Dykstra-parsons Coefficient (Vk)

This method used Log-Normal distribution of permeability to define the Coefficient of permeability Variation, Vk.

Let’s upload some Real Data to work on it.

data<-read.csv("D:/mohammed/karpur.csv",header=T)
summary(data)
##      depth         caliper         ind.deep          ind.med       
##  Min.   :5667   Min.   :8.487   Min.   :  6.532   Min.   :  9.386  
##  1st Qu.:5769   1st Qu.:8.556   1st Qu.: 28.799   1st Qu.: 27.892  
##  Median :5872   Median :8.588   Median :217.849   Median :254.383  
##  Mean   :5873   Mean   :8.622   Mean   :275.357   Mean   :273.357  
##  3rd Qu.:5977   3rd Qu.:8.686   3rd Qu.:566.793   3rd Qu.:544.232  
##  Max.   :6083   Max.   :8.886   Max.   :769.484   Max.   :746.028  
##      gamma            phi.N            R.deep            R.med        
##  Min.   : 16.74   Min.   :0.0150   Min.   :  1.300   Min.   :  1.340  
##  1st Qu.: 40.89   1st Qu.:0.2030   1st Qu.:  1.764   1st Qu.:  1.837  
##  Median : 51.37   Median :0.2450   Median :  4.590   Median :  3.931  
##  Mean   : 53.42   Mean   :0.2213   Mean   : 24.501   Mean   : 21.196  
##  3rd Qu.: 62.37   3rd Qu.:0.2640   3rd Qu.: 34.724   3rd Qu.: 35.853  
##  Max.   :112.40   Max.   :0.4100   Max.   :153.085   Max.   :106.542  
##        SP          density.corr          density         phi.core    
##  Min.   :-73.95   Min.   :-0.067000   Min.   :1.758   Min.   :15.70  
##  1st Qu.:-42.01   1st Qu.:-0.016000   1st Qu.:2.023   1st Qu.:23.90  
##  Median :-32.25   Median :-0.007000   Median :2.099   Median :27.60  
##  Mean   :-30.98   Mean   :-0.008883   Mean   :2.102   Mean   :26.93  
##  3rd Qu.:-19.48   3rd Qu.: 0.002000   3rd Qu.:2.181   3rd Qu.:30.70  
##  Max.   : 25.13   Max.   : 0.089000   Max.   :2.387   Max.   :36.30  
##      k.core            Facies         
##  Min.   :    0.42   Length:819        
##  1st Qu.:  657.33   Class :character  
##  Median : 1591.22   Mode  :character  
##  Mean   : 2251.91                     
##  3rd Qu.: 3046.82                     
##  Max.   :15600.00

Here we will find the distrirbutin of K (md),but first we should find the Frequency for each K and we will work on 100 samples to simplifed the resultant.

K_md<-kf$k.core
Vk<-tab1(K_md , sort.group = "decreasing", cum.percent = FALSE)

