This method used Log-Normal distribution of permeability to define the Coefficient of permeability Variation, Vk.
Let’s upload some Real Data to work on it.
data<-read.csv("D:/mohammed/karpur.csv",header=T)
summary(data)## depth caliper ind.deep ind.med
## Min. :5667 Min. :8.487 Min. : 6.532 Min. : 9.386
## 1st Qu.:5769 1st Qu.:8.556 1st Qu.: 28.799 1st Qu.: 27.892
## Median :5872 Median :8.588 Median :217.849 Median :254.383
## Mean :5873 Mean :8.622 Mean :275.357 Mean :273.357
## 3rd Qu.:5977 3rd Qu.:8.686 3rd Qu.:566.793 3rd Qu.:544.232
## Max. :6083 Max. :8.886 Max. :769.484 Max. :746.028
## gamma phi.N R.deep R.med
## Min. : 16.74 Min. :0.0150 Min. : 1.300 Min. : 1.340
## 1st Qu.: 40.89 1st Qu.:0.2030 1st Qu.: 1.764 1st Qu.: 1.837
## Median : 51.37 Median :0.2450 Median : 4.590 Median : 3.931
## Mean : 53.42 Mean :0.2213 Mean : 24.501 Mean : 21.196
## 3rd Qu.: 62.37 3rd Qu.:0.2640 3rd Qu.: 34.724 3rd Qu.: 35.853
## Max. :112.40 Max. :0.4100 Max. :153.085 Max. :106.542
## SP density.corr density phi.core
## Min. :-73.95 Min. :-0.067000 Min. :1.758 Min. :15.70
## 1st Qu.:-42.01 1st Qu.:-0.016000 1st Qu.:2.023 1st Qu.:23.90
## Median :-32.25 Median :-0.007000 Median :2.099 Median :27.60
## Mean :-30.98 Mean :-0.008883 Mean :2.102 Mean :26.93
## 3rd Qu.:-19.48 3rd Qu.: 0.002000 3rd Qu.:2.181 3rd Qu.:30.70
## Max. : 25.13 Max. : 0.089000 Max. :2.387 Max. :36.30
## k.core Facies
## Min. : 0.42 Length:819
## 1st Qu.: 657.33 Class :character
## Median : 1591.22 Mode :character
## Mean : 2251.91
## 3rd Qu.: 3046.82
## Max. :15600.00
Here we will find the distrirbutin of K (md),but first we should find the Frequency for each K and we will work on 100 samples to simplifed the resultant.
K_md<-kf$k.core
Vk<-tab1(K_md , sort.group = "decreasing", cum.percent = FALSE)Vk## K_md :
## Frequency Percent
## 999.1555 1 0.1
## 999.09 1 0.1
## 991.5684 1 0.1
## 990.7814 1 0.1
## 9898.4785 1 0.1
## 980.9962 1 0.1
## 980.7972 1 0.1
## 97.3665 1 0.1
## 965.54 1 0.1
## 963.2323 1 0.1
## 959.0341 1 0.1
## 958.4979 1 0.1
## 957.25 1 0.1
## 956.3419 1 0.1
## 9533.3623 1 0.1
## 9458.1729 1 0.1
## 945.35 1 0.1
## 941.5269 1 0.1
## 939.43 1 0.1
## 927.2867 1 0.1
## 921.81 1 0.1
## 92.4887 1 0.1
## 917.3568 1 0.1
## 916.6622 1 0.1
## 913.8117 1 0.1
## 9120 1 0.1
## 910.1433 1 0.1
## 91.1881 1 0.1
## 906.6724 1 0.1
## 902.0577 1 0.1
## 896.8858 1 0.1
## 895.5803 1 0.1
## 895.5394 1 0.1
## 893.3821 1 0.1
## 884.5511 1 0.1
## 883.14 1 0.1
## 8820.1025 1 0.1
## 8820 1 0.1
## 881.0916 1 0.1
## 881.0173 1 0.1
## 8760 1 0.1
## 8742.7529 1 0.1
## 8689.8252 1 0.1
## 868.08 1 0.1
## 866.4542 1 0.1
## 865.2035 1 0.1
## 863.792 1 0.1
## 863.4496 1 0.1
## 863.37 1 0.1
## 862.5884 1 0.1
## 860.405 