751 0.03947 81.268 < 2e-16 ***
## index_ANexp_w3.z 0.28388 0.03601 7.884 8.33e-15 ***
## ideology.z -0.23941 0.03328 -7.194 1.24e-12 ***
## age.z 0.25291 0.03667 6.897 9.44e-12 ***
## white_.5 -0.04062 0.07848 -0.518 0.60485
## education.z 0.14832 0.03723 3.983 7.29e-05 ***
## index_ANexp_w3.z:ideology.z 0.09972 0.03139 3.176 0.00154 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.065 on 990 degrees of freedom
## (2863 observations deleted due to missingness)
## Multiple R-squared: 0.1755, Adjusted R-squared: 0.1705
## F-statistic: 35.13 on 6 and 990 DF, p-value: < 2.2e-16
summary(m4.xm <- lm(trustSci ~ index_ANexp_w3.z * ideology.z + age.z + white_.5 + education.z, data = d))
##
## Call:
## lm(formula = trustSci ~ index_ANexp_w3.z * ideology.z + age.z +
## white_.5 + education.z, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.37912 -0.47334 0.00095 0.51059 1.79660
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.41722 0.02659 128.500 < 2e-16 ***
## index_ANexp_w3.z 0.05824 0.02429 2.398 0.01666 *
## ideology.z -0.36155 0.02236 -16.166 < 2e-16 ***
## age.z 0.10713 0.02477 4.324 1.68e-05 ***
## white_.5 0.24315 0.05290 4.596 4.87e-06 ***
## education.z 0.07943 0.02501 3.176 0.00154 **
## index_ANexp_w3.z:ideology.z 0.06015 0.02092 2.875 0.00413 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.7151 on 986 degrees of freedom
## (2867 observations deleted due to missingness)
## Multiple R-squared: 0.2523, Adjusted R-squared: 0.2478
## F-statistic: 55.47 on 6 and 986 DF, p-value: < 2.2e-16
summary(m4.xmy <- lm(vaxxBehavior ~ (trustSci.z + index_ANexp_w3.z) * ideology.z + age.z + white_.5 + education.z, data = d))
##
## Call:
## lm(formula = vaxxBehavior ~ (trustSci.z + index_ANexp_w3.z) *
## ideology.z + age.z + white_.5 + education.z, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.3584 -0.4085 0.2579 0.6639 2.2270
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.25066 0.03990 81.472 < 2e-16 ***
## trustSci.z 0.35106 0.03729 9.413 < 2e-16 ***
## index_ANexp_w3.z 0.24866 0.03487 7.132 1.92e-12 ***
## ideology.z -0.09022 0.03596 -2.509 0.01226 *
## age.z 0.21282 0.03563 5.974 3.24e-09 ***
## white_.5 -0.14752 0.07629 -1.934 0.05343 .
## education.z 0.11733 0.03582 3.276 0.00109 **
## trustSci.z:ideology.z 0.06048 0.02973 2.034 0.04219 *
## index_ANexp_w3.z:ideology.z 0.06935 0.03044 2.278 0.02294 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.018 on 982 degrees of freedom
## (2869 observations deleted due to missingness)
## Multiple R-squared: 0.2494, Adjusted R-squared: 0.2433
## F-statistic: 40.79 on 8 and 982 DF, p-value: < 2.2e-16
tab_model(m4.xy, m4.xm, m4.xmy,
show.df = T,
show.ci = .95,
show.se = T,
show.stat = T,
string.stat = "t",
string.se="SE",
string.est = "Est",
digits = 3)
| vaxxBehavior | trustSci | vaxxBehavior | ||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Predictors | Est | SE | CI | t | p | df | Est | SE | CI | t | p | df | Est | SE | CI | t | p | df |
| (Intercept) | 3.208 | 0.039 | 3.130 – 3.285 | 81.268 | <0.001 | 990.000 | 3.417 | 0.027 | 3.365 – 3.469 | 128.500 | <0.001 | 986.000 | 3.251 | 0.040 | 3.172 – 3.329 | 81.472 | <0.001 | 982.000 |
| index_ANexp_w3.z | 0.284 | 0.036 | 0.213 – 0.355 | 7.884 | <0.001 | 990.000 | 0.058 | 0.024 | 0.011 – 0.106 | 2.398 | 0.017 | 986.000 | 0.249 | 0.035 | 0.180 – 0.317 | 7.132 | <0.001 | 982.000 |
| ideology.z | -0.239 | 0.033 | -0.305 – -0.174 | -7.194 | <0.001 | 990.000 | -0.362 | 0.022 | -0.405 – -0.318 | -16.166 | <0.001 | 986.000 | -0.090 | 0.036 | -0.161 – -0.020 | -2.509 | 0.012 | 982.000 |
| age.z | 0.253 | 0.037 | 0.181 – 0.325 | 6.897 | <0.001 | 990.000 | 0.107 | 0.025 | 0.059 – 0.156 | 4.324 | <0.001 | 986.000 | 0.213 | 0.036 | 0.143 – 0.283 | 5.974 | <0.001 | 982.000 |
