::p_load(tidyverse, janitor, here) pacman
Excess mortality
The tweet
The dataset
<- read_csv("HEALTH_MORTALITY_22122022103454710.csv") nordic
Source: https://stats.oecd.org/index.aspx?queryid=104676# Query: Dec 22, 2022, 9.54 UK Time
head(nordic) %>%
::kable() knitr
COUNTRY | Country | WEEK | Week number | GENDER | Gender | AGE | Age | VARIABLE | Variable | YEAR | Year | Value | Flag Codes | Flags |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SWE | Sweden | 37 | 37 | FEMALE | Females | Y0T44 | 0 to 44 | EXCESSNB | Excess deaths (number) | 2020 | 2020 | 3.4 | NA | NA |
SWE | Sweden | 37 | 37 | FEMALE | Females | Y0T44 | 0 to 44 | EXCESSNB | Excess deaths (number) | 2021 | 2021 | 1.4 | NA | NA |
SWE | Sweden | 37 | 37 | FEMALE | Females | Y0T44 | 0 to 44 | EXCESSNB | Excess deaths (number) | 2022 | 2022 | -1.6 | NA | NA |
FIN | Finland | 17 | 17 | FEMALE | Females | Y_GE65 | 65 and over | EXCESSNB | Excess deaths (number) | 2020 | 2020 | 115.8 | NA | NA |
FIN | Finland | 17 | 17 | FEMALE | Females | Y_GE65 | 65 and over | EXCESSNB | Excess deaths (number) | 2021 | 2021 | -6.2 | NA | NA |
FIN | Finland | 17 | 17 | FEMALE | Females | Y_GE65 | 65 and over | EXCESSNB | Excess deaths (number) | 2022 | 2022 | 99.8 | NA | NA |
Select only relevant variables
<- nordic %>%
nordic select(Country, `Week number`, Gender, Age, Variable, Year, Value)
Plot
Plot the excess deaths
%>%
nordic filter(Gender == "Total" &
== "Excess deaths (% change from average)" &
Variable == "2022") %>%
Year ggplot(aes(
x = `Week number`,
y = Value,
color = Country,
group = Country
+
)) geom_line() +
# ylim(-30, 30) +
coord_cartesian(ylim = c(-30, 30)) +
# scale_y_continuous(limits = c(-30, 30)) +
facet_grid(Country ~ Age ) +
theme_minimal() +
geom_hline(yintercept = 0, color = "dark grey") +
labs(title = "Excess deaths (% change from average)",
subtitle = "Source: OECD, https://stats.oecd.org/index.aspx?queryid=104676#",
y = "%")