library(wooldridge)
## Warning: package 'wooldridge' was built under R version 4.1.3
library(rmarkdown)

Soru 14.7

data("murder")
paged_table(murder)

##Panel veri setisi oluşturma(index)

library(plm)
## Warning: package 'plm' was built under R version 4.1.3
murder.yahya1<- pdata.frame(murder, index = c("state", "year"))
pdim(murder.yahya1)
## Balanced Panel: n = 51, T = 3, N = 153

##1A: Cinayet mahkumlarının geçmişteki infazları caydırıcı bir etkiye sahipse b1 ne olur? b2’nin sahip olması gereken işaret hakkında ne düşünülüyorsünuz?

model1<- plm(mrdrte~exec+unem, data = murder.yahya1, model = "within")
summary(model1)
## Oneway (individual) effect Within Model
## 
## Call:
## plm(formula = mrdrte ~ exec + unem, data = murder.yahya1, model = "within")
## 
## Balanced Panel: n = 51, T = 3, N = 153
## 
## Residuals:
##       Min.    1st Qu.     Median    3rd Qu.       Max. 
## -27.886739  -0.473005   0.059857   0.594079  14.202250 
## 
## Coefficients:
##       Estimate Std. Error t-value Pr(>|t|)
## exec -0.114074   0.180084 -0.6335   0.5279
## unem  0.095914   0.280072  0.3425   0.7327
## 
## Total Sum of Squares:    1311.5
## Residual Sum of Squares: 1305.3
## R-Squared:      0.0046814
## Adj. R-Squared: -0.51288
## F-statistic: 0.235172 on 2 and 100 DF, p-value: 0.79087

yorum

infaz oranı artarsa cinayet oranı -0.114 azalmaktadır ancak unem oranı artarsa cinayet oranı 0.095 artıyor demektir

##1B. sadece 1990 ve 1993 yillarını kullanarak soru A’deki eşitliği havuzlanmış SEKK ile tahmin ediniz.

require(dplyr)
## Loading required package: dplyr
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:plm':
## 
##     between, lag, lead
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
model_90_93<- filter(murder.yahya1, year %in% c(90,93))
head(model_90_93)
##       id state year mrdrte exec unem d90 d93    cmrdrte cexec      cunem
## AK-90  2    AK   90    7.5    0  6.9   1   0 -2.6000004     0 -3.9000001
## AK-93  2    AK   93    9.0    0  7.6   0   1  1.5000000     0  0.6999998
## AL-90  1    AL   90   11.6    5  6.8   1   0  2.3000002     3 -1.0000000
## AL-93  1    AL   93   11.6    2  7.5   0   1  0.0000000    -3  0.6999998
## AR-90  4    AR   90   10.3    2  6.9   1   0  2.7000003     2 -1.2000003
## AR-93  4    AR   93   10.2    2  6.2   0   1 -0.1000004     0 -0.7000003
##       cexec_1 cunem_1
## AK-90      NA      NA
## AK-93       0    -3.9
## AL-90      NA      NA
## AL-93       3    -1.0
## AR-90      NA      NA
## AR-93       2    -1.2
model2<- plm(mrdrte~exec+unem, data = model_90_93, model = "pooling")
summary(model2)
## Pooling Model
## 
## Call:
## plm(formula = mrdrte ~ exec + unem, data = model_90_93, model = "pooling")
## 
## Balanced Panel: n = 34, T = 3, N = 102
## 
## Residuals:
##      Min.   1st Qu.    Median   3rd Qu.      Max. 
## -12.91596  -3.39376  -1.17720   0.81388  67.59155 
## 
## Coefficients:
##             Estimate Std. Error t-value Pr(>|t|)   
## (Intercept) -4.88906    4.40781 -1.1092 0.270039   
## exec         0.11491    0.26281  0.4372 0.662890   
## unem         2.28750    0.74027  3.0901 0.002598 **
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Total Sum of Squares:    11401
## Residual Sum of Squares: 10340
## R-Squared:      0.093093
## Adj. R-Squared: 0.074771
## F-statistic: 5.0811 on 2 and 99 DF, p-value: 0.0079316

yorum

(Intercept) -4.88906 burda negatif bir değer olduğundan dılayı (infaz ve işsizlik) değerlei anlamsız gösterşlmektedir

##1C. 1990 ve 1993’ü kullanarak eşitliği sabit etkilere tahmin ediniz.sadece iki yila aıt verileri kullanmanız nadeniyle ilk farkları kullanabilirsiniz.

library(plm)
model3<- plm(mrdrte~exec+unem - 1, data = murder.yahya1, model = "fd")
summary(model3)
## Oneway (individual) effect First-Difference Model
## 
## Call:
## plm(formula = mrdrte ~ exec + unem - 1, data = murder.yahya1, 
##     model = "fd")
## 
## Balanced Panel: n = 51, T = 3, N = 153
## Observations used in estimation: 102
## 
## Residuals:
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##  -2.788  -0.384   0.425   0.863   1.289  41.614 
## 
## Coefficients:
##      Estimate Std. Error t-value Pr(>|t|)
## exec -0.11240    0.14926 -0.7530   0.4532
## unem -0.04823    0.26614 -0.1812   0.8566
## 
## Total Sum of Squares:    1859
## Residual Sum of Squares: 1918.7
## R-Squared:      0.0089367
## Adj. R-Squared: -0.00097398
## F-statistic: 0.329508 on 2 and 100 DF, p-value: 0.72006