| white_.5 | -0.041 | 0.078 | -0.195 – 0.113 | -0.518 | 0.605 | 990.000 | 0.243 | 0.053 | 0.139 – 0.347 | 4.596 | <0.001 | 986.000 | -0.148 | 0.076 | -0.297 – 0.002 | -1.934 | 0.053 | 982.000 |
| education.z | 0.148 | 0.037 | 0.075 – 0.221 | 3.983 | <0.001 | 990.000 | 0.079 | 0.025 | 0.030 – 0.129 | 3.176 | 0.002 | 986.000 | 0.117 | 0.036 | 0.047 – 0.188 | 3.276 | 0.001 | 982.000 |
|
index_ANexp_w3.z * ideology.z |
0.100 | 0.031 | 0.038 – 0.161 | 3.176 | 0.002 | 990.000 | 0.060 | 0.021 | 0.019 – 0.101 | 2.875 | 0.004 | 986.000 | 0.069 | 0.030 | 0.010 – 0.129 | 2.278 | 0.023 | 982.000 |
| trustSci.z | 0.351 | 0.037 | 0.278 – 0.424 | 9.413 | <0.001 | 982.000 | ||||||||||||
| trustSci.z * ideology.z | 0.060 | 0.030 | 0.002 – 0.119 | 2.034 | 0.042 | 982.000 | ||||||||||||
| Observations | 997 | 993 | 991 | |||||||||||||||
| R2 / R2 adjusted | 0.176 / 0.171 | 0.252 / 0.248 | 0.249 / 0.243 | |||||||||||||||
vaxxBehavior ~ index.w3.z * (ideology.z + age.z + white_.5 + education.z)
trustSci ~ index.w3.z * (ideology.z + age.z + white_.5 + education.z)
vaxxBehavior ~ (trustSci.z + index.w3.z) * (ideology.z + age.z + white_.5 + education.z)
summary(m4.xy <- lm(vaxxBehavior ~ index_ANexp_w3.z * (ideology.z + age.z + white_.5 + education.z), data = d))
##
## Call:
## lm(formula = vaxxBehavior ~ index_ANexp_w3.z * (ideology.z +
## age.z + white_.5 + education.z), data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.0256 -0.3790 0.3015 0.7011 2.6801
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.19525 0.04100 77.942 < 2e-16 ***
## index_ANexp_w3.z 0.29030 0.03674 7.901 7.35e-15 ***
## ideology.z -0.24195 0.03368 -7.184 1.33e-12 ***
## age.z 0.25623 0.03674 6.975 5.59e-12 ***
## white_.5 -0.02206 0.07976 -0.277 0.782216
## education.z 0.17429 0.03905 4.464 8.99e-06 ***
## index_ANexp_w3.z:ideology.z 0.10814 0.03190 3.390 0.000727 ***
## index_ANexp_w3.z:age.z -0.03086 0.03697 -0.835 0.404019
## index_ANexp_w3.z:white_.5 -0.02191 0.07405 -0.296 0.767372
## index_ANexp_w3.z:education.z -0.06362 0.03046 -2.088 0.037017 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.064 on 987 degrees of freedom
## (2863 observations deleted due to missingness)
## Multiple R-squared: 0.18, Adjusted R-squared: 0.1725
## F-statistic: 24.07 on 9 and 987 DF, p-value: < 2.2e-16
summary(m4.xm <- lm(trustSci ~ index_ANexp_w3.z * (ideology.z + age.z + white_.5 + education.z), data = d))
##
## Call:
## lm(formula = trustSci ~ index_ANexp_w3.z * (ideology.z + age.z +
## white_.5 + education.z), data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.27291 -0.45392 0.01196 0.50327 1.75854
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.43187 0.02760 124.350 < 2e-16 ***
## index_ANexp_w3.z 0.05198 0.02468 2.106 0.03546 *
## ideology.z -0.34743 0.02258 -15.385 < 2e-16 ***
## age.z 0.10575 0.02475 4.274 2.11e-05 ***
## white_.5 0.22241 0.05360 4.149 3.62e-05 ***
## education.z 0.08016 0.02611 3.070 0.00220 **
## index_ANexp_w3.z:ideology.z 0.05047 0.02112 2.390 0.01705 *
## index_ANexp_w3.z:age.z 0.07852 0.02501 3.139 0.00174 **
## index_ANexp_w3.z:white_.5 0.05573 0.04980 1.119 0.26334
## index_ANexp_w3.z:education.z -0.01544 0.02035 -0.759 0.44816
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.7113 on 983 degrees of freedom
## (2867 observations deleted due to missingness)
## Multiple R-squared: 0.2625, Adjusted R-squared: 0.2557
## F-statistic: 38.87 on 9 and 983 DF, p-value: < 2.2e-16
summary(m4.xmy <- lm(vaxxBehavior ~ (trustSci.z + index_ANexp_w3.z) * (ideology.z + age.z + white_.5 + education.z), data = d))
##
## Call:
## lm(formula = vaxxBehavior ~ (trustSci.z + index_ANexp_w3.z) *
## (ideology.z + age.z + white_.5 + education.z), data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.1670 -0.3951 0.2540 0.6355 2.4172
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.21304 0.04205 76.417 < 2e-16 ***
