# create a sliter with the specified range
sliderInput(inputId ="rank",
label ="X axis Range",
min = 1, max =100, value=c(1,20), step=1),...
#Cf. app_pch1
sliderInput(inputId ="setCex",
label ="Marker Size (cex: character expansion)",
min = 1, max =15, value=2, step=2)
install.packages("proxy", dependencies = TRUE)
library(proxy)
source("utils3.R")
univTable <- getFreqDir("univ")
head(univTable)
\[Corr(x,y)= \frac{\sum (x_{i}-\overline{x}) (y_{i}-\overline{y})}{\sqrt{\sum (x_{i}-\overline{x})^2\sum (y_{i}-\overline{y})^2}} \]
tf <- getFreqDir("univ")
res <-cor(tf)
round(res,2)
kyoto1 kyoto2 osaka1 osaka2 osaka3 osaka4 tokyo1 tokyo2 waseda1 waseda2
kyoto1 1.00 0.85 0.76 0.83 0.87 0.84 0.81 0.82 0.86 0.81
kyoto2 0.85 1.00 0.76 0.83 0.85 0.81 0.83 0.78 0.82 0.75
osaka1 0.76 0.76 1.00 0.84 0.80 0.79 0.71 0.73 0.76 0.68
osaka2 0.83 0.83 0.84 1.00 0.89 0.84 0.80 0.78 0.80 0.72
osaka3 0.87 0.85 0.80 0.89 1.00 0.88 0.84 0.80 0.81 0.75
osaka4 0.84 0.81 0.79 0.84 0.88 1.00 0.81 0.82 0.81 0.76
tokyo1 0.81 0.83 0.71 0.80 0.84 0.81 1.00 0.84 0.77 0.73
tokyo2 0.82 0.78 0.73 0.78 0.80 0.82 0.84 1.00 0.83 0.78
waseda1 0.86 0.82 0.76 0.80 0.81 0.81 0.77 0.83 1.00 0.86
waseda2 0.81 0.75 0.68 0.72 0.75 0.76 0.73 0.78 0.86 1.00
testMtx <- matrix(1:6, nrow=3)
testMtx
[,1] [,2]
[1,] 1 4
[2,] 2 5
[3,] 3 6
# transpose
t(testMtx)
[,1] [,2] [,3]
[1,] 1 2 3
[2,] 4 5 6
corr <- simil(t(tf))
round(corr, 2)
kyoto1 kyoto2 osaka1 osaka2 osaka3 osaka4 tokyo1 tokyo2 waseda1
kyoto2 0.85
osaka1 0.76 0.76
osaka2 0.83 0.83 0.84
osaka3 0.87 0.85 0.80 0.89
osaka4 0.84 0.81 0.79 0.84 0.88
tokyo1 0.81 0.83 0.71 0.80 0.84 0.81
tokyo2 0.82 0.78 0.73 0.78 0.80 0.82 0.84
waseda1 0.86 0.82 0.76 0.80 0.81 0.81 0.77 0.83
waseda2 0.81 0.75 0.68 0.72 0.75 0.76 0.73 0.78 0.86
res.corr <- simil(t(tf), diag=T)
round(res.corr, 2)
kyoto1 kyoto2 osaka1 osaka2 osaka3 osaka4 tokyo1 tokyo2 waseda1 waseda2
kyoto1 NA
kyoto2 0.85 NA
osaka1 0.76 0.76 NA
osaka2 0.83 0.83 0.84 NA
osaka3 0.87 0.85 0.80 0.89 NA
osaka4 0.84 0.81 0.79 0.84 0.88 NA
tokyo1 0.81 0.83 0.71 0.80 0.84 0.81 NA
tokyo2 0.82 0.78 0.73 0.78 0.80 0.82 0.84 NA
waseda1 0.86 0.82 0.76 0.80 0.81 0.81 0.77 0.83 NA
waseda2 0.81 0.75 0.68 0.72 0.75 0.76 0.73 0.78 0.86 NA
\[Cos(x,y)= \frac{\sum x_{i} y_{i}}{\sqrt{\sum x_{i}^2\sum y_{i}^2}} \]
res.cos <-simil(t(tf), method="cosine")
round(res.cos,2)
kyoto1 kyoto2 osaka1 osaka2 osaka3 osaka4 tokyo1 tokyo2 waseda1
kyoto2 0.86
osaka1 0.77 0.77
osaka2 0.83 0.84 0.84
osaka3 0.88 0.85 0.81 0.90
osaka4 0.85 0.82 0.80 0.85 0.88
tokyo1 0.81 0.83 0.72 0.80 0.84 0.82
tokyo2 0.83 0.79 0.74 0.79 0.80 0.83 0.84
waseda1 0.87 0.83 0.77 0.81 0.82 0.82 0.77 0.84
waseda2 0.82 0.76 0.70 0.73 0.76 0.77 0.73 0.80 0.87
res2.cos<-simil(t(tf), method="cosine", diag=T)
res2.cos<-as.matrix(res2.cos)
res2.cos[is.na(res2.cos)] <- 1
round(res2.cos,2)
kyoto1 kyoto2 osaka1 osaka2 osaka3 osaka4 tokyo1 tokyo2 waseda1 waseda2
kyoto1 1.00 0.86 0.77 0.83 0.88 0.85 0.81 0.83 0.87 0.82
kyoto2 0.86 1.00 0.77 0.84 0.85 0.82 0.83 0.79 0.83 0.76
osaka1 0.77 0.77 1.00 0.84 0.81 0.80 0.72 0.74 0.77 0.70
osaka2 0.83 0.84 0.84 1.00 0.90 0.85 0.80 0.79 0.81 0.73
osaka3 0.88 0.85 0.81 0.90 1.00 0.88 0.84 0.80 0.82 0.76
osaka4 0.85 0.82 0.80 0.85 0.88 1.00 0.82 0.83 0.82 0.77
tokyo1 0.81 0.83 0.72 0.80 0.84 0.82 1.00 0.84 0.77 0.73
tokyo2 0.83 0.79 0.74 0.79 0.80 0.83 0.84 1.00 0.84 0.80
waseda1 0.87 0.83 0.77 0.81 0.82 0.82 0.77 0.84 1.00 0.87
waseda2 0.82 0.76 0.70 0.73 0.76 0.77 0.73 0.80 0.87 1.00
relative.univTable <- getFreqDir("univ", relative=TRUE)
head(relative.univTable)
hc <- hclust(dist(t(relative.univTable)))
plot(hc)
#rect.hclust(hc, k=3, border="red")
hc <- hclust(dist(t(relative.univTable)), method = "ward.D2")
plot(hc)
#rect.hclust(hc, k=3, border="red")
hc <- hclust(dist(t(relative.univTable), method = "canberra"), method = "ward.D2")
plot(hc)
#rect.hclust(hc, k=3, border="red")