odev 14.10

library(plm)
## Warning: package 'plm' was built under R version 4.2.2
library(wooldridge)
data("airfare")
library(rmarkdown)
paged_table(airfare)
library(plm)
latif <- pdata.frame(airfare, index = c("id", "year"))
summary(latif)
##    year            id            dist            passen            fare      
##  1997:1149   1      :   4   Min.   :  95.0   Min.   :   2.0   Min.   : 37.0  
##  1998:1149   2      :   4   1st Qu.: 505.0   1st Qu.: 215.0   1st Qu.:123.0  
##  1999:1149   3      :   4   Median : 861.0   Median : 357.0   Median :168.0  
##  2000:1149   4      :   4   Mean   : 989.7   Mean   : 636.8   Mean   :178.8  
##              5      :   4   3rd Qu.:1304.0   3rd Qu.: 717.0   3rd Qu.:225.0  
##              6      :   4   Max.   :2724.0   Max.   :8497.0   Max.   :522.0  
##              (Other):4572                                                    
##     bmktshr           ldist            y98            y99            y00      
##  Min.   :0.1605   Min.   :4.554   Min.   :0.00   Min.   :0.00   Min.   :0.00  
##  1st Qu.:0.4650   1st Qu.:6.225   1st Qu.:0.00   1st Qu.:0.00   1st Qu.:0.00  
##  Median :0.6039   Median :6.758   Median :0.00   Median :0.00   Median :0.00  
##  Mean   :0.6101   Mean   :6.696   Mean   :0.25   Mean   :0.25   Mean   :0.25  
##  3rd Qu.:0.7531   3rd Qu.:7.173   3rd Qu.:0.25   3rd Qu.:0.25   3rd Qu.:0.25  
##  Max.   :1.0000   Max.   :7.910   Max.   :1.00   Max.   :1.00   Max.   :1.00  
##                                                                               
##      lfare          ldistsq          concen          lpassen      
##  Min.   :3.611   Min.   :20.74   Min.   :0.1605   Min.   :0.6931  
##  1st Qu.:4.812   1st Qu.:38.75   1st Qu.:0.4650   1st Qu.:5.3706  
##  Median :5.124   Median :45.67   Median :0.6039   Median :5.8777  
##  Mean   :5.096   Mean   :45.28   Mean   :0.6101   Mean   :6.0170  
##  3rd Qu.:5.416   3rd Qu.:51.45   3rd Qu.:0.7531   3rd Qu.:6.5751  
##  Max.   :6.258   Max.   :62.57   Max.   :1.0000   Max.   :9.0475  
## 
pdim(latif)
## Balanced Panel: n = 1149, T = 4, N = 4596
pvar(latif)
## no time variation:       id dist ldist ldistsq 
## no individual variation: year y98 y99 y00
kocaman1 <- plm(lpassen ~ fare + dist + passen + bmktshr + I(ldist^2) + year, data = latif, model = "pooling")
summary(kocaman1)