Vk
## K_md : 
##            Frequency Percent
## 999.1555           1     0.1
## 999.09             1     0.1
## 991.5684           1     0.1
## 990.7814           1     0.1
## 9898.4785          1     0.1
## 980.9962           1     0.1
## 980.7972           1     0.1
## 97.3665            1     0.1
## 965.54             1     0.1
## 963.2323           1     0.1
## 959.0341           1     0.1
## 958.4979           1     0.1
## 957.25             1     0.1
## 956.3419           1     0.1
## 9533.3623          1     0.1
## 9458.1729          1     0.1
## 945.35             1     0.1
## 941.5269           1     0.1
## 939.43             1     0.1
## 927.2867           1     0.1
## 921.81             1     0.1
## 92.4887            1     0.1
## 917.3568           1     0.1
## 916.6622           1     0.1
## 913.8117           1     0.1
## 9120               1     0.1
## 910.1433           1     0.1
## 91.1881            1     0.1
## 906.6724           1     0.1
## 902.0577           1     0.1
## 896.8858           1     0.1
## 895.5803           1     0.1
## 895.5394           1     0.1
## 893.3821           1     0.1
## 884.5511           1     0.1
## 883.14             1     0.1
## 8820.1025          1     0.1
## 8820               1     0.1
## 881.0916           1     0.1
## 881.0173           1     0.1
## 8760               1     0.1
## 8742.7529          1     0.1
## 8689.8252          1     0.1
## 868.08             1     0.1
## 866.4542           1     0.1
## 865.2035           1     0.1
## 863.792            1     0.1
## 863.4496           1     0.1
## 863.37             1     0.1
## 862.5884           1     0.1
## 860.405            1     0.1
## 86.96              1     0.1
## 86.0763            1     0.1
## 859.5496           1     0.1
## 857.31             1     0.1
## 851.8912           1     0.1
## 85.0097            1     0.1
## 841.6011           1     0.1
## 8390               1     0.1
## 832.0446           1     0.1
## 831.6595           1     0.1
## 831.59             1     0.1
## 8306.0459          1     0.1
## 830.42             1     0.1
## 827.77             1     0.1
## 827.66             1     0.1
## 823.1191           1     0.1
## 822.9766           1     0.1
## 8190               1     0.1
## 817.8306           1     0.1
## 817.6682           1     0.1
## 815.7291           1     0.1
## 813.0876           1     0.1
## 809.41             1     0.1
## 8030               1     0.1
## 800.2973           1     0.1
## 797.7479           1     0.1
## 7956.4258          1     0.1
## 794.96             1     0.1
## 7930               1     0.1
## 793.8796           1     0.1
## 7918.8984          1     0.1
## 7862.0825          1     0.1
## 783.6499           1     0.1
## 780.4501           1     0.1
## 7740               1     0.1
## 7725.96            1     0.1
## 770.6907           1     0.1
## 770.6147           1     0.1
## 769.9286           1     0.1
## 768.5499           1     0.1
## 767.22             1     0.1
## 762.7256           1     0.1
## 76.81              1     0.1
## 759.7528           1     0.1
## 7525.2207          1     0.1
## 7517.4834          1     0.1
## 745.9776           1     0.1
## 744.1807           1     0.1
## 7430               1     0.1
## 74.14              1     0.1
## 739.41             1     0.1
## 736.8026           1     0.1
## 735.0908           1     0.1
## 733.3159           1     0.1
## 73.2072            1     0.1
## 73.2033            1     0.1
## 729.7252           1     0.1
## 729.511            1     0.1
## 728.3082           1     0.1
## 7260               1     0.1
## 722.0266           1     0.1
## 721.36             1     0.1
## 7200               1     0.1
## 7180               1     0.1
## 718.6742           1     0.1
## 7141.1079          1     0.1
## 712.3636           1     0.1
## 7119.856           1     0.1
## 710.9836           1     0.1
## 705.0552           1     0.1
## 704.7114           1     0.1
## 7020               1     0.1
## 70.1081            1     0.1
## 7.38               1     0.1
## 699.51             1     0.1
## 6950               1     0.1
## 6917.3823          1     0.1
## 6911.2437          1     0.1
## 691.0581           1     0.1
## 690.1351           1     0.1
## 69.2599            1     0.1
## 6879.2051          1     0.1
## 6860               1     0.1
## 6844.0718          1     0.1
## 683.67             1     0.1
## 679.74             1     0.1
## 677.5              1     0.1
## 673.3079           1     0.1
## 672.4337           1     0.1
## 6697.7793          1     0.1
## 6690.1787          1     0.1
## 669.386            1     0.1
## 6680               1     0.1
## 665.2421           1     0.1
## 664.4689           1     0.1
## 662.5491           1     0.1
## 660.1379           1     0.1
## 654.5244           1     0.1
## 652.6051           1     0.1
## 651.962            1     0.1
## 6447.5181          1     0.1
## 643.07             1     0.1
## 641.5605           1     0.1
## 6389.9697          1     0.1
## 6388.7993          1     0.1
## 635.5146           1     0.1
## 63.8231            1     0.1
## 6280               1     0.1
## 6262.2485          1     0.1
## 625.7729           