## trustSci.z 0.31276 0.04254 7.352 4.14e-13 ***
## index_ANexp_w3.z 0.25661 0.03570 7.187 1.31e-12 ***
## ideology.z -0.09222 0.03599 -2.562 0.01055 *
## age.z 0.22432 0.03578 6.269 5.43e-10 ***
## white_.5 -0.12841 0.07738 -1.659 0.09734 .
## education.z 0.14379 0.03795 3.789 0.00016 ***
## trustSci.z:ideology.z 0.05128 0.03090 1.659 0.09738 .
## trustSci.z:age.z -0.02619 0.03589 -0.730 0.46571
## trustSci.z:white_.5 0.19147 0.07865 2.435 0.01509 *
## trustSci.z:education.z 0.05201 0.03688 1.410 0.15883
## index_ANexp_w3.z:ideology.z 0.07267 0.03102 2.343 0.01935 *
## index_ANexp_w3.z:age.z -0.04254 0.03691 -1.153 0.24933
## index_ANexp_w3.z:white_.5 -0.09030 0.07239 -1.247 0.21255
## index_ANexp_w3.z:education.z -0.05653 0.02907 -1.945 0.05212 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.013 on 976 degrees of freedom
## (2869 observations deleted due to missingness)
## Multiple R-squared: 0.2612, Adjusted R-squared: 0.2506
## F-statistic: 24.65 on 14 and 976 DF, p-value: < 2.2e-16
tab_model(m4.xy, m4.xm, m4.xmy,
show.df = T,
show.ci = .95,
show.se = T,
show.stat = T,
string.stat = "t",
string.se="SE",
string.est = "Est",
digits = 3)
| vaxxBehavior | trustSci | vaxxBehavior | ||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Predictors | Est | SE | CI | t | p | df | Est | SE | CI | t | p | df | Est | SE | CI | t | p | df |
| (Intercept) | 3.195 | 0.041 | 3.115 – 3.276 | 77.942 | <0.001 | 987.000 | 3.432 | 0.028 | 3.378 – 3.486 | 124.350 | <0.001 | 983.000 | 3.213 | 0.042 | 3.131 – 3.296 | 76.417 | <0.001 | 976.000 |
| index_ANexp_w3.z | 0.290 | 0.037 | 0.218 – 0.362 | 7.901 | <0.001 | 987.000 | 0.052 | 0.025 | 0.004 – 0.100 | 2.106 | 0.035 | 983.000 | 0.257 | 0.036 | 0.187 – 0.327 | 7.187 | <0.001 | 976.000 |
| ideology.z | -0.242 | 0.034 | -0.308 – -0.176 | -7.184 | <0.001 | 987.000 | -0.347 | 0.023 | -0.392 – -0.303 | -15.385 | <0.001 | 983.000 | -0.092 | 0.036 | -0.163 – -0.022 | -2.562 | 0.011 | 976.000 |
| age.z | 0.256 | 0.037 | 0.184 – 0.328 | 6.975 | <0.001 | 987.000 | 0.106 | 0.025 | 0.057 – 0.154 | 4.274 | <0.001 | 983.000 | 0.224 | 0.036 | 0.154 – 0.295 | 6.269 | <0.001 | 976.000 |
| white_.5 | -0.022 | 0.080 | -0.179 – 0.134 | -0.277 | 0.782 | 987.000 | 0.222 | 0.054 | 0.117 – 0.328 | 4.149 | <0.001 | 983.000 | -0.128 | 0.077 | -0.280 – 0.023 | -1.659 | 0.097 | 976.000 |
| education.z | 0.174 | 0.039 | 0.098 – 0.251 | 4.464 | <0.001 | 987.000 | 0.080 | 0.026 | 0.029 – 0.131 | 3.070 | 0.002 | 983.000 | 0.144 | 0.038 | 0.069 – 0.218 | 3.789 | <0.001 | 976.000 |
|
index_ANexp_w3.z * ideology.z |
0.108 | 0.032 | 0.046 – 0.171 | 3.390 | 0.001 | 987.000 | 0.050 | 0.021 | 0.009 – 0.092 | 2.390 | 0.017 | 983.000 | 0.073 | 0.031 | 0.012 – 0.134 | 2.343 | 0.019 | 976.000 |
| index_ANexp_w3.z * age.z | -0.031 | 0.037 | -0.103 – 0.042 | -0.835 | 0.404 | 987.000 | 0.079 | 0.025 | 0.029 – 0.128 | 3.139 | 0.002 | 983.000 | -0.043 | 0.037 | -0.115 – 0.030 | -1.153 | 0.249 | 976.000 |
|
index_ANexp_w3.z * white_.5 |
-0.022 | 0.074 | -0.167 – 0.123 | -0.296 | 0.767 | 987.000 | 0.056 | 0.050 | -0.042 – 0.153 | 1.119 | 0.263 | 983.000 | -0.090 | 0.072 | -0.232 – 0.052 | -1.247 | 0.213 | 976.000 |
|
index_ANexp_w3.z * education.z |
-0.064 | 0.030 | -0.123 – -0.004 | -2.088 | 0.037 | 987.000 | -0.015 | 0.020 | -0.055 – 0.024 | -0.759 | 0.448 | 983.000 | -0.057 | 0.029 | -0.114 – 0.001 | -1.945 | 0.052 | 976.000 |
