library(tidyverse)
## Warning: package 'tidyverse' was built under R version 4.2.2
## ── Attaching packages ─────────────────────────────────────── tidyverse 1.3.2 ──
## ✔ ggplot2 3.3.6      ✔ purrr   0.3.5 
## ✔ tibble  3.1.8      ✔ dplyr   1.0.10
## ✔ tidyr   1.2.0      ✔ stringr 1.4.1 
## ✔ readr   2.1.2      ✔ forcats 0.5.2
## Warning: package 'purrr' was built under R version 4.2.2
## Warning: package 'dplyr' was built under R version 4.2.2
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag()    masks stats::lag()
library(openintro)
## Loading required package: airports
## Loading required package: cherryblossom
## Loading required package: usdata
library(GGally)
## Warning: package 'GGally' was built under R version 4.2.2
## Registered S3 method overwritten by 'GGally':
##   method from   
##   +.gg   ggplot2
library(ggplot2)
library(GGally)

Exercise 1

glimpse(evals)
## Rows: 463
## Columns: 23
## $ course_id     <int> 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 1…
## $ prof_id       <int> 1, 1, 1, 1, 2, 2, 2, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5,…
## $ score         <dbl> 4.7, 4.1, 3.9, 4.8, 4.6, 4.3, 2.8, 4.1, 3.4, 4.5, 3.8, 4…
## $ rank          <fct> tenure track, tenure track, tenure track, tenure track, …
## $ ethnicity     <fct> minority, minority, minority, minority, not minority, no…
## $ gender        <fct> female, female, female, female, male, male, male, male, …
## $ language      <fct> english, english, english, english, english, english, en…
## $ age           <int> 36, 36, 36, 36, 59, 59, 59, 51, 51, 40, 40, 40, 40, 40, …
## $ cls_perc_eval <dbl> 55.81395, 68.80000, 60.80000, 62.60163, 85.00000, 87.500…
## $ cls_did_eval  <int> 24, 86, 76, 77, 17, 35, 39, 55, 111, 40, 24, 24, 17, 14,…
## $ cls_students  <int> 43, 125, 125, 123, 20, 40, 44, 55, 195, 46, 27, 25, 20, …
## $ cls_level     <fct> upper, upper, upper, upper, upper, upper, upper, upper, …
## $ cls_profs     <fct> single, single, single, single, multiple, multiple, mult…
## $ cls_credits   <fct> multi credit, multi credit, multi credit, multi credit, …
## $ bty_f1lower   <int> 5, 5, 5, 5, 4, 4, 4, 5, 5, 2, 2, 2, 2, 2, 2, 2, 2, 7, 7,…
## $ bty_f1upper   <int> 7, 7, 7, 7, 4, 4, 4, 2, 2, 5, 5, 5, 5, 5, 5, 5, 5, 9, 9,…
## $ bty_f2upper   <int> 6, 6, 6, 6, 2, 2, 2, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4, 9, 9,…
## $ bty_m1lower   <int> 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 7, 7,…
## $ bty_m1upper   <int> 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 6, 6,…
## $ bty_m2upper   <int> 6, 6, 6, 6, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 6, 6,…
## $ bty_avg       <dbl> 5.000, 5.000, 5.000, 5.000, 3.000, 3.000, 3.000, 3.333, …
## $ pic_outfit    <fct> not formal, not formal, not formal, not formal, not form…
## $ pic_color     <fct> color, color, color, color, color, color, color, color, …

This is an observational study. Given the design of the study, I don’t think it would be possible to answer this question as there are a multitude of factors that might influence a professors rating. A better question would be whether or not there is a correlation between attractiveness and professor score.

Exercise 2

evals_df <- as.data.frame(evals)
plot.new()
hist(evals_df$score)

The distribution of the scores is left skewed. This tells me that the students rate courses more or less positively than negatively. It is not what I expected to see as I expect not all professors to be great so I would be expecting a more normal distribution.

Exercise 3

plot.new()

hist(evals$age)

hist(evals$bty_avg)

ggplot(data = evals, aes(x = age, y = bty_avg)) +
  geom_jitter() +
  geom_smooth(method='lm')
## `geom_smooth()` using formula 'y ~ x'

Exercise 4

ggplot(data = evals, aes(x = bty_avg, y = score)) +
  geom_point()

ggplot(data = evals, aes(x = bty_avg, y = score)) +
  geom_jitter()

What was misleading about the original graph was that it failed to show the number of actual data points we had by underestimation.