1     0.1
## 6232.8345          1     0.1
## 619.6802           1     0.1
## 6186.6069          1     0.1
## 6180               1     0.1
## 6171.7534          1     0.1
## 614.1521           1     0.1
## 6138.8628          1     0.1
## 613.7889           1     0.1
## 609.8132           1     0.1
## 609.7765           1     0.1
## 6070               1     0.1
## 6046.8418          1     0.1
## 603.8804           1     0.1
## 6027.3105          1     0.1
## 601.21             1     0.1
## 6008.5645          1     0.1
## 599.3371           1     0.1
## 597.4316           1     0.1
## 5963.4404          1     0.1
## 5954.8203          1     0.1
## 5950               1     0.1
## 595.5261           1     0.1
## 593.6207           1     0.1
## 591.7152           1     0.1
## 589.8097           1     0.1
## 5880               1     0.1
## 588.29             1     0.1
## 586.3036           1     0.1
## 5855.1367          1     0.1
## 583.4219           1     0.1
## 582.1041           1     0.1
## 5810               1     0.1
## 578.0658           1     0.1
## 5750               1     0.1
## 575.6158           1     0.1
## 572.5554           1     0.1
## 5640               1     0.1
## 564.83             1     0.1
## 5630               1     0.1
## 562.54             1     0.1
## 5595.5122          1     0.1
## 558.2472           1     0.1
## 55.53              1     0.1
## 5480               1     0.1
## 5479.2744          1     0.1
## 5467.9937          1     0.1
## 546.8344           1     0.1
## 546.3184           1     0.1
## 5430               1     0.1
## 5412.3223          1     0.1
## 54.21              1     0.1
## 537.4426           1     0.1
## 5363.0371          1     0.1
## 534.7041           1     0.1
## 5338.7207          1     0.1
## 5266.6743          1     0.1
## 526.14             1     0.1
## 522.3776           1     0.1
## 5202.5576          1     0.1
## 5200               1     0.1
## 520.6862           1     0.1
## 52.4436            1     0.1
## 5190               1     0.1
## 514.5711           1     0.1
## 512.21             1     0.1
## 512.1923           1     0.1
## 508.1339           1     0.1
## 507.4758           1     0.1
## 507.3651           1     0.1
## 5067.7798          1     0.1
## 5048.1919          1     0.1
## 5020.0947          1     0.1
## 50.15              1     0.1
## 5.83               1     0.1
## 499.37             1     0.1
## 4969.6675          1     0.1
## 4954.9937          1     0.1
## 4900               1     0.1
## 4876.021           1     0.1
## 485.52             1     0.1
## 4832.6045          1     0.1
## 4830               1     0.1
## 482.8237           1     0.1
## 4810               1     0.1
## 4804.8022          1     0.1
## 480.6394           1     0.1
## 48.62              1     0.1
## 4786.5928          1     0.1
## 4760               1     0.1
## 4749.939           1     0.1
## 4730               1     0.1
## 4703.084           1     0.1
## 470.2819           1     0.1
## 4678.7793          1     0.1
## 467.8958           1     0.1
## 467.5622           1     0.1
## 465.05             1     0.1
## 4630               1     0.1
## 459.3311           1     0.1
## 458.8995           1     0.1
## 458.2              1     0.1
## 4561.4106          1     0.1
## 4560               1     0.1
## 454.506            1     0.1
## 452.0254           1     0.1
## 451.0764           1     0.1
## 4490               1     0.1
## 449.4991           1     0.1
## 447.7827           1     0.1
## 4451.9521          1     0.1
## 4420               1     0.1
## 440.9626           1     0.1
## 44.503             1     0.1
## 4390               1     0.1
## 437.7937           1     0.1
## 4336.2285          1     0.1
## 433.0881           1     0.1
## 4328.6606          1     0.1
## 4320               1     0.1
## 4318.5918          1     0.1
## 431.1              1     0.1
## 43.9438            1     0.1
## 428.4266           1     0.1
## 4267.1182          1     0.1
## 4243.5298          1     0.1
## 4210               1     0.1
## 421.6921           1     0.1
## 4203.3662          1     0.1
## 419.329            1     0.1
## 418.64             1     0.1
## 417.13             1     0.1
## 4154.2788          1     0.1
## 4135.5439          1     0.1
## 412.7467           1     0.1
## 4119.3125          1     0.1
## 4111.0464          1     0.1
## 4075.8799          1     0.1
## 4070               1     0.1
## 406.24             1     0.1
## 4047.0544          1     0.1
## 4020               1     0.1
## 4014.438           1     0.1
## 4011.064           1     0.1
## 4.8748             1     0.1
## 3998.8315          1     0.1
## 3997.4805          1     0.1
## 399.1              1     0.1
## 3988.5752          1     0.1
## 3983.7849          1     0.1
## 3982.3992          1     0.1
## 398.53             1     0.1
## 3970               1     0.1
## 397.6351           1     0.1
## 3956.0886          1     0.1
## 3950.7856          1     0.1
## 395.8943           1     0.1
## 3940               1     0.1
## 3936.2375          1     0.1
## 392.78             1     0.1
## 39.67              1     0.1
## 39.4679            1     0.1
## 