## Pooling Model
## 
## Call:
## plm(formula = lpassen ~ fare + dist + passen + bmktshr + I(ldist^2) + 
##     year, data = latif, model = "pooling")
## 
## Balanced Panel: n = 1149, T = 4, N = 4596
## 
## Residuals:
##      Min.   1st Qu.    Median   3rd Qu.      Max. 
## -4.697330 -0.282895  0.078816  0.389496  0.767094 
## 
## Coefficients:
##                Estimate  Std. Error t-value  Pr(>|t|)    
## (Intercept)  5.3699e+00  1.1033e-01 48.6706 < 2.2e-16 ***
## fare        -1.1863e-03  1.3071e-04 -9.0754 < 2.2e-16 ***
## dist         9.0119e-05  4.4067e-05  2.0450   0.04091 *  
## passen       8.8803e-04  9.4198e-06 94.2732 < 2.2e-16 ***
## bmktshr      2.2272e-01  4.6567e-02  4.7828 1.783e-06 ***
## I(ldist^2)   1.1674e-03  3.0201e-03  0.3865   0.69911    
## year1998     3.7651e-03  2.0999e-02  0.1793   0.85771    
## year1999     1.8118e-02  2.1012e-02  0.8623   0.38858    
## year2000     4.1192e-02  2.1103e-02  1.9519   0.05101 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Total Sum of Squares:    3590.7
## Residual Sum of Squares: 1161.4
## R-Squared:      0.67656
## Adj. R-Squared: 0.676
## F-statistic: 1199.36 on 8 and 4587 DF, p-value: < 2.22e-16
kocaman2 <- plm(lpassen ~ fare + dist + passen + bmktshr + I(ldist^2) + year, data = latif, model = "within")
summary(kocaman2)
## Oneway (individual) effect Within Model
## 
## Call:
## plm(formula = lpassen ~ fare + dist + passen + bmktshr + I(ldist^2) + 
##     year, data = latif, model = "within")
## 
## Balanced Panel: n = 1149, T = 4, N = 4596
## 
## Residuals:
##        Min.     1st Qu.      Median     3rd Qu.        Max. 
## -2.17315683 -0.03750978  0.00081035  0.03994864  1.98735732 
## 
## Coefficients:
##             Estimate  Std. Error  t-value  Pr(>|t|)    
## fare     -4.3260e-03  1.3776e-04 -31.4030 < 2.2e-16 ***
## passen    5.4114e-04  2.2967e-05  23.5623 < 2.2e-16 ***
## bmktshr   1.6054e-01  3.9765e-02   4.0374 5.523e-05 ***
## year1998  1.5337e-02  6.0027e-03   2.5550   0.01066 *  
## year1999  5.0585e-02  6.1888e-03   8.1737 4.160e-16 ***
## year2000  1.0955e-01  6.6880e-03  16.3808 < 2.2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Total Sum of Squares:    128.1
## Residual Sum of Squares: 70.409
## R-Squared:      0.45035
## Adj. R-Squared: 0.26602
## F-statistic: 469.9 on 6 and 3441 DF, p-value: < 2.22e-16
kocaman3 <- plm(lpassen ~ fare + dist + passen + bmktshr + I(ldist^2) + year, data = latif, model = "random")
summary(kocaman3)
## Oneway (individual) effect Random Effect Model 
##    (Swamy-Arora's transformation)
## 
## Call:
## plm(formula = lpassen ~ fare + dist + passen + bmktshr + I(ldist^2) + 
##     year, data = latif, model = "random")
## 
## Balanced Panel: n = 1149, T = 4, N = 4596
## 
## Effects:
##                   var std.dev share
## idiosyncratic 0.02046 0.14304 0.081
## individual    0.23084 0.48046 0.919
## theta: 0.8528
## 
## Residuals:
##      Min.   1st Qu.    Median   3rd Qu.      Max. 
## -2.561815 -0.055653  0.015611  0.070798  1.641581 
## 
## Coefficients:
##                Estimate  Std. Error  z-value  Pr(>|z|)    
## (Intercept)  5.8578e+00  1.9585e-01  29.9097 < 2.2e-16 ***
## fare        -3.2722e-03  1.2039e-04 -27.1795 < 2.2e-16 ***
## dist         3.0581e-04  8.4715e-05   3.6099 0.0003063 ***
## passen       7.6429e-04  1.4579e-05  52.4224 < 2.2e-16 ***
## bmktshr      1.9990e-01  3.7525e-02   5.3271 9.977e-08 ***
## I(ldist^2)  -4.3679e-03  5.9083e-03  -0.7393 0.4597420    
## year1998     9.5304e-03  6.1333e-03   1.5539 0.1202158    
## year1999     3.3770e-02  6.2124e-03   5.4358 5.454e-08 ***
## year2000     7.9356e-02  6.5168e-03  12.1771 < 2.2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Total Sum of Squares:    203.17
## Residual Sum of Squares: 98.487
## R-Squared:      0.51524
## Adj. R-Squared: 0.51439
## Chisq: 4875.39 on 8 DF, p-value: < 2.22e-16
library(stargazer)