1 0.1
## 86.96 1 0.1
## 86.0763 1 0.1
## 859.5496 1 0.1
## 857.31 1 0.1
## 851.8912 1 0.1
## 85.0097 1 0.1
## 841.6011 1 0.1
## 8390 1 0.1
## 832.0446 1 0.1
## 831.6595 1 0.1
## 831.59 1 0.1
## 8306.0459 1 0.1
## 830.42 1 0.1
## 827.77 1 0.1
## 827.66 1 0.1
## 823.1191 1 0.1
## 822.9766 1 0.1
## 8190 1 0.1
## 817.8306 1 0.1
## 817.6682 1 0.1
## 815.7291 1 0.1
## 813.0876 1 0.1
## 809.41 1 0.1
## 8030 1 0.1
## 800.2973 1 0.1
## 797.7479 1 0.1
## 7956.4258 1 0.1
## 794.96 1 0.1
## 7930 1 0.1
## 793.8796 1 0.1
## 7918.8984 1 0.1
## 7862.0825 1 0.1
## 783.6499 1 0.1
## 780.4501 1 0.1
## 7740 1 0.1
## 7725.96 1 0.1
## 770.6907 1 0.1
## 770.6147 1 0.1
## 769.9286 1 0.1
## 768.5499 1 0.1
## 767.22 1 0.1
## 762.7256 1 0.1
## 76.81 1 0.1
## 759.7528 1 0.1
## 7525.2207 1 0.1
## 7517.4834 1 0.1
## 745.9776 1 0.1
## 744.1807 1 0.1
## 7430 1 0.1
## 74.14 1 0.1
## 739.41 1 0.1
## 736.8026 1 0.1
## 735.0908 1 0.1
## 733.3159 1 0.1
## 73.2072 1 0.1
## 73.2033 1 0.1
## 729.7252 1 0.1
## 729.511 1 0.1
## 728.3082 1 0.1
## 7260 1 0.1
## 722.0266 1 0.1
## 721.36 1 0.1
## 7200 1 0.1
## 7180 1 0.1
## 718.6742 1 0.1
## 7141.1079 1 0.1
## 712.3636 1 0.1
## 7119.856 1 0.1
## 710.9836 1 0.1
## 705.0552 1 0.1
## 704.7114 1 0.1
## 7020 1 0.1
## 70.1081 1 0.1
## 7.38 1 0.1
## 699.51 1 0.1
## 6950 1 0.1
## 6917.3823 1 0.1
## 6911.2437 1 0.1
## 691.0581 1 0.1
## 690.1351 1 0.1
## 69.2599 1 0.1
## 6879.2051 1 0.1
## 6860 1 0.1
## 6844.0718 1 0.1
## 683.67 1 0.1
## 679.74 1 0.1
## 677.5 1 0.1
## 673.3079 1 0.1
## 672.4337 1 0.1
## 6697.7793 1 0.1
## 6690.1787 1 0.1
## 669.386 1 0.1
## 6680 1 0.1
## 665.2421 1 0.1
## 664.4689 1 0.1
## 662.5491 1 0.1
## 660.1379 1 0.1
## 654.5244 1 0.1
## 652.6051 1 0.1
## 651.962 1 0.1
## 6447.5181 1 0.1
## 643.07 1 0.1
## 641.5605 1 0.1
## 6389.9697 1 0.1
## 6388.7993 1 0.1
## 635.5146 1 0.1
## 63.8231 1 0.1
## 6280 1 0.1
## 6262.2485 1 0.1
## 625.7729 1 0.1
## 6232.8345 1 0.1
## 619.6802 1 0.1
## 6186.6069 1 0.1
## 6180 1 0.1
## 6171.7534 1 0.1
## 614.1521 1 0.1
## 6138.8628 1 0.1
## 613.7889 1 0.1
## 609.8132 1 0.1
## 609.7765 1 0.1
## 6070 1 0.1
## 6046.8418 1 0.1
## 603.8804 1 0.1
## 6027.3105 1 0.1
## 601.21 1 0.1
## 6008.5645 1 0.1
## 599.3371 1 0.1
## 597.4316 1 0.1
## 5963.4404 1 0.1
## 5954.8203 1 0.1
## 5950 1 0.1
## 595.5261 1 0.1
## 593.6207 1 0.1
## 591.7152 1 0.1
## 589.8097 1 0.1
## 5880 1 0.1
## 588.29 1 0.1
## 586.3036 1 0.1
## 5855.1367 1 0.1
## 583.4219 1 0.1
## 582.1041 1 0.1
## 5810 1 0.1
## 578.0658 1 0.1
## 5750 1 0.1
## 575.6158 1 0.1
## 572.5554 1 0.1
## 5640 1 0.1
## 564.83 1 0.1
## 5630 1 0.1
## 562.54 1 0.1
## 5595.5122 1 0.1
## 558.2472 1 0.1
## 55.53 1 0.1
## 5480 1 0.1
## 5479.2744 1 0.1
## 5467.9937 1 0.1
## 546.8344 1 