3890               1     0.1
## 3885.8645          1     0.1
## 3882.9058          1     0.1
## 388.9573           1     0.1
## 3872.8757          1     0.1
## 387.5817           1     0.1
## 386.12             1     0.1
## 3840               1     0.1
## 383.8092           1     0.1
## 3820.7578          1     0.1
## 3820               1     0.1
## 3795.9231          1     0.1
## 3750               1     0.1
## 3743.4775          1     0.1
## 3720               1     0.1
## 371.8761           1     0.1
## 3700               1     0.1
## 369.733            1     0.1
## 369.4849           1     0.1
## 3680               1     0.1
## 368.35             1     0.1
## 3677.3889          1     0.1
## 3660.6824          1     0.1
## 3660               1     0.1
## 3650               1     0.1
## 3630               1     0.1
## 3610               1     0.1
## 3580.1563          1     0.1
## 358.7004           1     0.1
## 358.4117           1     0.1
## 357.9313           1     0.1
## 3561.8772          1     0.1
## 355.8343           1     0.1
## 3526.314           1     0.1
## 3520.5999          1     0.1
## 350.65             1     0.1
## 35.86              1     0.1
## 35.6272            1     0.1
## 349.4881           1     0.1
## 3473.3303          1     0.1
## 3460               1     0.1
## 3459.5876          1     0.1
## 3435.5005          1     0.1
## 3430               1     0.1
## 3428.3037          1     0.1
## 3427.3506          1     0.1
## 3420               1     0.1
## 3405               1     0.1
## 34.9919            1     0.1
## 339.4923           1     0.1
## 3385.5239          1     0.1
## 3380               1     0.1
## 3370               1     0.1
## 3361.7825          1     0.1
## 3350               1     0.1
## 3340.3401          1     0.1
## 3340               1     0.1
## 3338.041           1     0.1
## 3328.5642          1     0.1
## 3320               1     0.1
## 332.4404           1     0.1
## 3310               1     0.1
## 3302.7673          1     0.1
## 33.734             1     0.1
## 3293.4705          1     0.1
## 3290               1     0.1
## 3250               1     0.1
## 324.0869           1     0.1
## 3230               1     0.1
## 3220               1     0.1
## 322.6981           1     0.1
## 3210.3184          1     0.1
## 321.5066           1     0.1
## 32.53              1     0.1
## 3181.6086          1     0.1
## 3180               1     0.1
## 3170               1     0.1
## 3169.1899          1     0.1
## 316.3239           1     0.1
## 3150.3203          1     0.1
## 3147.1648          1     0.1
## 3128.802           1     0.1
## 3110.4392          1     0.1
## 3110               1     0.1
## 3100               1     0.1
## 310.0188           1     0.1
## 3090.0657          1     0.1
## 3090               1     0.1
## 308.4382           1     0.1
## 3066.8655          1     0.1
## 3053.2048          1     0.1
## 3040.4338          1     0.1
## 3040               1     0.1
## 3035.1306          1     0.1
## 3033.054           1     0.1
## 303.5096           1     0.1
## 303.1158           1     0.1
## 3006.9888          1     0.1
## 3000               1     0.1
## 300.36             1     0.1
## 300.26             1     0.1
## 30.67              1     0.1
## 3.5809             1     0.1
## 3.23               1     0.1
## 2997.9072          1     0.1
## 2990               1     0.1
## 2985.1362          1     0.1
## 2981.4578          1     0.1
## 298.5033           1     0.1
## 2970               1     0.1
## 2968.5474          1     0.1
## 2963.2549          1     0.1
## 2960               1     0.1
## 2947.7891          1     0.1
## 2928.3137          1     0.1
## 2928.1562          1     0.1
## 292.3396           1     0.1
## 2918.334           1     0.1
## 2913.8325          1     0.1
## 2895.5957          1     0.1
## 2890               1     0.1
## 287.3767           1     0.1
## 2865.1624          1     0.1
## 2853.9758          1     0.1
## 2846.9758          1     0.1
## 2844.1299          1     0.1
## 2832.4385          1     0.1
## 2830               1     0.1
## 282.9963           1     0.1
## 282.9518           1     0.1
## 282.09             1     0.1
## 2818.8896          1     0.1
## 2805.6685          1     0.1
## 2802.1687          1     0.1
## 2797.1609          1     0.1
## 2790.4949          1     0.1
## 279.4883           1     0.1
## 2760               1     0.1
## 2759.9543          1     0.1
## 2759.4919          1     0.1
## 2750               1     0.1
## 2749.5947          1     0.1
## 2736.5945          1     0.1
## 2730               1     0.1
## 273.4974           1     0.1
## 271.5998           1     0.1
## 271.49             1     0.1
## 2707.6108          1     0.1
## 2700               1     0.1
## 270.5496           1     0.1
## 2698.5298          1     0.1
## 2697.363           1     0.1
## 2686.7124          1     0.1
## 2660               1     0.1
## 2652.5637          1     0.1
## 2648.6399          1     0.1
## 2640               1     0.1
## 2638.9934          1     0.1
## 263.7113           1     0.1
## 2620               1     0.1
## 2613.3105          1     0.1
## 2610.9341          1     0.1
## 