## 
## Please cite as:
##  Hlavac, Marek (2022). stargazer: Well-Formatted Regression and Summary Statistics Tables.
##  R package version 5.2.3. https://CRAN.R-project.org/package=stargazer
stargazer(kocaman1, kocaman2, kocaman3, type = "text", column.labels = c("OLS","RE","FE"))
## 
## ===============================================================================
##                                     Dependent variable:                        
##              ------------------------------------------------------------------
##                                           lpassen                              
##                          OLS                        RE                  FE     
##                          (1)                        (2)                (3)     
## -------------------------------------------------------------------------------
## fare                  -0.001***                  -0.004***          -0.003***  
##                       (0.0001)                   (0.0001)            (0.0001)  
##                                                                                
## dist                  0.0001**                                      0.0003***  
##                       (0.00004)                                      (0.0001)  
##                                                                                
## passen                0.001***                   0.001***            0.001***  
##                       (0.00001)                  (0.00002)          (0.00001)  
##                                                                                
## bmktshr               0.223***                   0.161***            0.200***  
##                        (0.047)                    (0.040)            (0.038)   
##                                                                                
## I(ldist2)               0.001                                         -0.004   
##                        (0.003)                                       (0.006)   
##                                                                                
## year1998                0.004                     0.015**             0.010    
##                        (0.021)                    (0.006)            (0.006)   
##                                                                                
## year1999                0.018                    0.051***            0.034***  
##                        (0.021)                    (0.006)            (0.006)   
##                                                                                
## year2000               0.041*                    0.110***            0.079***  
##                        (0.021)                    (0.007)            (0.007)   
##                                                                                
## Constant              5.370***                                       5.858***  
##                        (0.110)                                       (0.196)   
##                                                                                
## -------------------------------------------------------------------------------
## Observations            4,596                      4,596              4,596    
## R2                      0.677                      0.450              0.515    
## Adjusted R2             0.676                      0.266              0.514    
## F Statistic  1,199.361*** (df = 8; 4587) 469.900*** (df = 6; 3441) 4,875.385***
## ===============================================================================
## Note:                                               *p<0.1; **p<0.05; ***p<0.01
phtest(kocaman2, kocaman3)
## 
##  Hausman Test
## 
## data:  lpassen ~ fare + dist + passen + bmktshr + I(ldist^2) + year
## chisq = 253.23, df = 6, p-value < 2.2e-16
## alternative hypothesis: one model is inconsistent

odev 14.7

library(wooldridge)
library(rmarkdown)
data(murder)
head(murder,10)