Exercise 5

m_bty <- lm(evals$score ~ evals$bty_avg)

ggplot(data = evals, aes(x = bty_avg, y = score)) +
  geom_jitter() +
  geom_smooth(method = "lm")
## `geom_smooth()` using formula 'y ~ x'

m_bty
## 
## Call:
## lm(formula = evals$score ~ evals$bty_avg)
## 
## Coefficients:
##   (Intercept)  evals$bty_avg  
##       3.88034        0.06664

The equation for the model is y = .06664x + 3.88034. There seems to be a correlation between average beauty and rating though it may not be very significant as the slope of the line is relatively small. There is a .06 increase in score for every point increase in beauty.

Exercise 6

m1 <- lm(bty_avg ~ score, data = evals)


plot(m_bty$residuals ~ evals$bty_avg)
abline(h = 0, lty = 4)

The qq plot of the residuals are not normal at the extreme values. The residuals also seem to be evenly distributed over 0 making the conditions for regression reasonable.

Exercise 7

m_bty_gen <- lm(score ~ bty_avg + gender, data = evals)

qqnorm(m_bty_gen$residuals)
qqline(m_bty_gen$residuals)

plot(m_bty_gen$residuals ~ evals$bty_avg)
abline(h = 0, lty = 3)

summary(m_bty_gen)
## 
## Call:
## lm(formula = score ~ bty_avg + gender, data = evals)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -1.8305 -0.3625  0.1055  0.4213  0.9314 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  3.74734    0.08466  44.266  < 2e-16 ***
## bty_avg      0.07416    0.01625   4.563 6.48e-06 ***
## gendermale   0.17239    0.05022   3.433 0.000652 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.5287 on 460 degrees of freedom
## Multiple R-squared:  0.05912,    Adjusted R-squared:  0.05503 
## F-statistic: 14.45 on 2 and 460 DF,  p-value: 8.177e-07
summary(m_bty)
## 
## Call:
## lm(formula = evals$score ~ evals$bty_avg)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -1.9246 -0.3690  0.1420  0.3977  0.9309 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept)    3.88034    0.07614   50.96  < 2e-16 ***
## evals$bty_avg  0.06664    0.01629    4.09 5.08e-05 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.5348 on 461 degrees of freedom
## Multiple R-squared:  0.03502,    Adjusted R-squared:  0.03293 
## F-statistic: 16.73 on 1 and 461 DF,  p-value: 5.083e-05

Exercise 8

Average beauty is still a significant predictor of score and adding gender has only increased the reliability of the model slightly. the R square valued is low so it is maybe not as reliable as other variables.

Exercise 9

summary (lm(score ~ bty_avg + pic_color, data = evals   ))
## 
## Call:
## lm(formula = score ~ bty_avg + pic_color, data = evals)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -1.8892 -0.3690  0.1293  0.4023  0.9125 
## 
## Coefficients:
##                Estimate Std. Error t value Pr(>|t|)    
## (Intercept)     4.06318    0.10908  37.249  < 2e-16 ***
## bty_avg         0.05548    0.01691   3.282  0.00111 ** 
## pic_colorcolor -0.16059    0.06892  -2.330  0.02022 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.5323 on 460 degrees of freedom
## Multiple R-squared:  0.04628,    Adjusted R-squared:  0.04213 
## F-statistic: 11.16 on 2 and 460 DF,  p-value: 1.848e-05

The equation of the line is y = .05548(bty_avg)-.16059(pic_color)+4.06318. Based on color or b/w photo, black and white photos seem to predict a higher score.

Exercise 10

m_bty_rank <- lm(score~bty_avg+rank, data =evals)

summary(m_bty_rank)
## 
## Call:
## lm(formula = score ~ bty_avg + rank, data = evals)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -1.8713 -0.3642  0.1489  0.4103  0.9525 
## 
## Coefficients:
##                  Estimate Std. Error t value Pr(>|t|)    
## (Intercept)       3.98155    0.09078  43.860  < 2e-16 ***
## bty_avg           0.06783    0.01655   4.098 4.92e-05 ***
## ranktenure track -0.16070    0.07395  -2.173   0.0303 *  
## ranktenured      -0.12623    0.06266  -2.014   0.0445 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.5328 on 459 degrees of freedom
## Multiple R-squared:  0.04652,    Adjusted R-squared:  0.04029 
## F-statistic: 7.465 on 3 and 459 DF,  p-value: 6.88e-05

R handles categorical variables by reducing them down to just two in this case just tenure track and tenured.