2602.4993          1     0.1
## 260.5923           1     0.1
## 2593.259           1     0.1
## 2590.4043          1     0.1
## 258.13             1     0.1
## 2573.2031          1     0.1
## 2570.3201          1     0.1
## 2570               1     0.1
## 257.7916           1     0.1
## 2563.3101          1     0.1
## 2558.1506          1     0.1
## 2550.4099          1     0.1
## 255.8228           1     0.1
## 2534.7722          1     0.1
## 2532.9214          1     0.1
## 2531.0762          1     0.1
## 2531               1     0.1
## 2530.7581          1     0.1
## 2523.2039          1     0.1
## 2520               1     0.1
## 2519.8             1     0.1
## 2495.136           1     0.1
## 2495.1101          1     0.1
## 2492.1201          1     0.1
## 2485.9099          1     0.1
## 2483.5156          1     0.1
## 248.3004           1     0.1
## 2478.3799          1     0.1
## 2473.374           1     0.1
## 247.9343           1     0.1
## 2468.4099          1     0.1
## 2464.196           1     0.1
## 2463.9275          1     0.1
## 246.64             1     0.1
## 2457.0735          1     0.1
## 2455.0183          1     0.1
## 2450               1     0.1
## 2448.0698          1     0.1
## 2445.8406          1     0.1
## 2442.5901          1     0.1
## 244.4739           1     0.1
## 2436.6628          1     0.1
## 2434.4473          1     0.1
## 2433.3545          1     0.1
## 2427.4851          1     0.1
## 2423.3625          1     0.1
## 2423.116           1     0.1
## 2421.8501          1     0.1
## 242.9852           1     0.1
## 2417.5913          1     0.1
## 240.2611           1     0.1
## 240.0458           1     0.1
## 2393.9656          1     0.1
## 2383.269           1     0.1
## 2371.04            1     0.1
## 2368.7905          1     0.1
## 2367.5498          1     0.1
## 2348.8201          1     0.1
## 2346.7214          1     0.1
## 2335.4399          1     0.1
## 2331.99            1     0.1
## 2322.1902          1     0.1
## 231.2015           1     0.1
## 231.0803           1     0.1
## 2309.5901          1     0.1
## 2303.7             1     0.1
## 2302.9199          1     0.1
## 2299.0537          1     0.1
## 2295.78            1     0.1
## 2294.7261          1     0.1
## 2285.02            1     0.1
## 2284.4299          1     0.1
## 2283.9041          1     0.1
## 228.8449           1     0.1
## 228.57             1     0.1
## 2276.3159          1     0.1
## 2274.8657          1     0.1
## 2273.6499          1     0.1
## 2270               1     0.1
## 2264.6938          1     0.1
## 2262.0811          1     0.1
## 226.03             1     0.1
## 2250.9197          1     0.1
## 2234.4399          1     0.1
## 223.704            1     0.1
## 2225.8699          1     0.1
## 2216.6179          1     0.1
## 2214.3201          1     0.1
## 2202.3936          1     0.1
## 2200.3501          1     0.1
## 2200.113           1     0.1
## 22.09              1     0.1
## 2196.3706          1     0.1
## 2192.606           1     0.1
## 2183.54            1     0.1
## 2182.8186          1     0.1
## 2173.0312          1     0.1
## 2163.2437          1     0.1
## 216.6              1     0.1
## 2155.4399          1     0.1
## 2155.4353          1     0.1
## 2150.3301          1     0.1
## 2149.6299          1     0.1
## 2147.4971          1     0.1
## 2137.3313          1     0.1
## 2126.4495          1     0.1
## 2114.7256          1     0.1
## 2100.5769          1     0.1
## 210.27             1     0.1
## 2091.1111          1     0.1
## 2089.7009          1     0.1
## 2084.4082          1     0.1
## 2067.3738          1     0.1
## 2056.2             1     0.1
## 2049.1858          1     0.1
## 2047.14            1     0.1
## 204.7999           1     0.1
## 2032.8934          1     0.1
## 2030.712           1     0.1
## 2029.49            1     0.1
## 2023.9753          1     0.1
## 2023.0345          1     0.1
## 2019.7881          1     0.1
## 2014.79            1     0.1
## 2011.7695          1     0.1
## 2010               1     0.1
## 2.2869             1     0.1
## 1994.3353          1     0.1
## 1990.0415          1     0.1
## 1978.5601          1     0.1
## 1975.04            1     0.1
## 197.0975           1     0.1
## 1969.0728          1     0.1
## 1956.1077          1     0.1
## 1952.0089          1     0.1
## 1931.936           1     0.1
## 193.46             1     0.1
## 1928.48            1     0.1
## 1922.0161          1     0.1
## 1917.3143          1     0.1
## 1913.9399          1     0.1
## 191.6111           1     0.1
## 1907.3199          1     0.1
## 190.58             1     0.1
## 1899.3845          1     0.1
## 1884.6757          1     0.1
## 1876.8239          1     0.1
## 1873.8779          1     0.1
## 1868.6801          1     0.1
## 1866.92            1     0.1
## 1866.035           1     0.1
## 1862.87            1     0.1
## 1859.2261          1     0.1
## 1852.27            1     0.1
## 185.0957           1     0.1
## 1828.39            1     0.1
## 1821.4403          1     0.1
## 1820.02            1     0.1
## 181.7682           1     0.1
## 1804.54            1     0.1
## 1790.6             1     0.1
## 1789.1849          1     0.1
## 