| trustSci.z | 0.313 | 0.043 | 0.229 – 0.396 | 7.352 | <0.001 | 976.000 | ||||||||||||
| trustSci.z * ideology.z | 0.051 | 0.031 | -0.009 – 0.112 | 1.659 | 0.097 | 976.000 | ||||||||||||
| trustSci.z * age.z | -0.026 | 0.036 | -0.097 – 0.044 | -0.730 | 0.466 | 976.000 | ||||||||||||
| trustSci.z * white_.5 | 0.191 | 0.079 | 0.037 – 0.346 | 2.435 | 0.015 | 976.000 | ||||||||||||
| trustSci.z * education.z | 0.052 | 0.037 | -0.020 – 0.124 | 1.410 | 0.159 | 976.000 | ||||||||||||
| Observations | 997 | 993 | 991 | |||||||||||||||
| R2 / R2 adjusted | 0.180 / 0.172 | 0.262 / 0.256 | 0.261 / 0.251 | |||||||||||||||
summary(m3.xm <- lm(trustSci ~ index_ANexp_w3.z * ideology.z + age.z + white_.5 + education.z + avgANexp_w1w2.z, data = d))
##
## Call:
## lm(formula = trustSci ~ index_ANexp_w3.z * ideology.z + age.z +
## white_.5 + education.z + avgANexp_w1w2.z, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.3380 -0.4842 0.0160 0.5048 1.8045
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.41108 0.02809 121.414 < 2e-16 ***
## index_ANexp_w3.z 0.01538 0.03548 0.434 0.664702
## ideology.z -0.35266 0.02363 -14.923 < 2e-16 ***
## age.z 0.10459 0.02613 4.002 6.79e-05 ***
## white_.5 0.25488 0.05594 4.556 5.93e-06 ***
## education.z 0.08956 0.02665 3.360 0.000812 ***
## avgANexp_w1w2.z 0.07031 0.03562 1.974 0.048678 *
## index_ANexp_w3.z:ideology.z 0.04431 0.02236 1.982 0.047818 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.7166 on 904 degrees of freedom
## (2948 observations deleted due to missingness)
## Multiple R-squared: 0.2538, Adjusted R-squared: 0.248
## F-statistic: 43.92 on 7 and 904 DF, p-value: < 2.2e-16
model 1: vaxxBehavior ~ index_ANexp_w3.z + sciLit.z + ideology.z + age.z + white_.5 + education.z
model 2: vaxxBehavior ~ index_ANexp_w3.z * sciLit.z + ideology.z + age.z + white_.5 + education.z
model 3: vaxxBehavior ~ index_ANexp_w3.z * (sciLit.z + ideology.z) + age.z + white_.5 + education.z
summary(m1 <- lm(vaxxBehavior ~ index_ANexp_w3.z + sciLit.z + ideology.z + age.z + white_.5 + education.z, data = d))
##
## Call:
## lm(formula = vaxxBehavior ~ index_ANexp_w3.z + sciLit.z + ideology.z +
## age.z + white_.5 + education.z, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.3311 -0.3940 0.3155 0.7533 2.3642
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.18017 0.03907 81.407 < 2e-16 ***
## index_ANexp_w3.z 0.27587 0.03620 7.620 5.95e-14 ***
## sciLit.z 0.02980 0.03513 0.848 0.396
## ideology.z -0.24696 0.03350 -7.372 3.55e-13 ***
## age.z 0.24849 0.03680 6.752 2.49e-11 ***
## white_.5 -0.05272 0.07993 -0.660 0.510
## education.z 0.15042 0.03780 3.979 7.42e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.07 on 987 degrees of freedom
## (2866 observations deleted due to missingness)
## Multiple R-squared: 0.1699, Adjusted R-squared: 0.1648
## F-statistic: 33.67 on 6 and 987 DF, p-value: < 2.2e-16
summary(m2 <- lm(vaxxBehavior ~ index_ANexp_w3.z * sciLit.z + ideology.z + age.z + white_.5 + education.z, data = d))
##
## Call:
## lm(formula = vaxxBehavior ~ index_ANexp_w3.z * sciLit.z + ideology.z +
## age.z + white_.5 + education.z, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.4071 -0.3853 0.3237 0.7532 2.3603
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.17848 0.03913 81.229 < 2e-16 ***