Exercise 11

m_full <- lm(score ~ rank + gender + ethnicity + language + age + cls_perc_eval 
             + cls_students + cls_level + cls_profs + cls_credits + bty_avg 
             + pic_outfit + pic_color, data = evals)
summary(m_full)
## 
## Call:
## lm(formula = score ~ rank + gender + ethnicity + language + age + 
##     cls_perc_eval + cls_students + cls_level + cls_profs + cls_credits + 
##     bty_avg + pic_outfit + pic_color, data = evals)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -1.77397 -0.32432  0.09067  0.35183  0.95036 
## 
## Coefficients:
##                         Estimate Std. Error t value Pr(>|t|)    
## (Intercept)            4.0952141  0.2905277  14.096  < 2e-16 ***
## ranktenure track      -0.1475932  0.0820671  -1.798  0.07278 .  
## ranktenured           -0.0973378  0.0663296  -1.467  0.14295    
## gendermale             0.2109481  0.0518230   4.071 5.54e-05 ***
## ethnicitynot minority  0.1234929  0.0786273   1.571  0.11698    
## languagenon-english   -0.2298112  0.1113754  -2.063  0.03965 *  
## age                   -0.0090072  0.0031359  -2.872  0.00427 ** 
## cls_perc_eval          0.0053272  0.0015393   3.461  0.00059 ***
## cls_students           0.0004546  0.0003774   1.205  0.22896    
## cls_levelupper         0.0605140  0.0575617   1.051  0.29369    
## cls_profssingle       -0.0146619  0.0519885  -0.282  0.77806    
## cls_creditsone credit  0.5020432  0.1159388   4.330 1.84e-05 ***
## bty_avg                0.0400333  0.0175064   2.287  0.02267 *  
## pic_outfitnot formal  -0.1126817  0.0738800  -1.525  0.12792    
## pic_colorcolor        -0.2172630  0.0715021  -3.039  0.00252 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.498 on 448 degrees of freedom
## Multiple R-squared:  0.1871, Adjusted R-squared:  0.1617 
## F-statistic: 7.366 on 14 and 448 DF,  p-value: 6.552e-14

My guess would be that language would have the highest p value and therefore no association with professor score.

Exercise 12

plot(evals$score ~ evals$language)

It seems that I was wrong, English speakers seemed to garner a higher score.

Exercise 13

The coefficient of the ethnicity variable is fairly high compared to the other variables. Because of this I’d say there is a significant positive correlation between non minority ethnicity and score.

Exercise 14

m_full1 <- lm(score ~ rank + gender + ethnicity + language + age + cls_perc_eval 
             + cls_students + cls_level + cls_credits + bty_avg 
             + pic_outfit + pic_color, data = evals)

