# Load needed libraries
library(tidyverse)
library(knitr)
library(Matrix)
library(matlib)
library(matrixcalc)
library(MASS)
filename <- tempfile()
download.file("https://raw.githubusercontent.com/audiorunner13/Masters-Coursework/main/DATA605%20Fall%202022/FinalExam/FinalProblem3/house-prices-advanced-regression-techniques/train.csv",filename)
train_src <- read.csv(filename)
train_src_1Fam <- data.frame(filter(train_src,BldgType == '1Fam'))
summary(train_src_1Fam)
##        Id           MSSubClass       MSZoning          LotFrontage    
##  Min.   :   1.0   Min.   : 20.00   Length:1220        Min.   : 30.00  
##  1st Qu.: 361.8   1st Qu.: 20.00   Class :character   1st Qu.: 60.00  
##  Median : 726.5   Median : 45.00   Mode  :character   Median : 71.00  
##  Mean   : 727.2   Mean   : 41.57                      Mean   : 74.50  
##  3rd Qu.:1101.2   3rd Qu.: 60.00                      3rd Qu.: 83.75  
##  Max.   :1460.0   Max.   :120.00                      Max.   :313.00  
##                                                       NA's   :226     
##     LotArea          Street             Alley             LotShape        
##  Min.   :  2500   Length:1220        Length:1220        Length:1220       
##  1st Qu.:  8359   Class :character   Class :character   Class :character  
##  Median :  9819   Mode  :character   Mode  :character   Mode  :character  
##  Mean   : 11241                                                           
##  3rd Qu.: 12000                                                           
##  Max.   :215245                                                           
##                                                                           
##  LandContour         Utilities          LotConfig          LandSlope        
##  Length:1220        Length:1220        Length:1220        Length:1220       
##  Class :character   Class :character   Class :character   Class :character  
##  Mode  :character   Mode  :character   Mode  :character   Mode  :character  
##                                                                             
##                                                                             
##                                                                             
##                                                                             
##  Neighborhood        Condition1         Condition2          BldgType        
##  Length:1220        Length:1220        Length:1220        Length:1220       
##  Class :character   Class :character   Class :character   Class :character  
##  Mode  :character   Mode  :character   Mode  :character   Mode  :character  
##                                                                             
##                                                                             
##                                                                             
##                                                                             
##   HouseStyle         OverallQual      OverallCond      YearBuilt   
##  Length:1220        Min.   : 1.000   Min.   :1.000   Min.   :1872  
##  Class :character   1st Qu.: 5.000   1st Qu.:5.000   1st Qu.:1950  
##  Mode  :character   Median : 6.000   Median :5.000   Median :1970  
##                     Mean   : 6.121   Mean   :5.652   Mean   :1970  
##                     3rd Qu.: 7.000   3rd Qu.:6.000   3rd Qu.:2000  
##                     Max.   :10.000   Max.   :9.000   Max.   :2010  
##                                                                    
##   YearRemodAdd   RoofStyle           RoofMatl         Exterior1st       
##  Min.   :1950   Length:1220        Length:1220        Length:1220       
##  1st Qu.:1965   Class :character   Class :character   Class :character  
##  Median :1994   Mode  :character   Mode  :character   Mode  :character  
##  Mean   :1985                                                           
##  3rd Qu.:2004                                                           
##  Max.   :2010                                                           
##                                                                         
##  Exterior2nd         MasVnrType          MasVnrArea      ExterQual        
##  Length:1220        Length:1220        Min.   :   0.0   Length:1220       
##  Class :character   Class :character   1st Qu.:   0.0   Class :character  
##  Mode  :character   Mode  :character   Median :   0.0   Mode  :character  
##                                        Mean   : 101.9                     
##                                        3rd Qu.: 162.0                     
##                                        Max.   :1600.0                     
##                                        NA's   :7                          
##   ExterCond          Foundation          BsmtQual           BsmtCond        
##  Length:1220        Length:1220        Length:1220        Length:1220       
##  Class :character   Class :character   Class :character   Class :character  
##  Mode  :character   Mode  :character   Mode  :character   Mode  :character  
##                                                                             
##                                                                             
##                                                                             
##                                                                             
##  BsmtExposure       BsmtFinType1         BsmtFinSF1     BsmtFinType2      
##  Length:1220        Length:1220        Min.   :   0.0   Length:1220       
##  Class :character   Class :character   1st Qu.:   0.0   Class :character  
##  Mode  :character   Mode  :character   Median : 384.0   Mode  :character  
##                                        Mean   : 444.3                     
##                                        3rd Qu.: 706.5                     
##                                        Max.   :5644.0                     
##                                                                           
##    BsmtFinSF2        BsmtUnfSF     TotalBsmtSF       Heating         
##  Min.   :   0.00   Min.   :   0   Min.   :   0.0   Length:1220       
##  1st Qu.:   0.00   1st Qu.: 254   1st Qu.: 814.0   Class :character  
##  Median :   0.00   Median : 502   Median : 998.5   Mode  :character  
##  Mean   :  48.76   Mean   : 581   Mean   :1074.1                     
##  3rd Qu.:   0.00   3rd Qu.: 813   3rd Qu.:1284.5                     
##  Max.   :1474.00   Max.   :2336   Max.   :6110.0                     
##                                                                      
##   HeatingQC          CentralAir         Electrical          X1stFlrSF   
##  Length:1220        Length:1220        Length:1220        Min.   : 334  
##  Class :character   Class :character   Class :character   1st Qu.: 894  
##  Mode  :character   Mode  :character   Mode  :character   Median :1092  
##                                                           Mean   :1175  
##                                                           3rd Qu.:1392  
##                                                           Max.   :4692  
##                                                                         
##    X2ndFlrSF       LowQualFinSF       GrLivArea     BsmtFullBath   
##  Min.   :   0.0   Min.   :  0.000   Min.   : 334   Min.   :0.0000  
##  1st Qu.:   0.0   1st Qu.:  0.000   1st Qu.:1134   1st Qu.:0.0000  
##  Median :   0.0   Median :  0.000   Median :1483   Median :0.0000  
##  Mean   : 358.1   Mean   :  6.184   Mean   :1539   Mean   :0.4123  
##  3rd Qu.: 754.2   3rd Qu.:  0.000   3rd Qu.:1820   3rd Qu.:1.0000  
##  Max.   :2065.0   Max.   :572.000   Max.   :5642   Max.   :2.0000  
##                                                                    
##   BsmtHalfBath       FullBath        HalfBath       BedroomAbvGr  
##  Min.   :0.0000   Min.   :0.000   Min.   :0.0000   Min.   :0.000  
##  1st Qu.:0.0000   1st Qu.:1.000   1st Qu.:0.0000   1st Qu.:3.000  
##  Median :0.0000   Median :2.000   Median :0.0000   Median :3.000  
##  Mean   :0.0582   Mean   :1.546   Mean   :0.3902   Mean   :2.928  
##  3rd Qu.:0.0000   3rd Qu.:2.000   3rd Qu.:1.0000   3rd Qu.:3.000  
##  Max.   :1.0000   Max.   :3.000   Max.   :2.0000   Max.   :5.000  
##                                                                   
##   KitchenAbvGr   KitchenQual         TotRmsAbvGrd     Functional       
##  Min.   :1.000   Length:1220        Min.   : 2.000   Length:1220       
##  1st Qu.:1.000   Class :character   1st Qu.: 6.000   Class :character  
##  Median :1.000   Mode  :character   Median : 6.000   Mode  :character  
##  Mean   :1.006                      Mean   : 6.603                     
##  3rd Qu.:1.000                      3rd Qu.: 7.000                     
##  Max.   :3.000                      Max.   :12.000                     
##                                                                        
##    Fireplaces     FireplaceQu         GarageType         GarageYrBlt  
##  Min.   :0.0000   Length:1220        Length:1220        Min.   :1906  
##  1st Qu.:0.0000   Class :character   Class :character   1st Qu.:1959  
##  Median :1.0000   Mode  :character   Mode  :character   Median :1978  
##  Mean   :0.6508                                         Mean   :1977  
##  3rd Qu.:1.0000                                         3rd Qu.:2001  
##  Max.   :3.0000                                         Max.   :2010  
##                                                         NA's   :54    
##  GarageFinish         GarageCars     GarageArea      GarageQual       
##  Length:1220        Min.   :0.00   Min.   :   0.0   Length:1220       
##  Class :character   1st Qu.:1.00   1st Qu.: 325.8   Class :character  
##  Mode  :character   Median :2.00   Median : 480.0   Mode  :character  
##                     Mean   :1.78   Mean   : 482.1                     
##                     3rd Qu.:2.00   3rd Qu.: 588.0                     
##                     Max.   :4.00   Max.   :1418.0                     
##                                                                       
##   GarageCond         PavedDrive          WoodDeckSF      OpenPorchSF    
##  Length:1220        Length:1220        Min.   :  0.00   Min.   :  0.00  
##  Class :character   Class :character   1st Qu.:  0.00   1st Qu.:  0.00  
##  Mode  :character   Mode  :character   Median :  0.00   Median : 28.00  
##                                        Mean   : 96.65   Mean   : 48.72  
##                                        3rd Qu.:178.00   3rd Qu.: 72.25  
##                                        Max.   :857.00   Max.   :547.00  
##                                                                         
##  EnclosedPorch      X3SsnPorch       ScreenPorch        PoolArea      
##  Min.   :  0.00   Min.   :  0.000   Min.   :  0.00   Min.   :  0.000  
##  1st Qu.:  0.00   1st Qu.:  0.000   1st Qu.:  0.00   1st Qu.:  0.000  
##  Median :  0.00   Median :  0.000   Median :  0.00   Median :  0.000  
##  Mean   : 24.54   Mean   :  3.817   Mean   : 16.13   Mean   :  3.302  
##  3rd Qu.:  0.00   3rd Qu.:  0.000   3rd Qu.:  0.00   3rd Qu.:  0.000  
##  Max.   :552.00   Max.   :508.000   Max.   :480.00   Max.   :738.000  
##                                                                       
##     PoolQC             Fence           MiscFeature           MiscVal       
##  Length:1220        Length:1220        Length:1220        Min.   :    0.0  
##  Class :character   Class :character   Class :character   1st Qu.:    0.0  
##  Mode  :character   Mode  :character   Mode  :character   Median :    0.0  
##                                                           Mean   :   40.9  
##                                                           3rd Qu.:    0.0  
##                                                           Max.   :15500.0  
##                                                                            
##      MoSold           YrSold       SaleType         SaleCondition     
##  Min.   : 1.000   Min.   :2006   Length:1220        Length:1220       
##  1st Qu.: 5.000   1st Qu.:2007   Class :character   Class :character  
##  Median : 6.000   Median :2008   Mode  :character   Mode  :character  
##  Mean   : 6.356   Mean   :2008                                        
##  3rd Qu.: 8.000   3rd Qu.:2009                                        
##  Max.   :12.000   Max.   :2010                                        
##                                                                       
##    SalePrice     
##  Min.   : 34900  
##  1st Qu.:131475  
##  Median :167900  
##  Mean   :185764  
##  3rd Qu.:222000  
##  Max.   :755000  
## 