## index_ANexp_w3.z 0.27253 0.03645 7.476 1.68e-13 ***
## sciLit.z 0.03497 0.03572 0.979 0.328
## ideology.z -0.24791 0.03353 -7.395 3.03e-13 ***
## age.z 0.24914 0.03682 6.767 2.26e-11 ***
## white_.5 -0.05670 0.08010 -0.708 0.479
## education.z 0.15206 0.03787 4.016 6.37e-05 ***
## index_ANexp_w3.z:sciLit.z -0.02378 0.02971 -0.800 0.424
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.07 on 986 degrees of freedom
## (2866 observations deleted due to missingness)
## Multiple R-squared: 0.1704, Adjusted R-squared: 0.1645
## F-statistic: 28.94 on 7 and 986 DF, p-value: < 2.2e-16
summary(m3 <- lm(vaxxBehavior ~ index_ANexp_w3.z * (sciLit.z + ideology.z) + age.z + white_.5 + education.z, data = d))
##
## Call:
## lm(formula = vaxxBehavior ~ index_ANexp_w3.z * (sciLit.z + ideology.z) +
## age.z + white_.5 + education.z, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.1559 -0.3888 0.3080 0.7145 2.4073
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.20367 0.03973 80.638 < 2e-16 ***
## index_ANexp_w3.z 0.28150 0.03639 7.736 2.53e-14 ***
## sciLit.z 0.03768 0.03557 1.060 0.289631
## ideology.z -0.24522 0.03338 -7.346 4.27e-13 ***
## age.z 0.25847 0.03676 7.031 3.83e-12 ***
## white_.5 -0.05265 0.07973 -0.660 0.509242
## education.z 0.14541 0.03774 3.853 0.000124 ***
## index_ANexp_w3.z:sciLit.z -0.02886 0.02962 -0.974 0.330067
## index_ANexp_w3.z:ideology.z 0.10100 0.03146 3.211 0.001368 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.065 on 985 degrees of freedom
## (2866 observations deleted due to missingness)
## Multiple R-squared: 0.179, Adjusted R-squared: 0.1724
## F-statistic: 26.85 on 8 and 985 DF, p-value: < 2.2e-16
tab_model(m1, m2, m3,
show.df = T,
show.ci = .95,
show.se = T,
show.stat = T,
string.stat = "t",
string.se="SE",
string.est = "Est",
digits = 3)
| vaxxBehavior | vaxxBehavior | vaxxBehavior | ||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Predictors | Est | SE | CI | t | p | df | Est | SE | CI | t | p | df | Est | SE | CI | t | p | df |
| (Intercept) | 3.180 | 0.039 | 3.104 – 3.257 | 81.407 | <0.001 | 987.000 | 3.178 | 0.039 | 3.102 – 3.255 | 81.229 | <0.001 | 986.000 | 3.204 | 0.040 | 3.126 – 3.282 | 80.638 | <0.001 | 985.000 |
| index_ANexp_w3.z | 0.276 | 0.036 | 0.205 – 0.347 | 7.620 | <0.001 | 987.000 | 0.273 | 0.036 | 0.201 – 0.344 | 7.476 | <0.001 | 986.000 | 0.282 | 0.036 | 0.210 – 0.353 | 7.736 | <0.001 | 985.000 |
| sciLit.z | 0.030 | 0.035 | -0.039 – 0.099 | 0.848 | 0.396 | 987.000 | 0.035 | 0.036 | -0.035 – 0.105 | 0.979 | 0.328 | 986.000 | 0.038 | 0.036 | -0.032 – 0.107 | 1.060 | 0.290 | 985.000 |
| ideology.z | -0.247 | 0.033 | -0.313 – -0.181 | -7.372 | <0.001 | 987.000 | -0.248 | 0.034 | -0.314 – -0.182 | -7.395 | <0.001 | 986.000 | -0.245 | 0.033 | -0.311 – -0.180 | -7.346 | <0.001 | 985.000 |
| age.z | 0.248 | 0.037 | 0.176 – 0.321 | 6.752 | <0.001 | 987.000 | 0.249 | 0.037 | 0.177 – 0.321 | 6.767 | <0.001 | 986.000 | 0.258 | 0.037 | 0.186 – 0.331 | 7.031 | <0.001 | 985.000 |
| white_.5 | -0.053 | 0.080 | -0.210 – 0.104 | -0.660 | 0.510 | 987.000 | -0.057 | 0.080 | -0.214 – 0.100 | -0.708 | 0.479 | 986.000 | -0.053 | 0.080 | -0.209 – 0.104 | -0.660 | 0.509 | 985.000 |
| education.z | 0.150 | 0.038 | 0.076 – 0.225 | 3.979 | <0.001 | 987.000 | 0.152 | 0.038 | 0.078 – 0.226 | 4.016 | <0.001 | 986.000 | 0.145 | 0.038 | 0.071 – 0.219 | 3.853 | <0.001 | 985.000 |
|
index_ANexp_w3.z * sciLit.z |