0.1
## 546.3184 1 0.1
## 5430 1 0.1
## 5412.3223 1 0.1
## 54.21 1 0.1
## 537.4426 1 0.1
## 5363.0371 1 0.1
## 534.7041 1 0.1
## 5338.7207 1 0.1
## 5266.6743 1 0.1
## 526.14 1 0.1
## 522.3776 1 0.1
## 5202.5576 1 0.1
## 5200 1 0.1
## 520.6862 1 0.1
## 52.4436 1 0.1
## 5190 1 0.1
## 514.5711 1 0.1
## 512.21 1 0.1
## 512.1923 1 0.1
## 508.1339 1 0.1
## 507.4758 1 0.1
## 507.3651 1 0.1
## 5067.7798 1 0.1
## 5048.1919 1 0.1
## 5020.0947 1 0.1
## 50.15 1 0.1
## 5.83 1 0.1
## 499.37 1 0.1
## 4969.6675 1 0.1
## 4954.9937 1 0.1
## 4900 1 0.1
## 4876.021 1 0.1
## 485.52 1 0.1
## 4832.6045 1 0.1
## 4830 1 0.1
## 482.8237 1 0.1
## 4810 1 0.1
## 4804.8022 1 0.1
## 480.6394 1 0.1
## 48.62 1 0.1
## 4786.5928 1 0.1
## 4760 1 0.1
## 4749.939 1 0.1
## 4730 1 0.1
## 4703.084 1 0.1
## 470.2819 1 0.1
## 4678.7793 1 0.1
## 467.8958 1 0.1
## 467.5622 1 0.1
## 465.05 1 0.1
## 4630 1 0.1
## 459.3311 1 0.1
## 458.8995 1 0.1
## 458.2 1 0.1
## 4561.4106 1 0.1
## 4560 1 0.1
## 454.506 1 0.1
## 452.0254 1 0.1
## 451.0764 1 0.1
## 4490 1 0.1
## 449.4991 1 0.1
## 447.7827 1 0.1
## 4451.9521 1 0.1
## 4420 1 0.1
## 440.9626 1 0.1
## 44.503 1 0.1
## 4390 1 0.1
## 437.7937 1 0.1
## 4336.2285 1 0.1
## 433.0881 1 0.1
## 4328.6606 1 0.1
## 4320 1 0.1
## 4318.5918 1 0.1
## 431.1 1 0.1
## 43.9438 1 0.1
## 428.4266 1 0.1
## 4267.1182 1 0.1
## 4243.5298 1 0.1
## 4210 1 0.1
## 421.6921 1 0.1
## 4203.3662 1 0.1
## 419.329 1 0.1
## 418.64 1 0.1
## 417.13 1 0.1
## 4154.2788 1 0.1
## 4135.5439 1 0.1
## 412.7467 1 0.1
## 4119.3125 1 0.1
## 4111.0464 1 0.1
## 4075.8799 1 0.1
## 4070 1 0.1
## 406.24 1 0.1
## 4047.0544 1 0.1
## 4020 1 0.1
## 4014.438 1 0.1
## 4011.064 1 0.1
## 4.8748 1 0.1
## 3998.8315 1 0.1
## 3997.4805 1 0.1
## 399.1 1 0.1
## 3988.5752 1 0.1
## 3983.7849 1 0.1
## 3982.3992 1 0.1
## 398.53 1 0.1
## 3970 1 0.1
## 397.6351 1 0.1
## 3956.0886 1 0.1
## 3950.7856 1 0.1
## 395.8943 1 0.1
## 3940 1 0.1
## 3936.2375 1 0.1
## 392.78 1 0.1
## 39.67 1 0.1
## 39.4679 1 0.1
## 3890 1 0.1
## 3885.8645 1 0.1
## 3882.9058 1 0.1
## 388.9573 1 0.1
## 3872.8757 1 0.1
## 387.5817 1 0.1
## 386.12 1 0.1
## 3840 1 0.1
## 383.8092 1 0.1
## 3820.7578 1 0.1
## 3820 1 0.1
## 3795.9231 1 0.1
## 3750 1 0.1
## 3743.4775 1 0.1
## 3720 1 0.1
## 371.8761 1 0.1
## 3700 1 0.1
## 369.733 1 0.1
## 369.4849 1 0.1
## 3680 1 0.1
## 368.35 1 0.1
## 3677.3889 1 0.1
## 3660.6824 1 0.1
## 3660 1 0.1
## 3650 1 0.1
## 3630 1 0.1
## 3610 1 0.1
## 3580.1563 1 0.1
## 358.7004 1 0.1
## 358.4117 1 0.1
## 357.9313 1 0.1
## 3561.8772 1 0.1
## 355.8343 1 0.1
## 3526.314 1 0.1
## 3520.5999 1 0.1
## 350.65 1 0.1
## 35.86 1 0.1
## 35.6272 1 0.1
## 349.4881 1 0.1
## 3473.3303 1 0.1
## 3460 1 0.1
## 3459.5876 1 0.1
## 3435.5005 1 0.1
## 3430 1 