Descriptive and Inferential Statistics. Provide univariate descriptive statistics and appropriate plots for the training data set. Provide a scatterplot matrix for at least two of the independent variables and the dependent variable.

sqft_liv <- train_src_1Fam$X1stFlrSF + train_src_1Fam$X2ndFlrSF

x_ax <- sqft_liv

y_ax <- train_src_1Fam$SalePrice/1000

plot(x_ax, y_ax, main = "Sale Price by Square Footage",
 xlab = "Square Footage", ylab = "Sale Price (Thousands)",
 pch = 21, bg='yellow')

train_src_1Fam %>%
  ggplot(aes(x=Neighborhood,SalePrice,y=SalePrice/1000)) + 
  geom_bar(stat = 'identity',fill="#f68060",position=position_dodge(),alpha=.6, width=.4)   +
  coord_flip() +
  labs(y = ("Sale Price (Thousands)"),x = ("Neighborhood"),
      title = ("Sale Price by Neighborhood")  ) +
  theme_minimal()

Derive a correlation matrix for any three quantitative variables in the dataset. Test the hypotheses that the correlations between each pairwise set of variables is 0 and provide an 80% confidence interval. Discuss the meaning of your analysis. Would you be worried about familywise error? Why or why not? 5 points

train_src_1Fam$SqftLiv <- paste(train_src_1Fam$X1stFlrSF+train_src_1Fam$X2ndFlrSF)
train_1Fam_temp <- train_src_1Fam[,c("LotArea","SalePrice","SqftLiv")]
train_1Fam_temp$SqftLiv <- as.integer(train_1Fam_temp$SqftLiv)
head(train_1Fam_temp,10)
##    LotArea SalePrice SqftLiv
## 1     8450    208500    1710
## 2     9600    181500    1262
## 3    11250    223500    1786
## 4     9550    140000    1717
## 5    14260    250000    2198
## 6    14115    143000    1362
## 7    10084    307000    1694
## 8    10382    200000    2090
## 9     6120    129900    1774
## 10   11200    129500    1040
(train_1Fam_corr <- cor(train_1Fam_temp))
##             LotArea SalePrice   SqftLiv
## LotArea   1.0000000 0.2742846 0.2694855
## SalePrice 0.2742846 1.0000000 0.7472224
## SqftLiv   0.2694855 0.7472224 1.0000000

Linear Algebra and Correlation. Invert your correlation matrix from above. (This is known as the precision matrix and contains variance inflation factors on the diagonal.) Multiply the correlation matrix by the precision matrix, and then multiply the precision matrix by the correlation matrix. Conduct LU decomposition on the matrix. 5 points

(train_1Fam_corr_inv <- solve(train_1Fam_corr))
##              LotArea  SalePrice    SqftLiv
## LotArea    1.0924921 -0.1803732 -0.1596319
## SalePrice -0.1803732  2.2939719 -1.6654992
## SqftLiv   -0.1596319 -1.6654992  2.2875168
train_1Fam_corr %*% train_1Fam_corr_inv
##                 LotArea SalePrice SqftLiv
## LotArea    1.000000e+00         0       0
## SalePrice -1.387779e-17         1       0
## SqftLiv    0.000000e+00         0       1
train_1Fam_corr_inv %*% train_1Fam_corr
##                LotArea     SalePrice       SqftLiv
## LotArea   1.000000e+00 -8.326673e-17 -5.551115e-17
## SalePrice 1.110223e-16  1.000000e+00  2.220446e-16
## SqftLiv   0.000000e+00 -2.220446e-16  1.000000e+00
lu.decomposition(train_1Fam_corr)
## $L
##           [,1]      [,2] [,3]
## [1,] 1.0000000 0.0000000    0
## [2,] 0.2742846 1.0000000    0
## [3,] 0.2694855 0.7280817    1
## 
## $U
##      [,1]      [,2]      [,3]
## [1,]    1 0.2742846 0.2694855
## [2,]    0 0.9247680 0.6733067
## [3,]    0 0.0000000 0.4371553
lu.decomposition(train_1Fam_corr_inv)
## $L
##            [,1]       [,2] [,3]
## [1,]  1.0000000  0.0000000    0
## [2,] -0.1651026  1.0000000    0
## [3,] -0.1461172 -0.7472224    1
## 
## $U
##          [,1]          [,2]       [,3]
## [1,] 1.092492 -1.803732e-01 -0.1596319
## [2,] 0.000000  2.264192e+00 -1.6918549
## [3,] 0.000000  2.220446e-16  1.0000000

