Excess mortality

The tweet

pacman::p_load(tidyverse, janitor, here)

The dataset

nordic <- read_csv("HEALTH_MORTALITY_22122022103454710.csv")

Source: https://stats.oecd.org/index.aspx?queryid=104676# Query: Dec 22, 2022, 9.54 UK Time

head(nordic) %>% 
  knitr::kable()
COUNTRY Country WEEK Week number GENDER Gender AGE Age VARIABLE Variable YEAR Year Value Flag Codes Flags
SWE Sweden 37 37 FEMALE Females Y0T44 0 to 44 EXCESSNB Excess deaths (number) 2020 2020 3.4 NA NA
SWE Sweden 37 37 FEMALE Females Y0T44 0 to 44 EXCESSNB Excess deaths (number) 2021 2021 1.4 NA NA
SWE Sweden 37 37 FEMALE Females Y0T44 0 to 44 EXCESSNB Excess deaths (number) 2022 2022 -1.6 NA NA
FIN Finland 17 17 FEMALE Females Y_GE65 65 and over EXCESSNB Excess deaths (number) 2020 2020 115.8 NA NA
FIN Finland 17 17 FEMALE Females Y_GE65 65 and over EXCESSNB Excess deaths (number) 2021 2021 -6.2 NA NA
FIN Finland 17 17 FEMALE Females Y_GE65 65 and over EXCESSNB Excess deaths (number) 2022 2022 99.8 NA NA

Select only relevant variables

nordic <- nordic %>% 
  select(Country, `Week number`, Gender, Age, Variable, Year, Value)

Plot

Plot the excess deaths

nordic %>%
  filter(Gender == "Total" &
           Variable == "Excess deaths (% change from average)" &
           Year == "2022") %>%
  ggplot(aes(
    x = `Week number`,
    y = Value,
    color = Country,
    group = Country
  ))   +
  geom_line() +
  # ylim(-30, 30) + 
  coord_cartesian(ylim = c(-30, 30)) + 
  # scale_y_continuous(limits = c(-30, 30)) + 
  facet_grid(Country ~ Age  ) +
  theme_minimal() + 
  geom_hline(yintercept = 0, color = "dark grey") + 
  labs(title = "Excess deaths (% change from average)", 
       subtitle = "Source: OECD, https://stats.oecd.org/index.aspx?queryid=104676#", 
       y = "%")