0.1
## 3428.3037 1 0.1
## 3427.3506 1 0.1
## 3420 1 0.1
## 3405 1 0.1
## 34.9919 1 0.1
## 339.4923 1 0.1
## 3385.5239 1 0.1
## 3380 1 0.1
## 3370 1 0.1
## 3361.7825 1 0.1
## 3350 1 0.1
## 3340.3401 1 0.1
## 3340 1 0.1
## 3338.041 1 0.1
## 3328.5642 1 0.1
## 3320 1 0.1
## 332.4404 1 0.1
## 3310 1 0.1
## 3302.7673 1 0.1
## 33.734 1 0.1
## 3293.4705 1 0.1
## 3290 1 0.1
## 3250 1 0.1
## 324.0869 1 0.1
## 3230 1 0.1
## 3220 1 0.1
## 322.6981 1 0.1
## 3210.3184 1 0.1
## 321.5066 1 0.1
## 32.53 1 0.1
## 3181.6086 1 0.1
## 3180 1 0.1
## 3170 1 0.1
## 3169.1899 1 0.1
## 316.3239 1 0.1
## 3150.3203 1 0.1
## 3147.1648 1 0.1
## 3128.802 1 0.1
## 3110.4392 1 0.1
## 3110 1 0.1
## 3100 1 0.1
## 310.0188 1 0.1
## 3090.0657 1 0.1
## 3090 1 0.1
## 308.4382 1 0.1
## 3066.8655 1 0.1
## 3053.2048 1 0.1
## 3040.4338 1 0.1
## 3040 1 0.1
## 3035.1306 1 0.1
## 3033.054 1 0.1
## 303.5096 1 0.1
## 303.1158 1 0.1
## 3006.9888 1 0.1
## 3000 1 0.1
## 300.36 1 0.1
## 300.26 1 0.1
## 30.67 1 0.1
## 3.5809 1 0.1
## 3.23 1 0.1
## 2997.9072 1 0.1
## 2990 1 0.1
## 2985.1362 1 0.1
## 2981.4578 1 0.1
## 298.5033 1 0.1
## 2970 1 0.1
## 2968.5474 1 0.1
## 2963.2549 1 0.1
## 2960 1 0.1
## 2947.7891 1 0.1
## 2928.3137 1 0.1
## 2928.1562 1 0.1
## 292.3396 1 0.1
## 2918.334 1 0.1
## 2913.8325 1 0.1
## 2895.5957 1 0.1
## 2890 1 0.1
## 287.3767 1 0.1
## 2865.1624 1 0.1
## 2853.9758 1 0.1
## 2846.9758 1 0.1
## 2844.1299 1 0.1
## 2832.4385 1 0.1
## 2830 1 0.1
## 282.9963 1 0.1
## 282.9518 1 0.1
## 282.09 1 0.1
## 2818.8896 1 0.1
## 2805.6685 1 0.1
## 2802.1687 1 0.1
## 2797.1609 1 0.1
## 2790.4949 1 0.1
## 279.4883 1 0.1
## 2760 1 0.1
## 2759.9543 1 0.1
## 2759.4919 1 0.1
## 2750 1 0.1
## 2749.5947 1 0.1
## 2736.5945 1 0.1
## 2730 1 0.1
## 273.4974 1 0.1
## 271.5998 1 0.1
## 271.49 1 0.1
## 2707.6108 1 0.1
## 2700 1 0.1
## 270.5496 1 0.1
## 2698.5298 1 0.1
## 2697.363 1 0.1
## 2686.7124 1 0.1
## 2660 1 0.1
## 2652.5637 1 0.1
## 2648.6399 1 0.1
## 2640 1 0.1
## 2638.9934 1 0.1
## 263.7113 1 0.1
## 2620 1 0.1
## 2613.3105 1 0.1
## 2610.9341 1 0.1
## 2602.4993 1 0.1
## 260.5923 1 0.1
## 2593.259 1 0.1
## 2590.4043 1 0.1
## 258.13 1 0.1
## 2573.2031 1 0.1
## 2570.3201 1 0.1
## 2570 1 0.1
## 257.7916 1 0.1
## 2563.3101 1 0.1
## 2558.1506 1 0.1
## 2550.4099 1 0.1
## 255.8228 1 0.1
## 2534.7722 1 0.1
## 2532.9214 1 0.1
## 2531.0762 1 0.1
## 2531 1 0.1
## 2530.7581 1 0.1
## 2523.2039 1 0.1
## 2520 1 0.1
## 2519.8 1 0.1
## 2495.136 1 0.1
## 2495.1101 1 0.1
## 2492.1201 1 0.1
## 2485.9099 1 0.1
## 2483.5156 1 0.1
## 248.3004 1 0.1
## 2478.3799 1 0.1
## 2473.374 1 0.1
## 247.9343 1 0.1
## 2468.4099 1 0.1
## 2464.196 1 0.1
## 2463.9275 1 0.1
## 246.64 1 0.1
## 2457.0735 1 0.1
## 2455.0183 1 0.1
## 2450 1 0.1
## 