Calculus-Based Probability & Statistics. Many times, it makes sense to fit a closed form distribution to data. Select a variable in the Kaggle.com training dataset that is skewed to the right, shift it so that the minimum value is absolutely above zero if necessary. Then load the MASS package and run fitdistr to fit an exponential probability density function. (See https://stat.ethz.ch/R-manual/R- devel/library/MASS/html/fitdistr.html ). Find the optimal value of λ for this distribution, and then take 1000 samples from this exponential distribution using this value (e.g., rexp(1000, λ)).

hist(train_src_1Fam$LotArea, col='steelblue',main="Original")

sqrt_LotArea <- train_src_1Fam$LotArea^(1/3)
hist(sqrt_LotArea, col='coral2', main='Square Root Transformed')

fitdistr(sqrt_LotArea,"exponential")
##       rate    
##   0.045788314 
##  (0.001310916)
sqrt_LotArea_samp <- rexp(1000, rate = 0.045788314)

Plot a histogram and compare it with a histogram of your original variable. Using the exponential pdf, find the 5th and 95th percentiles using the cumulative distribution function (CDF). Also generate a 95% confidence interval from the empirical data, assuming normality. Finally, provide the empirical 5th percentile and 95th percentile of the data. Discuss. 10 points

hist(sqrt_LotArea_samp, probability=TRUE, col= gray(.9))