##    id state year mrdrte exec unem d90 d93    cmrdrte cexec      cunem cexec_1
## 1   1    AL   87    9.3    2  7.8   0   0         NA    NA         NA      NA
## 2   1    AL   90   11.6    5  6.8   1   0  2.3000002     3 -1.0000000      NA
## 3   1    AL   93   11.6    2  7.5   0   1  0.0000000    -3  0.6999998       3
## 4   2    AK   87   10.1    0 10.8   0   0         NA    NA         NA      NA
## 5   2    AK   90    7.5    0  6.9   1   0 -2.6000004     0 -3.9000001      NA
## 6   2    AK   93    9.0    0  7.6   0   1  1.5000000     0  0.6999998       0
## 7   3    AZ   87    7.5    0  6.2   0   0         NA    NA         NA      NA
## 8   3    AZ   90    7.7    0  5.3   1   0  0.1999998     0 -0.8999996      NA
## 9   3    AZ   93    8.6    3  6.2   0   1  0.9000006     3  0.8999996       0
## 10  4    AR   87    7.6    0  8.1   0   0         NA    NA         NA      NA
##       cunem_1
## 1          NA
## 2          NA
## 3  -1.0000000
## 4          NA
## 5          NA
## 6  -3.9000001
## 7          NA
## 8          NA
## 9  -0.8999996
## 10         NA
help("murder")
## httpd yardım sunucusu başlatılıyor ... tamamlandı
library(plm)
elma <- pdata.frame(murder, index = c( "state", "year" ))
summary(elma)
##        id         state     year        mrdrte            exec       
##  Min.   : 1   AK     :  3   87:51   Min.   : 0.800   Min.   : 0.000  
##  1st Qu.:13   AL     :  3   90:51   1st Qu.: 3.900   1st Qu.: 0.000  
##  Median :26   AR     :  3   93:51   Median : 6.400   Median : 0.000  
##  Mean   :26   AZ     :  3           Mean   : 8.071   Mean   : 1.229  
##  3rd Qu.:39   CA     :  3           3rd Qu.:10.200   3rd Qu.: 1.000  
##  Max.   :51   CO     :  3           Max.   :78.500   Max.   :34.000  
##               (Other):135                                            
##       unem             d90              d93            cmrdrte       
##  Min.   : 2.200   Min.   :0.0000   Min.   :0.0000   Min.   :-2.6000  
##  1st Qu.: 4.900   1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:-0.4000  
##  Median : 5.800   Median :0.0000   Median :0.0000   Median : 0.3000  
##  Mean   : 5.973   Mean   :0.3333   Mean   :0.3333   Mean   : 0.8422  
##  3rd Qu.: 7.000   3rd Qu.:1.0000   3rd Qu.:1.0000   3rd Qu.: 1.3000  
##  Max.   :12.000   Max.   :1.0000   Max.   :1.0000   Max.   :41.6000  
##                                                     NA's   :51       
##      cexec              cunem             cexec_1            cunem_1       
##  Min.   :-11.0000   Min.   :-5.80000   Min.   :-11.0000   Min.   :-5.8000  
##  1st Qu.:  0.0000   1st Qu.:-1.07500   1st Qu.:  0.0000   1st Qu.:-1.9500  
##  Median :  0.0000   Median : 0.30000   Median :  0.0000   Median :-1.0000  
##  Mean   :  0.1863   Mean   : 0.00588   Mean   : -0.2745   Mean   :-0.8863  
##  3rd Qu.:  0.0000   3rd Qu.: 1.00000   3rd Qu.:  0.0000   3rd Qu.: 0.0000  
##  Max.   : 23.0000   Max.   : 3.60000   Max.   :  5.0000   Max.   : 3.1000  
##  NA's   :51         NA's   :51         NA's   :102        NA's   :102
pdim(elma)
## Balanced Panel: n = 51, T = 3, N = 153
pvar(elma)
## no time variation:       id state cmrdrte cexec cunem cexec_1 cunem_1 
## no individual variation: year d90 d93 
## all NA in time dimension for at least one individual:  cmrdrte cexec cunem cexec_1 cunem_1 
## all NA in ind. dimension for at least one time period: cmrdrte cexec cunem cexec_1 cunem_1
armut <- plm(mrdrte ~ exec + unem + d90 + d93 + I(cexec^2) + year, data = elma, model = "pooling")
summary(armut)
## Pooling Model
## 
## Call:
## plm(formula = mrdrte ~ exec + unem + d90 + d93 + I(cexec^2) + 
##     year, data = elma, model = "pooling")
## 
## Balanced Panel: n = 51, T = 2, N = 102
## 
## Residuals:
##     Min.  1st Qu.   Median  3rd Qu.     Max. 
## -12.9092  -3.3651  -1.5955   1.3242  66.5059 
## 
## Coefficients: (2 dropped because of singularities)
##              Estimate Std. Error t-value Pr(>|t|)   
## (Intercept) -7.399751   5.118582 -1.4457 0.151495   
## exec         0.323921   0.647303  0.5004 0.617915   
## unem         2.519343   0.785822  3.2060 0.001823 **
## d90          2.066181   2.154439  0.9590 0.339926   
## I(cexec^2)  -0.015443   0.046507 -0.3321 0.740556   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Total Sum of Squares:    11401
## Residual Sum of Squares: 10231
## R-Squared:      0.10263
## Adj. R-Squared: 0.065627
## F-statistic: 2.77347 on 4 and 97 DF, p-value: 0.031305
armut1 <- plm(mrdrte ~ exec + unem + d90 + d93 + I(cexec^2) + year, data = elma, model = "within")
summary(armut1)