2448.0698 1 0.1
## 2445.8406 1 0.1
## 2442.5901 1 0.1
## 244.4739 1 0.1
## 2436.6628 1 0.1
## 2434.4473 1 0.1
## 2433.3545 1 0.1
## 2427.4851 1 0.1
## 2423.3625 1 0.1
## 2423.116 1 0.1
## 2421.8501 1 0.1
## 242.9852 1 0.1
## 2417.5913 1 0.1
## 240.2611 1 0.1
## 240.0458 1 0.1
## 2393.9656 1 0.1
## 2383.269 1 0.1
## 2371.04 1 0.1
## 2368.7905 1 0.1
## 2367.5498 1 0.1
## 2348.8201 1 0.1
## 2346.7214 1 0.1
## 2335.4399 1 0.1
## 2331.99 1 0.1
## 2322.1902 1 0.1
## 231.2015 1 0.1
## 231.0803 1 0.1
## 2309.5901 1 0.1
## 2303.7 1 0.1
## 2302.9199 1 0.1
## 2299.0537 1 0.1
## 2295.78 1 0.1
## 2294.7261 1 0.1
## 2285.02 1 0.1
## 2284.4299 1 0.1
## 2283.9041 1 0.1
## 228.8449 1 0.1
## 228.57 1 0.1
## 2276.3159 1 0.1
## 2274.8657 1 0.1
## 2273.6499 1 0.1
## 2270 1 0.1
## 2264.6938 1 0.1
## 2262.0811 1 0.1
## 226.03 1 0.1
## 2250.9197 1 0.1
## 2234.4399 1 0.1
## 223.704 1 0.1
## 2225.8699 1 0.1
## 2216.6179 1 0.1
## 2214.3201 1 0.1
## 2202.3936 1 0.1
## 2200.3501 1 0.1
## 2200.113 1 0.1
## 22.09 1 0.1
## 2196.3706 1 0.1
## 2192.606 1 0.1
## 2183.54 1 0.1
## 2182.8186 1 0.1
## 2173.0312 1 0.1
## 2163.2437 1 0.1
## 216.6 1 0.1
## 2155.4399 1 0.1
## 2155.4353 1 0.1
## 2150.3301 1 0.1
## 2149.6299 1 0.1
## 2147.4971 1 0.1
## 2137.3313 1 0.1
## 2126.4495 1 0.1
## 2114.7256 1 0.1
## 2100.5769 1 0.1
## 210.27 1 0.1
## 2091.1111 1 0.1
## 2089.7009 1 0.1
## 2084.4082 1 0.1
## 2067.3738 1 0.1
## 2056.2 1 0.1
## 2049.1858 1 0.1
## 2047.14 1 0.1
## 204.7999 1 0.1
## 2032.8934 1 0.1
## 2030.712 1 0.1
## 2029.49 1 0.1
## 2023.9753 1 0.1
## 2023.0345 1 0.1
## 2019.7881 1 0.1
## 2014.79 1 0.1
## 2011.7695 1 0.1
## 2010 1 0.1
## 2.2869 1 0.1
## 1994.3353 1 0.1
## 1990.0415 1 0.1
## 1978.5601 1 0.1
## 1975.04 1 0.1
## 197.0975 1 0.1
## 1969.0728 1 0.1
## 1956.1077 1 0.1
## 1952.0089 1 0.1
## 1931.936 1 0.1
## 193.46 1 0.1
## 1928.48 1 0.1
## 1922.0161 1 0.1
## 1917.3143 1 0.1
## 1913.9399 1 0.1
## 191.6111 1 0.1
## 1907.3199 1 0.1
## 190.58 1 0.1
## 1899.3845 1 0.1
## 1884.6757 1 0.1
## 1876.8239 1 0.1
## 1873.8779 1 0.1
## 1868.6801 1 0.1
## 1866.92 1 0.1
## 1866.035 1 0.1
## 1862.87 1 0.1
## 1859.2261 1 0.1
## 1852.27 1 0.1
## 185.0957 1 0.1
## 1828.39 1 0.1
## 1821.4403 1 0.1
## 1820.02 1 0.1
## 181.7682 1 0.1
## 1804.54 1 0.1
## 1790.6 1 0.1
## 1789.1849 1 0.1
## 1777.6891 1 0.1
## 1743.1687 1 0.1
## 1736.24 1 0.1
## 173.44 1 0.1
## 1722.9451 1 0.1
## 1712.4135 1 0.1
## 1708.2007 1 0.1
## 168.24 1 0.1
## 1679.6505 1 0.1
## 1652.2738 1 0.1
## 165.3502 1 0.1
## 1648.4301 1 0.1
## 1641.8264 1 0.1
## 1634.0441 1 0.1
## 1628.754 1 0.1
## 162.94 1 0.1
## 1619.7656 1 0.1
## 1605.7228 1 0.1
## 1603.0649 1 0.1
## 1599.2813 1 0.1
## 1591.2185 1 0.1
## 1585.51 1 0.1
## 1584.96 1 0.1
## 158.13 1 