1777.6891          1     0.1
## 1743.1687          1     0.1
## 1736.24            1     0.1
## 173.44             1     0.1
## 1722.9451          1     0.1
## 1712.4135          1     0.1
## 1708.2007          1     0.1
## 168.24             1     0.1
## 1679.6505          1     0.1
## 1652.2738          1     0.1
## 165.3502           1     0.1
## 1648.4301          1     0.1
## 1641.8264          1     0.1
## 1634.0441          1     0.1
## 1628.754           1     0.1
## 162.94             1     0.1
## 1619.7656          1     0.1
## 1605.7228          1     0.1
## 1603.0649          1     0.1
## 1599.2813          1     0.1
## 1591.2185          1     0.1
## 1585.51            1     0.1
## 1584.96            1     0.1
## 158.13             1     0.1
## 1574.8315          1     0.1
## 1562.2338          1     0.1
## 1556.9391          1     0.1
## 1552.5758          1     0.1
## 1550.02            1     0.1
## 1538.3466          1     0.1
## 1530.4865          1     0.1
## 1528.5027          1     0.1
## 152.9717           1     0.1
## 152.1418           1     0.1
## 1510.6265          1     0.1
## 1508.53            1     0.1
## 1498.7391          1     0.1
## 149.2137           1     0.1
## 1481.5601          1     0.1
## 1479.8101          1     0.1
## 1479.38            1     0.1
## 1474.6252          1     0.1
## 1467.6908          1     0.1
## 1466.9917          1     0.1
## 146.7933           1     0.1
## 146.079            1     0.1
## 1454.24            1     0.1
## 1441.6909          1     0.1
## 1439.02            1     0.1
## 1437.52            1     0.1
## 1435.2444          1     0.1
## 1433.7565          1     0.1
## 143.33             1     0.1
## 14225.3135         1     0.1
## 1411.6324          1     0.1
## 1408.8621          1     0.1
## 1405.6776          1     0.1
## 1403.4971          1     0.1
## 140.6149           1     0.1
## 140.07             1     0.1
## 1383.63            1     0.1
## 1380.1622          1     0.1
## 1377.0441          1     0.1
## 1371.7496          1     0.1
## 1371.37            1     0.1
## 1366.16            1     0.1
## 1362.4678          1     0.1
## 1361.9829          1     0.1
## 13544.9785         1     0.1
## 1348.7238          1     0.1
## 1340.0023          1     0.1
## 134.4366           1     0.1
## 1330.389           1     0.1
## 133.6028           1     0.1
## 1312.6384          1     0.1
## 131.3576           1     0.1
## 1309.55            1     0.1
## 1308.255           1     0.1
## 1306.17            1     0.1
## 13033.5283         1     0.1
## 1302.1428          1     0.1
## 1300.79            1     0.1
## 1291.5699          1     0.1
## 1291.2828          1     0.1
## 1290.3817          1     0.1
## 1280.98            1     0.1
## 128.2582           1     0.1
## 1276.5076          1     0.1
## 1274.95            1     0.1
## 1271.38            1     0.1
## 1269.6             1     0.1
## 1261.7902          1     0.1
## 126.0047           1     0.1
## 1259.5554          1     0.1
## 1257.281           1     0.1
## 1254.4161          1     0.1
## 1249.7059          1     0.1
## 1248.4808          1     0.1
## 1244.7603          1     0.1
## 124.71             1     0.1
## 1237.4061          1     0.1
## 1227.87            1     0.1
## 122.0799           1     0.1
## 1217.8118          1     0.1
## 1213.6443          1     0.1
## 1213.0129          1     0.1
## 1209.9685          1     0.1
## 1205.7067          1     0.1
## 1201.6453          1     0.1
## 1196.2823          1     0.1
## 119.7091           1     0.1
## 11841.7432         1     0.1
## 1183.6799          1     0.1
## 1181.89            1     0.1
## 1181.2655          1     0.1
## 1181.2034          1     0.1
## 1178.3425          1     0.1
## 1171.39            1     0.1
## 116.5507           1     0.1
## 115.9015           1     0.1
## 1149.5182          1     0.1
## 1142.8588          1     0.1
## 114.3747           1     0.1
## 1138.5061          1     0.1
## 1137.1615          1     0.1
## 112.6725           1     0.1
## 1117.7709          1     0.1
## 1114.6503          1     0.1
## 11117.4023         1     0.1
## 1109.5569          1     0.1
## 1103.1545          1     0.1
## 1102.0452          1     0.1
## 1099.4039          1     0.1
## 109.7232           1     0.1
## 1089.8239          1     0.1
## 1089.4352          1     0.1
## 10860              1     0.1
## 1086.0234          1     0.1
## 1074.09            1     0.1
## 1066.3792          1     0.1
## 10649.958          1     0.1
## 1064.6899          1     0.1
## 1064.5748          1     0.1
## 1061.7             1     0.1
## 1059.9347          1     0.1
## 10540              1     0.1
## 1054.2761          1     0.1
## 1053.1267          1     0.1
## 1053.0554          1     0.1
## 1042.6234          1     0.1
## 1040.1243          1     0.1
## 1036.0116          1     0.1
## 103.5448           1     0.1
## 1022.5287          1     0.1
## 1020.4655          1     0.1
## 102.8927           1     0.1
## 1015.6563          1     0.1
## 101.8555           1     0.1
## 1006.85            1     0.1
## 1006.017           1     0.1
## 0.81               1     0.1
##   Total          807   100.0