-0.024 | 0.030 | -0.082 – 0.035 | -0.800 | 0.424 | 986.000 | -0.029 | 0.030 | -0.087 – 0.029 | -0.974 | 0.330 | 985.000 | ||||||
|
index_ANexp_w3.z * ideology.z |
0.101 | 0.031 | 0.039 – 0.163 | 3.211 | 0.001 | 985.000 | ||||||||||||
| Observations | 994 | 994 | 994 | |||||||||||||||
| R2 / R2 adjusted | 0.170 / 0.165 | 0.170 / 0.165 | 0.179 / 0.172 | |||||||||||||||
model 1: vaxxBehavior ~ index.w3.z + CRT.z + ideology.z + age.z + white_.5 + education.z
model 2: vaxxBehavior ~ index.w3.z * CRT.z + ideology.z + age.z + white_.5 + education.z
model 3: vaxxBehavior ~ index.w3.z * (CRT.z + ideology.z) + age.z + white_.5 + education.z
summary(m1 <- lm(vaxxBehavior ~ index_ANexp_w3.z + CRT.z + ideology.z + age.z + white_.5 + education.z, data = d))
##
## Call:
## lm(formula = vaxxBehavior ~ index_ANexp_w3.z + CRT.z + ideology.z +
## age.z + white_.5 + education.z, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.2731 -0.3902 0.3159 0.7503 2.3534
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.18589 0.03945 80.749 < 2e-16 ***
## index_ANexp_w3.z 0.28719 0.03728 7.704 3.24e-14 ***
## CRT.z 0.10622 0.03635 2.922 0.003555 **
## ideology.z -0.24332 0.03362 -7.237 9.29e-13 ***
## age.z 0.24690 0.03696 6.681 4.00e-11 ***
## white_.5 -0.07271 0.08060 -0.902 0.367224
## education.z 0.13278 0.03830 3.467 0.000549 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.068 on 973 degrees of freedom
## (2880 observations deleted due to missingness)
## Multiple R-squared: 0.1748, Adjusted R-squared: 0.1697
## F-statistic: 34.36 on 6 and 973 DF, p-value: < 2.2e-16
summary(m2 <- lm(vaxxBehavior ~ index_ANexp_w3.z * CRT.z + ideology.z + age.z + white_.5 + education.z, data = d))
##
## Call:
## lm(formula = vaxxBehavior ~ index_ANexp_w3.z * CRT.z + ideology.z +
## age.z + white_.5 + education.z, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.2504 -0.3908 0.3134 0.7530 2.3476
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.18867 0.04076 78.232 < 2e-16 ***
## index_ANexp_w3.z 0.29110 0.03992 7.293 6.29e-13 ***
## CRT.z 0.10755 0.03669 2.932 0.003451 **
## ideology.z -0.24223 0.03387 -7.152 1.68e-12 ***
## age.z 0.24681 0.03698 6.675 4.15e-11 ***
## white_.5 -0.07429 0.08085 -0.919 0.358379
## education.z 0.13204 0.03841 3.438 0.000611 ***
## index_ANexp_w3.z:CRT.z 0.01051 0.03831 0.274 0.783830
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.069 on 972 degrees of freedom
## (2880 observations deleted due to missingness)
## Multiple R-squared: 0.1749, Adjusted R-squared: 0.169
## F-statistic: 29.43 on 7 and 972 DF, p-value: < 2.2e-16
summary(m3 <- lm(vaxxBehavior ~ index_ANexp_w3.z * (CRT.z + ideology.z) + age.z + white_.5 + education.z, data = d))
##
## Call:
## lm(formula = vaxxBehavior ~ index_ANexp_w3.z * (CRT.z + ideology.z) +
## age.z + white_.5 + education.z, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.9773 -0.4140 0.3023 0.7127 2.3953
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.21593 0.04142 77.648 < 2e-16 ***
## index_ANexp_w3.z 0.30245 0.03987 7.585 7.76e-14 ***
## CRT.z 0.11256 0.03654 3.080 0.00212 **
## ideology.z -0.23796 0.03373 -7.055 3.27e-12 ***
## age.z 0.25677 0.03692 6.954 6.51e-12 ***
## white_.5 -0.07240 0.08045 -0.900 0.36838
## education.z 0.12397 0.03830 3.237 0.00125 **
## index_ANexp_w3.z:CRT.z 0.01096 0.03812 0.288 0.77369
## index_ANexp_w3.z:ideology.z 0.10293 0.03165 3.252 0.00119 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.063 on 971 degrees of freedom
## (2880 observations deleted due to missingness)
## Multiple R-squared: 0.1838, Adjusted R-squared: 0.1771
## F-statistic: 27.33 on 8 and 971 DF, p-value: < 2.2e-16
tab_model(m1, m2, m3,