0.1
## 1574.8315 1 0.1
## 1562.2338 1 0.1
## 1556.9391 1 0.1
## 1552.5758 1 0.1
## 1550.02 1 0.1
## 1538.3466 1 0.1
## 1530.4865 1 0.1
## 1528.5027 1 0.1
## 152.9717 1 0.1
## 152.1418 1 0.1
## 1510.6265 1 0.1
## 1508.53 1 0.1
## 1498.7391 1 0.1
## 149.2137 1 0.1
## 1481.5601 1 0.1
## 1479.8101 1 0.1
## 1479.38 1 0.1
## 1474.6252 1 0.1
## 1467.6908 1 0.1
## 1466.9917 1 0.1
## 146.7933 1 0.1
## 146.079 1 0.1
## 1454.24 1 0.1
## 1441.6909 1 0.1
## 1439.02 1 0.1
## 1437.52 1 0.1
## 1435.2444 1 0.1
## 1433.7565 1 0.1
## 143.33 1 0.1
## 14225.3135 1 0.1
## 1411.6324 1 0.1
## 1408.8621 1 0.1
## 1405.6776 1 0.1
## 1403.4971 1 0.1
## 140.6149 1 0.1
## 140.07 1 0.1
## 1383.63 1 0.1
## 1380.1622 1 0.1
## 1377.0441 1 0.1
## 1371.7496 1 0.1
## 1371.37 1 0.1
## 1366.16 1 0.1
## 1362.4678 1 0.1
## 1361.9829 1 0.1
## 13544.9785 1 0.1
## 1348.7238 1 0.1
## 1340.0023 1 0.1
## 134.4366 1 0.1
## 1330.389 1 0.1
## 133.6028 1 0.1
## 1312.6384 1 0.1
## 131.3576 1 0.1
## 1309.55 1 0.1
## 1308.255 1 0.1
## 1306.17 1 0.1
## 13033.5283 1 0.1
## 1302.1428 1 0.1
## 1300.79 1 0.1
## 1291.5699 1 0.1
## 1291.2828 1 0.1
## 1290.3817 1 0.1
## 1280.98 1 0.1
## 128.2582 1 0.1
## 1276.5076 1 0.1
## 1274.95 1 0.1
## 1271.38 1 0.1
## 1269.6 1 0.1
## 1261.7902 1 0.1
## 126.0047 1 0.1
## 1259.5554 1 0.1
## 1257.281 1 0.1
## 1254.4161 1 0.1
## 1249.7059 1 0.1
## 1248.4808 1 0.1
## 1244.7603 1 0.1
## 124.71 1 0.1
## 1237.4061 1 0.1
## 1227.87 1 0.1
## 122.0799 1 0.1
## 1217.8118 1 0.1
## 1213.6443 1 0.1
## 1213.0129 1 0.1
## 1209.9685 1 0.1
## 1205.7067 1 0.1
## 1201.6453 1 0.1
## 1196.2823 1 0.1
## 119.7091 1 0.1
## 11841.7432 1 0.1
## 1183.6799 1 0.1
## 1181.89 1 0.1
## 1181.2655 1 0.1
## 1181.2034 1 0.1
## 1178.3425 1 0.1
## 1171.39 1 0.1
## 116.5507 1 0.1
## 115.9015 1 0.1
## 1149.5182 1 0.1
## 1142.8588 1 0.1
## 114.3747 1 0.1
## 1138.5061 1 0.1
## 1137.1615 1 0.1
## 112.6725 1 0.1
## 1117.7709 1 0.1
## 1114.6503 1 0.1
## 11117.4023 1 0.1
## 1109.5569 1 0.1
## 1103.1545 1 0.1
## 1102.0452 1 0.1
## 1099.4039 1 0.1
## 109.7232 1 0.1
## 1089.8239 1 0.1
## 1089.4352 1 0.1
## 10860 1 0.1
## 1086.0234 1 0.1
## 1074.09 1 0.1
## 1066.3792 1 0.1
## 10649.958 1 0.1
## 1064.6899 1 0.1
## 1064.5748 1 0.1
## 1061.7 1 0.1
## 1059.9347 1 0.1
## 10540 1 0.1
## 1054.2761 1 0.1
## 1053.1267 1 0.1
## 1053.0554 1 0.1
## 1042.6234 1 0.1
## 1040.1243 1 0.1
## 1036.0116 1 0.1
## 103.5448 1 0.1
## 1022.5287 1 0.1
## 1020.4655 1 0.1
## 102.8927 1 0.1
## 1015.6563 1 0.1
## 101.8555 1 0.1
## 1006.85 1 0.1
## 1006.017 1 0.1
## 0.81 1 0.1
## Total 807 100.0
Then after finding the Frequency we will find the Cumlative Frequency Distirpution for X-values then after that ploting K (md) with Cumlative Frequency Distirpution.