## Oneway (individual) effect Within Model
## 
## Call:
## plm(formula = mrdrte ~ exec + unem + d90 + d93 + I(cexec^2) + 
##     year, data = elma, model = "within")
## 
## Balanced Panel: n = 51, T = 2, N = 102
## 
## Residuals:
##     Min.  1st Qu.   Median  3rd Qu.     Max. 
## -1.32025 -0.37707  0.00000  0.37707  1.32025 
## 
## Coefficients: (2 dropped because of singularities)
##              Estimate Std. Error t-value Pr(>|t|)  
## exec       -0.0043263  0.1252189 -0.0345  0.97258  
## unem       -0.0717520  0.1592698 -0.4505  0.65442  
## d90        -0.4029345  0.2103551 -1.9155  0.06152 .
## I(cexec^2) -0.0063814  0.0075287 -0.8476  0.40095  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Total Sum of Squares:    33.47
## Residual Sum of Squares: 27.516
## R-Squared:      0.1779
## Adj. R-Squared: -0.76664
## F-statistic: 2.54269 on 4 and 47 DF, p-value: 0.051892
armut2 <- plm(mrdrte ~ exec + unem + d90 + d93 + I(cexec^2) + year, data = elma, model = "random")
summary(armut2)
## Oneway (individual) effect Random Effect Model 
##    (Swamy-Arora's transformation)
## 
## Call:
## plm(formula = mrdrte ~ exec + unem + d90 + d93 + I(cexec^2) + 
##     year, data = elma, model = "random")
## 
## Balanced Panel: n = 51, T = 2, N = 102
## 
## Effects:
##                    var  std.dev share
## idiosyncratic   0.5854   0.7651 0.005
## individual    106.1862  10.3047 0.995
## theta: 0.9476
## 
## Residuals:
##     Min.  1st Qu.   Median  3rd Qu.     Max. 
## -1.36973 -0.46929 -0.12669  0.32637  3.83832 
## 
## Coefficients: (2 dropped because of singularities)
##               Estimate Std. Error z-value  Pr(>|z|)    
## (Intercept)  8.9214366  1.7891607  4.9864 6.152e-07 ***
## exec         0.0059700  0.1265524  0.0472   0.96237    
## unem        -0.0188165  0.1609622 -0.1169   0.90694    
## d90         -0.3520064  0.2135355 -1.6485   0.09926 .  
## I(cexec^2)  -0.0068039  0.0076242 -0.8924   0.37217    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Total Sum of Squares:    64.721
## Residual Sum of Squares: 59.026
## R-Squared:      0.087985
## Adj. R-Squared: 0.050376
## Chisq: 9.35789 on 4 DF, p-value: 0.052751
library(stargazer)
stargazer(armut, armut1, armut2, type = "text", column.labels = c("OLS","RE","FE"))
## 
## ==============================================================
##                             Dependent variable:               
##              -------------------------------------------------
##                                   mrdrte                      
##                      OLS                  RE             FE   
##                      (1)                  (2)           (3)   
## --------------------------------------------------------------
## exec                0.324               -0.004         0.006  
##                    (0.647)              (0.125)       (0.127) 
##                                                               
## unem               2.519***             -0.072         -0.019 
##                    (0.786)              (0.159)       (0.161) 
##                                                               
## d90                 2.066               -0.403*       -0.352* 
##                    (2.154)              (0.210)       (0.214) 
##                                                               
## I(cexec2)           -0.015              -0.006         -0.007 
##                    (0.047)              (0.008)       (0.008) 
##                                                               
## Constant            -7.400                            8.921***
##                    (5.119)                            (1.789) 
##                                                               
## --------------------------------------------------------------
## Observations         102                  102           102   
## R2                  0.103                0.178         0.088  
## Adjusted R2         0.066               -0.767         0.050  
## F Statistic  2.773** (df = 4; 97) 2.543* (df = 4; 47)  9.358* 
## ==============================================================
## Note:                              *p<0.1; **p<0.05; ***p<0.01
require(dplyr)