Then after finding the Frequency we will find the Cumlative Frequency Distirpution for X-values then after that ploting K (md) with Cumlative Frequency Distirpution.

Cumlative_Frequency_Distirpution
## # A tibble: 807 x 4
##    k.core Frequency Num.samples cumulative_frequency
##     <dbl>     <dbl>       <dbl>                <dbl>
##  1 14225.         1           1                0.122
##  2 13545.         1           2                0.244
##  3 13034.         1           3                0.367
##  4 11842.         1           4                0.489
##  5 11117.         1           5                0.611
##  6 10860          1           6                0.733
##  7 10650.         1           7                0.856
##  8 10540          1           8                0.978
##  9  9898.         1           9                1.10 
## 10  9533.         1          10                1.22 
## # ... with 797 more rows

Now we are Ready to plot our Graph

df = read_xlsx("D:/mohammed/mm.xlsx")
model1 <- lm( df$k.core ~ df$cumulative_frequency)
plot(df$cumulative_frequency,df$k.core,xlab="Cumlative Frequency Distirpution",ylab="k (md)")
abline(model1, lwd=4, col='red', untf=FALSE)

Now by using this relationship,

Vk= (K50-k84.1)/K50

we will be able to quantify Heterogeneity Index (HI)

Vk= (1591.2185-392.78)/1591.2185

Vk= 0.7531577

Lorenz Coefficient

Therefore from this Value, we know that this reservoir is Extremely Heterogeneous.

data = read.csv('karpur.csv', header = TRUE)
head(data)
##    depth caliper ind.deep ind.med  gamma phi.N R.deep  R.med      SP
## 1 5667.0   8.685  618.005 569.781 98.823 0.410  1.618  1.755 -56.587
## 2 5667.5   8.686  497.547 419.494 90.640 0.307  2.010  2.384 -61.916
## 3 5668.0   8.686  384.935 300.155 78.087 0.203  2.598  3.332 -55.861
## 4 5668.5   8.686  278.324 205.224 66.232 0.119  3.593  4.873 -41.860
## 5 5669.0   8.686  183.743 131.155 59.807 0.069  5.442  7.625 -34.934
## 6 5669.5   8.686  109.512  75.633 57.109 0.048  9.131 13.222 -39.769
##   density.corr density phi.core   k.core Facies
## 1       -0.033   2.205  33.9000 2442.590     F1
## 2       -0.067   2.040  33.4131 3006.989     F1
## 3       -0.064   1.888  33.1000 3370.000     F1
## 4       -0.053   1.794  34.9000 2270.000     F1
## 5       -0.054   1.758  35.0644 2530.758     F1
## 6       -0.058   1.759  35.3152 2928.314     F1
summary(data)
##      depth         caliper         ind.deep          ind.med       
##  Min.   :5667   Min.   :8.487   Min.   :  6.532   Min.   :  9.386  
##  1st Qu.:5769   1st Qu.:8.556   1st Qu.: 28.799   1st Qu.: 27.892  
##  Median :5872   Median :8.588   Median :217.849   Median :254.383  
##  Mean   :5873   Mean   :8.622   Mean   :275.357   Mean   :273.357  
##  3rd Qu.:5977   3rd Qu.:8.686   3rd Qu.:566.793   3rd Qu.:544.232  
##  Max.   :6083   Max.   :8.886   Max.   :769.484   Max.   :746.028  
##      gamma            phi.N            R.deep            R.med        
##  Min.   : 16.74   Min.   :0.0150   Min.   :  1.300   Min.   :  1.340  
##  1st Qu.: 40.89   1st Qu.:0.2030   1st Qu.:  1.764   1st Qu.:  1.837  
##  Median : 51.37   Median :0.2450   Median :  4.590   Median :  3.931  
##  Mean   : 53.42   Mean   :0.2213   Mean   : 24.501   Mean   : 21.196  
##  3rd Qu.: 62.37   3rd Qu.:0.2640   3rd Qu.: 34.724   3rd Qu.: 35.853  
##  Max.   :112.40   Max.   :0.4100   Max.   :153.085   Max.   :106.542  
##        SP          density.corr          density         phi.core    
##  Min.   :-73.95   Min.   :-0.067000   Min.   :1.758   Min.   :15.70  
##  1st Qu.:-42.01   1st Qu.:-0.016000   1st Qu.:2.023   1st Qu.:23.90  
##  Median :-32.25   Median :-0.007000   Median :2.099   Median :27.60  
##  Mean   :-30.98   Mean   :-0.008883   Mean   :2.102   Mean   :26.93  
##  3rd Qu.:-19.48   3rd Qu.: 0.002000   3rd Qu.:2.181   3rd Qu.:30.70  
##  Max.   : 25.13   Max.   : 0.089000   Max.   :2.387   Max.   :36.30  
##      k.core            Facies         
##  Min.   :    0.42   Length:819        
##  1st Qu.:  657.33   Class :character  
##  Median : 1591.22   Mode  :character  
##  Mean   : 2251.91                     
##  3rd Qu.: 3046.82                     
##  Max.   :15600.00