Cumlative_Frequency_Distirpution## # A tibble: 807 x 4
## k.core Frequency Num.samples cumulative_frequency
## <dbl> <dbl> <dbl> <dbl>
## 1 14225. 1 1 0.122
## 2 13545. 1 2 0.244
## 3 13034. 1 3 0.367
## 4 11842. 1 4 0.489
## 5 11117. 1 5 0.611
## 6 10860 1 6 0.733
## 7 10650. 1 7 0.856
## 8 10540 1 8 0.978
## 9 9898. 1 9 1.10
## 10 9533. 1 10 1.22
## # ... with 797 more rows
Now we are Ready to plot our Graph
df = read_xlsx("D:/mohammed/mm.xlsx")
model1 <- lm( df$k.core ~ df$cumulative_frequency)
plot(df$cumulative_frequency,df$k.core,xlab="Cumlative Frequency Distirpution",ylab="k (md)")
abline(model1, lwd=4, col='red', untf=FALSE)Now by using this relationship,
Vk= (K50-k84.1)/K50
we will be able to quantify Heterogeneity Index (HI)
Vk= (1591.2185-392.78)/1591.2185
Vk= 0.7531577
Therefore from this Value, we know that this reservoir is Extremely Heterogeneous.
data = read.csv('karpur.csv', header = TRUE)
head(data)## depth caliper ind.deep ind.med gamma phi.N R.deep R.med SP
## 1 5667.0 8.685 618.005 569.781 98.823 0.410 1.618 1.755 -56.587
## 2 5667.5 8.686 497.547 419.494 90.640 0.307 2.010 2.384 -61.916
## 3 5668.0 8.686 384.935 300.155 78.087 0.203 2.598 3.332 -55.861
## 4 5668.5 8.686 278.324 205.224 66.232 0.119 3.593 4.873 -41.860
## 5 5669.0 8.686 183.743 131.155 59.807 0.069 5.442 7.625 -34.934
## 6 5669.5 8.686 109.512 75.633 57.109 0.048 9.131 13.222 -39.769
## density.corr density phi.core k.core Facies
## 1 -0.033 2.205 33.9000 2442.590 F1
## 2 -0.067 2.040 33.4131 3006.989 F1
## 3 -0.064 1.888 33.1000 3370.000 F1
## 4 -0.053 1.794 34.9000 2270.000 F1
## 5 -0.054 1.758 35.0644 2530.758 F1
## 6 -0.058 1.759 35.3152 2928.314 F1
summary(data)## depth caliper ind.deep ind.med
## Min. :5667 Min. :8.487 Min. : 6.532 Min. : 9.386
## 1st Qu.:5769 1st Qu.:8.556 1st Qu.: 28.799 1st Qu.: 27.892
## Median :5872 Median :8.588 Median :217.849 Median :254.383
## Mean :5873 Mean :8.622 Mean :275.357 Mean :273.357
## 3rd Qu.:5977 3rd Qu.:8.686 3rd Qu.:566.793 3rd Qu.:544.232
## Max. :6083 Max. :8.886 Max. :769.484 Max. :746.028
## gamma phi.N R.deep R.med
## Min. : 16.74 Min. :0.0150 Min. : 1.300 Min. : 1.340
## 1st Qu.: 40.89 1st Qu.:0.2030 1st Qu.: 1.764 1st Qu.: 1.837
## Median : 51.37 Median :0.2450 Median : 4.590 Median : 3.931
## Mean : 53.42 Mean :0.2213 Mean : 24.501 Mean : 21.196
## 3rd Qu.: 62.37 3rd Qu.:0.2640 3rd Qu.: 34.724 3rd Qu.: 35.853
## Max. :112.40 Max. :0.4100 Max. :153.085 Max. :106.542
## SP density.corr density phi.core
## Min. :-73.95 Min. :-0.067000 Min. :1.758 Min. :15.70
## 1st Qu.:-42.01 1st Qu.:-0.016000 1st Qu.:2.023 1st Qu.:23.90
## Median :-32.25 Median :-0.007000 Median :2.099 Median :27.60
## Mean :-30.98 Mean :-0.008883 Mean :2.102 Mean :26.93
## 3rd Qu.:-19.48 3rd Qu.: 0.002000 3rd Qu.:2.181 3rd Qu.:30.70
## Max. : 25.13 Max. : 0.089000 Max. :2.387 Max. :36.30
## k.core Facies
## Min. : 0.42 Length:819
## 1st Qu.: 657.33 Class :character
## Median : 1591.22 Mode :character
## Mean : 2251.91
## 3rd Qu.: 3046.82
## Max. :15600.00
The Lorenz coefficient of permeability variation is obtained by plotting a graph of cumulative kh versus cumulative phi*h, sometimes called a flow capacity plot.