14.10

library(plm)
data("airfare")
library(rmarkdown)
paged_table(airfare)
idata <- pdata.frame(airfare, index = c("id", "year"))
pdim(idata)
## Balanced Panel: n = 1149, T = 4, N = 4596
pvar(idata)
## no time variation:       id dist ldist ldistsq 
## no individual variation: year y98 y99 y00
pooling <- plm(lpassen ~ fare + dist + passen + bmktshr + I(ldist^2) + year, data = idata, model = "pooling")
within <- plm(lpassen ~ fare + dist + passen + bmktshr + I(ldist^2) + year, data = idata, model = "within")
random <- plm(lpassen ~ fare + dist + passen + bmktshr + I(ldist^2) + year, data = idata, model = "random")
summary(random)
## Oneway (individual) effect Random Effect Model 
##    (Swamy-Arora's transformation)
## 
## Call:
## plm(formula = lpassen ~ fare + dist + passen + bmktshr + I(ldist^2) + 
##     year, data = idata, model = "random")
## 
## Balanced Panel: n = 1149, T = 4, N = 4596
## 
## Effects:
##                   var std.dev share
## idiosyncratic 0.02046 0.14304 0.081
## individual    0.23084 0.48046 0.919
## theta: 0.8528
## 
## Residuals:
##      Min.   1st Qu.    Median   3rd Qu.      Max. 
## -2.561815 -0.055653  0.015611  0.070798  1.641581 
## 
## Coefficients:
##                Estimate  Std. Error  z-value  Pr(>|z|)    
## (Intercept)  5.8578e+00  1.9585e-01  29.9097 < 2.2e-16 ***
## fare        -3.2722e-03  1.2039e-04 -27.1795 < 2.2e-16 ***
## dist         3.0581e-04  8.4715e-05   3.6099 0.0003063 ***
## passen       7.6429e-04  1.4579e-05  52.4224 < 2.2e-16 ***
## bmktshr      1.9990e-01  3.7525e-02   5.3271 9.977e-08 ***
## I(ldist^2)  -4.3679e-03  5.9083e-03  -0.7393 0.4597420    
## year1998     9.5304e-03  6.1333e-03   1.5539 0.1202158    
## year1999     3.3770e-02  6.2124e-03   5.4358 5.454e-08 ***
## year2000     7.9356e-02  6.5168e-03  12.1771 < 2.2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Total Sum of Squares:    203.17
## Residual Sum of Squares: 98.487
## R-Squared:      0.51524
## Adj. R-Squared: 0.51439
## Chisq: 4875.39 on 8 DF, p-value: < 2.22e-16
library(stargazer)
## 
## Please cite as:
##  Hlavac, Marek (2022). stargazer: Well-Formatted Regression and Summary Statistics Tables.
##  R package version 5.2.3. https://CRAN.R-project.org/package=stargazer
stargazer(pooling, within, random, type = "text", column.labels = c("OLS","RE","FE"))
## 
## ===============================================================================
##                                     Dependent variable:                        
##              ------------------------------------------------------------------
##                                           lpassen                              
##                          OLS                        RE                  FE     
##                          (1)                        (2)                (3)     
## -------------------------------------------------------------------------------
## fare                  -0.001***                  -0.004***          -0.003***  
##                       (0.0001)                   (0.0001)            (0.0001)  
##                                                                                
## dist                  0.0001**                                      0.0003***  
##                       (0.00004)                                      (0.0001)  
##                                                                                
## passen                0.001***                   0.001***            0.001***  
##                       (0.00001)                  (0.00002)          (0.00001)  
##                                                                                
## bmktshr               0.223***                   0.161***            0.200***  
##                        (0.047)                    (0.040)            (0.038)   
##                                                                                
## I(ldist2)               0.001                                         -0.004   
##                        (0.003)                                       (0.006)   
##                                                                                
## year1998                0.004                     0.015**             0.010    
##                        (0.021)                    (0.006)            (0.006)   
##                                                                                
## year1999                0.018                    0.051***            0.034***  
##                        (0.021)                    (0.006)            (0.006)   
##                                                                                
## year2000               0.041*                    0.110***            0.079***  
##                        (0.021)                    (0.007)            (0.007)   
##                                                                                
## Constant              5.370***                                       5.858***  
##                        (0.110)                                       (0.196)   
##                                                                                
## -------------------------------------------------------------------------------
## Observations            4,596                      4,596              4,596    
## R2                      0.677                      0.450              0.515    
## Adjusted R2             0.676                      0.266              0.514    
## F Statistic  1,199.361*** (df = 8; 4587) 469.900*** (df = 6; 3441) 4,875.385***
## ===============================================================================
## Note:                                               *p<0.1; **p<0.05; ***p<0.01
phtest(pooling, random)
## 
##  Hausman Test
## 
## data:  lpassen ~ fare + dist + passen + bmktshr + I(ldist^2) + year
## chisq = 1086.5, df = 8, p-value < 2.2e-16
## alternative hypothesis: one model is inconsistent