The Lorenz coefficient of permeability variation is obtained by plotting a graph of cumulative kh versus cumulative phi*h, sometimes called a flow capacity plot.

first, let’s calculate the thickness from the depths.

the differences in depths gives the thickness:

d = data$depth
n = length(d)
h = d[2:n]-d[1:n-1] #differences in depths
head(h)
## [1] 0.5 0.5 0.5 0.5 0.5 0.5

we need one more value to have the same number of data samples, since most of the values are 0.5, this what I’m going to add.

h = append(h, 0.5)
head(h)
## [1] 0.5 0.5 0.5 0.5 0.5 0.5

second, lets calculate the cumulative kh, and cumulative phi*h

df        = data.frame(h) # we will use data frames to store the data

df['h']   = h
k         = data$k.core
df['k']   = k
df['phi'] = data$phi.core
df        = df[order(k, decreasing = TRUE),] #sort data such that k is in descending order

df['kh']  = df['k']*df['h'] #multiply k and h
df['sum_kh'] = cumsum(df['kh']) #calculate the cumulative sum
df['sum_kh/total'] = df['sum_kh']/df[n, 'sum_kh'] #divid by the total

# same for phi and h 

df['phih'] = df['phi']*df['h']
df['sum_phih'] = cumsum(df['phih'])
df['sum_phih/total'] = df['sum_phih']/df[n, 'sum_phih']

head(df)
##       h        k     phi       kh   sum_kh sum_kh/total     phih sum_phih
## 809 0.5 15600.00 27.9000 7800.000  7800.00  0.008237623 13.95000 13.95000
## 808 0.5 14225.31 28.5071 7112.657 14912.66  0.015749339 14.25355 28.20355
## 810 0.5 13544.98 27.7563 6772.489 21685.15  0.022901802 13.87815 42.08170
## 807 0.5 13033.53 29.0333 6516.764 28201.91  0.029784192 14.51665 56.59835
## 806 0.5 11841.74 29.5596 5920.872 34122.78  0.036037257 14.77980 71.37815
## 811 0.5 11117.40 27.5865 5558.701 39681.48  0.041907832 13.79325 85.17140
##     sum_phih/total
## 809    0.001241781
## 808    0.002510583
## 810    0.003745967
## 807    0.005038189
## 806    0.006353836
## 811    0.007581664
scatter.smooth(df['sum_phih/total'][1:n,1] ,df['sum_kh/total'][1:n,1],
xlab = "fraction of total volume (phih)",
ylab = "fraction of total flow capacity (kh)")

we need to calculate the area under the above graph, I wrote the fallowing code to find the area, basically this is an implementation of the trapezoid method to fined AUC.

note: I’m familiar with python, and still new to R, writing my own code actully took less time than searching for some libraries that would calculate the area for me.

x = c(df['sum_phih/total'][1:n,1])
dx = x[2:n] - x[1:n-1]

y1 = c(df['sum_kh/total'][1:n,1])[1:n-1]
y2 = c(df['sum_kh/total'][1:n,1])[2:n]

lower_area = Reduce("+", y1*dx)
upper_area = Reduce("+", y2*dx)

area = (lower_area + upper_area)/2

print(area)
## [1] 0.7247318

finally we calculate Lorenz coefficient as fallows:

Lorenz coefficient = (Area - 0.5)/0.5

Lorenz_coefficient = (area - 0.5)/0.5
print(Lorenz_coefficient)
## [1] 0.4494636

The Lorenz coefficient of permeability variation also varies from zero to one. Unfortunately, the Lorenz coefficient is not a unique measure of reservoir heterogeneity. Several different permeability distributions can give the same value of Lorenz coefficient. For log-normal permeability distributions, the Lorenz coefficient is very similar to the Dykstra-Parsons coefficient of permeability variation.