show.df = T,
show.ci = .95,
show.se = T,
show.stat = T,
string.stat = "t",
string.se="SE",
string.est = "Est",
digits = 3)
| vaxxBehavior | vaxxBehavior | vaxxBehavior | ||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Predictors | Est | SE | CI | t | p | df | Est | SE | CI | t | p | df | Est | SE | CI | t | p | df |
| (Intercept) | 3.186 | 0.039 | 3.108 – 3.263 | 80.749 | <0.001 | 973.000 | 3.189 | 0.041 | 3.109 – 3.269 | 78.232 | <0.001 | 972.000 | 3.216 | 0.041 | 3.135 – 3.297 | 77.648 | <0.001 | 971.000 |
| index_ANexp_w3.z | 0.287 | 0.037 | 0.214 – 0.360 | 7.704 | <0.001 | 973.000 | 0.291 | 0.040 | 0.213 – 0.369 | 7.293 | <0.001 | 972.000 | 0.302 | 0.040 | 0.224 – 0.381 | 7.585 | <0.001 | 971.000 |
| CRT.z | 0.106 | 0.036 | 0.035 – 0.178 | 2.922 | 0.004 | 973.000 | 0.108 | 0.037 | 0.036 – 0.180 | 2.932 | 0.003 | 972.000 | 0.113 | 0.037 | 0.041 – 0.184 | 3.080 | 0.002 | 971.000 |
| ideology.z | -0.243 | 0.034 | -0.309 – -0.177 | -7.237 | <0.001 | 973.000 | -0.242 | 0.034 | -0.309 – -0.176 | -7.152 | <0.001 | 972.000 | -0.238 | 0.034 | -0.304 – -0.172 | -7.055 | <0.001 | 971.000 |
| age.z | 0.247 | 0.037 | 0.174 – 0.319 | 6.681 | <0.001 | 973.000 | 0.247 | 0.037 | 0.174 – 0.319 | 6.675 | <0.001 | 972.000 | 0.257 | 0.037 | 0.184 – 0.329 | 6.954 | <0.001 | 971.000 |
| white_.5 | -0.073 | 0.081 | -0.231 – 0.085 | -0.902 | 0.367 | 973.000 | -0.074 | 0.081 | -0.233 – 0.084 | -0.919 | 0.358 | 972.000 | -0.072 | 0.080 | -0.230 – 0.085 | -0.900 | 0.368 | 971.000 |
| education.z | 0.133 | 0.038 | 0.058 – 0.208 | 3.467 | 0.001 | 973.000 | 0.132 | 0.038 | 0.057 – 0.207 | 3.438 | 0.001 | 972.000 | 0.124 | 0.038 | 0.049 – 0.199 | 3.237 | 0.001 | 971.000 |
| index_ANexp_w3.z * CRT.z | 0.011 | 0.038 | -0.065 – 0.086 | 0.274 | 0.784 | 972.000 | 0.011 | 0.038 | -0.064 – 0.086 | 0.288 | 0.774 | 971.000 | ||||||
|
index_ANexp_w3.z * ideology.z |
0.103 | 0.032 | 0.041 – 0.165 | 3.252 | 0.001 | 971.000 | ||||||||||||
| Observations | 980 | 980 | 980 | |||||||||||||||
| R2 / R2 adjusted | 0.175 / 0.170 | 0.175 / 0.169 | 0.184 / 0.177 | |||||||||||||||
#run model
m.w2 <- lm(vaxxIntentions_w2 ~ index_ANexp_w2.z * ideology.z + age.z + white_.5 + education.z, data = d)
#create plot
p <- plot_model(m.w2, type = "pred",
terms = c("index_ANexp_w2.z", "ideology.z [-1, 1]")) +
ggtitle("") +
ylab("") +
xlab("") +
theme_minimal() +
theme(panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
panel.background = element_blank(),
axis.line = element_line(colour = "black"),
legend.position = "none",
legend.background = element_rect(fill = "white", color = "white"),
legend.title = element_blank())
p.w2 <- p + scale_color_manual(labels = NULL,
values = c("blue", "red")) +
scale_fill_manual(values = c("blue", "red")) +
scale_x_continuous(breaks = c(-1, -.5, 0, .5, 1, 1.5, 2, 2.5, 3),
limits = c(-1, 3)) +
scale_y_continuous(breaks = c(-3, -2, -1, 0, 1, 2, 3),
limits = c(-3, 3),
labels = c("Definitely
would not",
"Probably
would not",
"Leaning toward
would not",
"Undecided",
"Leaning toward
would",
"Probably
would",
"Definitely
would"))