first, let’s calculate the thickness from the depths.
the differences in depths gives the thickness:
d = data$depth
n = length(d)
h = d[2:n]-d[1:n-1] #differences in depths
head(h)## [1] 0.5 0.5 0.5 0.5 0.5 0.5
we need one more value to have the same number of data samples, since most of the values are 0.5, this what I’m going to add.
h = append(h, 0.5)
head(h)## [1] 0.5 0.5 0.5 0.5 0.5 0.5
second, lets calculate the cumulative kh, and cumulative phi*h
df = data.frame(h) # we will use data frames to store the data
df['h'] = h
k = data$k.core
df['k'] = k
df['phi'] = data$phi.core
df = df[order(k, decreasing = TRUE),] #sort data such that k is in descending order
df['kh'] = df['k']*df['h'] #multiply k and h
df['sum_kh'] = cumsum(df['kh']) #calculate the cumulative sum
df['sum_kh/total'] = df['sum_kh']/df[n, 'sum_kh'] #divid by the total
# same for phi and h
df['phih'] = df['phi']*df['h']
df['sum_phih'] = cumsum(df['phih'])
df['sum_phih/total'] = df['sum_phih']/df[n, 'sum_phih']
head(df)## h k phi kh sum_kh sum_kh/total phih sum_phih
## 809 0.5 15600.00 27.9000 7800.000 7800.00 0.008237623 13.95000 13.95000
## 808 0.5 14225.31 28.5071 7112.657 14912.66 0.015749339 14.25355 28.20355
## 810 0.5 13544.98 27.7563 6772.489 21685.15 0.022901802 13.87815 42.08170
## 807 0.5 13033.53 29.0333 6516.764 28201.91 0.029784192 14.51665 56.59835
## 806 0.5 11841.74 29.5596 5920.872 34122.78 0.036037257 14.77980 71.37815
## 811 0.5 11117.40 27.5865 5558.701 39681.48 0.041907832 13.79325 85.17140
## sum_phih/total
## 809 0.001241781
## 808 0.002510583
## 810 0.003745967
## 807 0.005038189
## 806 0.006353836
## 811 0.007581664
scatter.smooth(df['sum_phih/total'][1:n,1] ,df['sum_kh/total'][1:n,1],
xlab = "fraction of total volume (phih)",
ylab = "fraction of total flow capacity (kh)")we need to calculate the area under the above graph, I wrote the fallowing code to find the area, basically this is an implementation of the trapezoid method to fined AUC.
note: I’m familiar with python, and still new to R, writing my own code actully took less time than searching for some libraries that would calculate the area for me.
x = c(df['sum_phih/total'][1:n,1])
dx = x[2:n] - x[1:n-1]
y1 = c(df['sum_kh/total'][1:n,1])[1:n-1]
y2 = c(df['sum_kh/total'][1:n,1])[2:n]
lower_area = Reduce("+", y1*dx)
upper_area = Reduce("+", y2*dx)
area = (lower_area + upper_area)/2
print(area)## [1] 0.7247318
finally we calculate Lorenz coefficient as fallows:
Lorenz coefficient = (Area - 0.5)/0.5
Lorenz_coefficient = (area - 0.5)/0.5
print(Lorenz_coefficient)## [1] 0.4494636
The Lorenz coefficient of permeability variation also varies from zero to one. Unfortunately, the Lorenz coefficient is not a unique measure of reservoir heterogeneity. Several different permeability distributions can give the same value of Lorenz coefficient. For log-normal permeability distributions, the Lorenz coefficient is very similar to the Dykstra-Parsons coefficient of permeability variation.