summary(m_full1)
## 
## Call:
## lm(formula = score ~ rank + gender + ethnicity + language + age + 
##     cls_perc_eval + cls_students + cls_level + cls_credits + 
##     bty_avg + pic_outfit + pic_color, data = evals)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -1.7836 -0.3257  0.0859  0.3513  0.9551 
## 
## Coefficients:
##                         Estimate Std. Error t value Pr(>|t|)    
## (Intercept)            4.0872523  0.2888562  14.150  < 2e-16 ***
## ranktenure track      -0.1476746  0.0819824  -1.801 0.072327 .  
## ranktenured           -0.0973829  0.0662614  -1.470 0.142349    
## gendermale             0.2101231  0.0516873   4.065 5.66e-05 ***
## ethnicitynot minority  0.1274458  0.0772887   1.649 0.099856 .  
## languagenon-english   -0.2282894  0.1111305  -2.054 0.040530 *  
## age                   -0.0089992  0.0031326  -2.873 0.004262 ** 
## cls_perc_eval          0.0052888  0.0015317   3.453 0.000607 ***
## cls_students           0.0004687  0.0003737   1.254 0.210384    
## cls_levelupper         0.0606374  0.0575010   1.055 0.292200    
## cls_creditsone credit  0.5061196  0.1149163   4.404 1.33e-05 ***
## bty_avg                0.0398629  0.0174780   2.281 0.023032 *  
## pic_outfitnot formal  -0.1083227  0.0721711  -1.501 0.134080    
## pic_colorcolor        -0.2190527  0.0711469  -3.079 0.002205 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.4974 on 449 degrees of freedom
## Multiple R-squared:  0.187,  Adjusted R-squared:  0.1634 
## F-statistic: 7.943 on 13 and 449 DF,  p-value: 2.336e-14
summary(m_full)
## 
## Call:
## lm(formula = score ~ rank + gender + ethnicity + language + age + 
##     cls_perc_eval + cls_students + cls_level + cls_profs + cls_credits + 
##     bty_avg + pic_outfit + pic_color, data = evals)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -1.77397 -0.32432  0.09067  0.35183  0.95036 
## 
## Coefficients:
##                         Estimate Std. Error t value Pr(>|t|)    
## (Intercept)            4.0952141  0.2905277  14.096  < 2e-16 ***
## ranktenure track      -0.1475932  0.0820671  -1.798  0.07278 .  
## ranktenured           -0.0973378  0.0663296  -1.467  0.14295    
## gendermale             0.2109481  0.0518230   4.071 5.54e-05 ***
## ethnicitynot minority  0.1234929  0.0786273   1.571  0.11698    
## languagenon-english   -0.2298112  0.1113754  -2.063  0.03965 *  
## age                   -0.0090072  0.0031359  -2.872  0.00427 ** 
## cls_perc_eval          0.0053272  0.0015393   3.461  0.00059 ***
## cls_students           0.0004546  0.0003774   1.205  0.22896    
## cls_levelupper         0.0605140  0.0575617   1.051  0.29369    
## cls_profssingle       -0.0146619  0.0519885  -0.282  0.77806    
## cls_creditsone credit  0.5020432  0.1159388   4.330 1.84e-05 ***
## bty_avg                0.0400333  0.0175064   2.287  0.02267 *  
## pic_outfitnot formal  -0.1126817  0.0738800  -1.525  0.12792    
## pic_colorcolor        -0.2172630  0.0715021  -3.039  0.00252 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.498 on 448 degrees of freedom
## Multiple R-squared:  0.1871, Adjusted R-squared:  0.1617 
## F-statistic: 7.366 on 14 and 448 DF,  p-value: 6.552e-14

Removing the variable with the highest p-value which was cls_profs, decreased the p-value of all the other variables slightly. This indicates an overall better model for prediction and not collinear with the other explanatory variables.

Exercise 15

m_full2 <- lm(score ~ rank + gender + ethnicity + age + cls_perc_eval 
              + cls_credits + bty_avg 
              + pic_color, data = evals)


summary(m_full2)
## 
## Call:
## lm(formula = score ~ rank + gender + ethnicity + age + cls_perc_eval + 
##     cls_credits + bty_avg + pic_color, data = evals)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -1.78323 -0.32511  0.09041  0.37162  0.96741 
## 
## Coefficients:
##                        Estimate Std. Error t value Pr(>|t|)    
## (Intercept)            3.928040   0.263010  14.935  < 2e-16 ***
## ranktenure track      -0.145821   0.079656  -1.831  0.06781 .  
## ranktenured           -0.053393   0.064060  -0.833  0.40501    
## gendermale             0.202823   0.051274   3.956 8.85e-05 ***
## ethnicitynot minority  0.190212   0.072780   2.614  0.00926 ** 
## age                   -0.008553   0.003044  -2.810  0.00517 ** 
## cls_perc_eval          0.004569   0.001440   3.172  0.00162 ** 
## cls_creditsone credit  0.495147   0.110616   4.476 9.62e-06 ***
## bty_avg                0.050789   0.017054   2.978  0.00306 ** 
## pic_colorcolor        -0.181680   0.067212  -2.703  0.00713 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.5 on 453 degrees of freedom
## Multiple R-squared:  0.1711, Adjusted R-squared:  0.1546 
## F-statistic: 10.39 on 9 and 453 DF,  p-value: 1.205e-14

Exercise 16

qqnorm(m_full2$residuals)
qqline(m_full2$residuals)

plot(m_full2$residuals)
abline(h = 0, lty = 3)

There is deviation towards the extremes of the graph. I am skeptical about the reliability of the model.

Exercise 17

The new information would mess with our independence. There would be multiple courses that a student can take from the same professor skewing the data.

Exercise 18

The characteristics of a high score in a university would be if the professor is young, male, teaching one credit and is good looking.

Exercise 19

As each university is different in terms of culture and population demographic, I don’t think we can apply this as rigidly to any university. I would be comfortable to use it as a backbone to create a more specified model for each university.