## Scale for 'colour' is already present. Adding another scale for 'colour',
## which will replace the existing scale.
## Scale for 'y' is already present. Adding another scale for 'y', which will
## replace the existing scale.
p.w2
## Warning: Removed 4 row(s) containing missing values (geom_path).
#run model
m.w3 <- lm(vaxxBehavior ~ index_ANexp_w3.z * ideology.z +
age.z + white_.5 + education.z, data = d)
#create plot
p <- plot_model(m.w3, type = "pred",
terms = c("index_ANexp_w3.z", "ideology.z [-1, 1]")) +
ggtitle("") +
ylab("") +
xlab("Exposure to Media Outlets x Media Analytical Thinking") +
theme_minimal() +
theme(panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
panel.background = element_blank(),
axis.line = element_line(colour = "black"),
legend.position = "none",
legend.background = element_rect(fill = "white", color = "white"),
legend.title = element_blank())
p.w3 <- p +
scale_color_manual(labels = NULL,
values = c("blue", "red")) +
scale_fill_manual(values = c("blue", "red")) +
scale_x_continuous(breaks = c(-1, -1, -.5, 0, .5, 1, 1.5, 2, 2.5, 3),
limits = c(-1, 3)) +
scale_y_continuous(breaks = c(1, 2, 3, 4),
limits = c(1, 5),
labels = c("Not
vaccinated
",
"Partially
vaccinated
",
"Fully
vaccinated
",
"Vaccinated
and boosted
"))
## Scale for 'colour' is already present. Adding another scale for 'colour',
## which will replace the existing scale.
## Scale for 'y' is already present. Adding another scale for 'y', which will
## replace the existing scale.
p.w3
## Warning: Removed 4 row(s) containing missing values (geom_path).
#run model
m.w2.long <- lm(vaxxIntentions_w2 ~ index_ANexp_w2.z * ideology.z +
index_ANexp_w1.z + vaxxIntentions_w1.z +
education.z + age.z + white_.5, data = d)
#create plot
p <- plot_model(m.w2.long, type = "pred",
terms = c("index_ANexp_w2.z", "ideology.z [-1, 1]")) +
ggtitle("") +
ylab("") +
xlab("Exposure to Media Outlets x Media Analytical Thinking") +
theme_minimal() +
theme(panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
panel.background = element_blank(),
axis.line = element_line(colour = "black"),
legend.position = "none",
legend.background = element_rect(fill = "white", color = "white"),
legend.title = element_blank(),
axis.text.x = element_text(angle = 0, vjust = .5, hjust = .5))
p.w2.long <- p + scale_color_manual(labels = NULL,
values = c("blue", "red")) +
scale_fill_manual(values = c("blue", "red")) +
scale_x_continuous(breaks = c(-1, -1, -.5, 0, .5, 1, 1.5, 2, 2.5, 3, 3.5), #-1.13, 3.42
limits = c(-1, 3.5)) +
scale_y_continuous(breaks = c(-3, -2, -1, 0, 1, 2, 3),
limits = c(-3, 3),
labels = c("Definitely
would not",
"Probably
would not",
"Leaning toward
would not",
"Undecided",
"Leaning toward
would",
"Probably
would",
"Definitely
would"))
## Scale for 'colour' is already present. Adding another scale for 'colour',
## which will replace the existing scale.
## Scale for 'y' is already present. Adding another scale for 'y', which will
## replace the existing scale.
p.w2.long
## Warning: Removed 4 row(s) containing missing values (geom_path).
ggarrange(p.w1, p.w2, p.w3, p.w2.long,
labels = c(" Wave 1: Vaccine Intentions ",
" Wave 2: Vaccine Intentions ",
" Wave 3: Vaccination Behaviors ",
" Wave 2 Long: Vaccine Intentions "),
ncol = 2, nrow = 2, align = "hv",
common.legend = T)
## Warning: Removed 4 row(s) containing missing values (geom_path).
## Warning: Removed 4 row(s) containing missing values (geom_path).
## Warning: Removed 4 row(s) containing missing values (geom_path).
## Warning: Removed 4 row(s) containing missing values (geom_path).
## Warning: Removed 4 row(s) containing missing values (geom_path).