## Zorunlu paket yükleniyor: dplyr
## Warning: package 'dplyr' was built under R version 4.2.2
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:plm':
## 
##     between, lag, lead
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
murder %>%
 select(d90 , d93)%>%
 mutate(sabit=1)
##     d90 d93 sabit
## 1     0   0     1
## 2     1   0     1
## 3     0   1     1
## 4     0   0     1
## 5     1   0     1
## 6     0   1     1
## 7     0   0     1
## 8     1   0     1
## 9     0   1     1
## 10    0   0     1
## 11    1   0     1
## 12    0   1     1
## 13    0   0     1
## 14    1   0     1
## 15    0   1     1
## 16    0   0     1
## 17    1   0     1
## 18    0   1     1
## 19    0   0     1
## 20    1   0     1
## 21    0   1     1
## 22    0   0     1
## 23    1   0     1
## 24    0   1     1
## 25    0   0     1
## 26    1   0     1
## 27    0   1     1
## 28    0   0     1
## 29    1   0     1
## 30    0   1     1
## 31    0   0     1
## 32    1   0     1
## 33    0   1     1
## 34    0   0     1
## 35    1   0     1
## 36    0   1     1
## 37    0   0     1
## 38    1   0     1
## 39    0   1     1
## 40    0   0     1
## 41    1   0     1
## 42    0   1     1
## 43    0   0     1
## 44    1   0     1
## 45    0   1     1
## 46    0   0     1
## 47    1   0     1
## 48    0   1     1
## 49    0   0     1
## 50    1   0     1
## 51    0   1     1
## 52    0   0     1
## 53    1   0     1
## 54    0   1     1
## 55    0   0     1
## 56    1   0     1
## 57    0   1     1
## 58    0   0     1
## 59    1   0     1
## 60    0   1     1
## 61    0   0     1
## 62    1   0     1
## 63    0   1     1
## 64    0   0     1
## 65    1   0     1
## 66    0   1     1
## 67    0   0     1
## 68    1   0     1
## 69    0   1     1
## 70    0   0     1
## 71    1   0     1
## 72    0   1     1
## 73    0   0     1
## 74    1   0     1
## 75    0   1     1
## 76    0   0     1
## 77    1   0     1
## 78    0   1     1
## 79    0   0     1
## 80    1   0     1
## 81    0   1     1
## 82    0   0     1
## 83    1   0     1
## 84    0   1     1
## 85    0   0     1
## 86    1   0     1
## 87    0   1     1
## 88    0   0     1
## 89    1   0     1
## 90    0   1     1
## 91    0   0     1
## 92    1   0     1
## 93    0   1     1
## 94    0   0     1
## 95    1   0     1
## 96    0   1     1
## 97    0   0     1
## 98    1   0     1
## 99    0   1     1
## 100   0   0     1
## 101   1   0     1
## 102   0   1     1
## 103   0   0     1
## 104   1   0     1
## 105   0   1     1
## 106   0   0     1
## 107   1   0     1
## 108   0   1     1
## 109   0   0     1
## 110   1   0     1
## 111   0   1     1
## 112   0   0     1
## 113   1   0     1
## 114   0   1     1
## 115   0   0     1
## 116   1   0     1
## 117   0   1     1
## 118   0   0     1
## 119   1   0     1
## 120   0   1     1
## 121   0   0     1
## 122   1   0     1
## 123   0   1     1
## 124   0   0     1
## 125   1   0     1
## 126   0   1     1
## 127   0   0     1
## 128   1   0     1
## 129   0   1     1
## 130   0   0     1
## 131   1   0     1
## 132   0   1     1
## 133   0   0     1
## 134   1   0     1
## 135   0   1     1
## 136   0   0     1
## 137   1   0     1
## 138   0   1     1
## 139   0   0     1
## 140   1   0     1
## 141   0   1     1
## 142   0   0     1
## 143   1   0     1
## 144   0   1     1
## 145   0   0     1
## 146   1   0     1
## 147   0   1     1
## 148   0   0     1
## 149   1   0     1
## 150   0   1     1
## 151   0   0     1
## 152   1   0     1
## 153   0   1     1