dexp(sqrt_LotArea_samp,           # X-axis values (> 0)
     rate = 0.045788314) 
##    [1] 5.230897e-04 1.824241e-02 1.827953e-02 3.456530e-02 3.617138e-02
##    [6] 2.837149e-02 3.211005e-02 4.318452e-02 9.049063e-03 1.008403e-02
##   [11] 4.301431e-02 4.389249e-02 2.807342e-02 9.267590e-03 3.346309e-02
##   [16] 2.681004e-02 4.277282e-02 3.639294e-02 3.155240e-02 2.748687e-02
##   [21] 4.095019e-02 1.652983e-03 3.697788e-02 1.983926e-02 4.239553e-02
##   [26] 2.797060e-02 3.664426e-02 1.982713e-03 4.460923e-03 2.587514e-02
##   [31] 3.566758e-02 1.934241e-02 4.456074e-02 6.095516e-03 4.285907e-02
##   [36] 1.525209e-02 3.969734e-02 2.180697e-03 1.608209e-03 4.245600e-02
##   [41] 2.437151e-02 2.368382e-02 1.503825e-02 1.701597e-02 5.186987e-03
##   [46] 1.960717e-03 2.796747e-03 1.900507e-02 4.058980e-02 5.908559e-03
##   [51] 3.475868e-02 3.232511e-02 2.985063e-02 4.247425e-03 2.137176e-02
##   [56] 3.209692e-02 2.092034e-02 2.430515e-02 1.806026e-02 8.106613e-03
##   [61] 9.726189e-03 3.822920e-02 2.236383e-02 1.031578e-02 1.460095e-02
##   [66] 4.256584e-02 2.996476e-02 4.798963e-03 4.343711e-02 2.384253e-02
##   [71] 3.372570e-02 3.142719e-02 1.635134e-02 2.836007e-02 2.979171e-04
##   [76] 6.638784e-03 2.008961e-02 4.201724e-02 3.173970e-03 1.750644e-02
##   [81] 3.908094e-02 3.368891e-02 3.367670e-02 3.834214e-02 1.495146e-02
##   [86] 2.285903e-02 2.842321e-03 1.394050e-02 2.942944e-02 1.836682e-02
##   [91] 3.880119e-02 4.228568e-02 4.408311e-02 7.285972e-03 2.556704e-02
##   [96] 1.894250e-02 1.383113e-03 2.415489e-02 9.668075e-03 2.031255e-02
##  [101] 2.870636e-02 3.017008e-02 3.629915e-02 3.463259e-03 2.845096e-02
##  [106] 3.507279e-02 2.265881e-02 1.140930e-02 2.292453e-02 2.249360e-02
##  [111] 2.428763e-03 4.565268e-03 3.402738e-02 4.070317e-02 3.018300e-02
##  [116] 8.040141e-03 1.137549e-02 4.041835e-02 2.961915e-02 2.677086e-02
##  [121] 4.200860e-02 2.522141e-02 3.705119e-02 6.697347e-03 3.186712e-02
##  [126] 1.034936e-02 2.926780e-02 1.565848e-02 4.032174e-02 3.057834e-02
##  [131] 1.013329e-02 7.923884e-03 3.548238e-02 3.886819e-02 1.837598e-02
##  [136] 2.735510e-02 3.830109e-02 7.736644e-03 3.708556e-02 3.505205e-02
##  [141] 1.975305e-03 2.021743e-03 2.300827e-02 4.058458e-03 4.405314e-02
##  [146] 4.571376e-02 1.645894e-02 3.063315e-02 7.116864e-03 1.409601e-02
##  [151] 3.988704e-02 1.873907e-02 4.773223e-03 5.100463e-03 3.915126e-02
##  [156] 1.340175e-02 6.167318e-05 1.541270e-02 2.393834e-02 4.142077e-02
##  [161] 2.417987e-02 4.571102e-02 1.027254e-02 1.409909e-02 2.822738e-02
##  [166] 2.605848e-02 7.850854e-04 2.241752e-02 1.408789e-02 3.403797e-03
##  [171] 2.161020e-02 3.277538e-02 2.662605e-02 4.265802e-02 1.435216e-02
##  [176] 1.304538e-02 3.682443e-02 4.507982e-02 1.120498e-03 8.579623e-03
##  [181] 2.244057e-04 2.792097e-02 3.237226e-02 2.522357e-02 1.408161e-02
##  [186] 1.950688e-02 7.698019e-03 1.516612e-02 3.232583e-02 3.664705e-02
##  [191] 4.410910e-02 3.994953e-02 3.289883e-02 2.378600e-03 2.566938e-02
##  [196] 4.088190e-02 3.320971e-03 7.710443e-03 3.682590e-02 2.300473e-02
##  [201] 3.883141e-02 1.950979e-02 1.848909e-02 1.823358e-02 1.381357e-02
##  [206] 2.293125e-02 4.314674e-02 3.571141e-02 1.248480e-02 8.342837e-03
##  [211] 2.786127e-02 3.444297e-02 1.874100e-02 9.220342e-03 2.714121e-02
##  [216] 2.231790e-02 2.316058e-03 1.179905e-02 3.110214e-02 2.094002e-02
##  [221] 2.465048e-02 3.933574e-02 1.908110e-03 3.820083e-02 4.131496e-02
##  [226] 3.319039e-02 3.834344e-02 1.833631e-04 4.095201e-02 4.378895e-02
##  [231] 1.918638e-02 1.380741e-02 1.333175e-02 2.113979e-02 1.818439e-02
##  [236] 4.329826e-02 7.509413e-03 4.370498e-02 2.580063e-02 3.371480e-02
##  [241] 2.755452e-02 2.184145e-02 3.145244e-03 4.131354e-02 3.927263e-02
##  [246] 1.308608e-02 1.044904e-02 4.321788e-02 1.041172e-02 1.548642e-02
##  [251] 3.279829e-02 3.087229e-02 2.061045e-03 1.468491e-02 1.839450e-02
##  [256] 4.061465e-02 4.230226e-02 1.834052e-02 8.198213e-03 6.756754e-03
##  [261] 4.258453e-02 9.859869e-03 3.904515e-02 2.311232e-02 1.108665e-02
##  [266] 1.619557e-02 3.438108e-02 2.170632e-03 4.078095e-02 1.475430e-02
##  [271] 3.271407e-02 3.554755e-02 4.273962e-02 8.606353e-03 2.526836e-02
##  [276] 2.626610e-03 2.474467e-02 3.802931e-02 2.690980e-02 3.457867e-02
##  [281] 2.648154e-02 2.777011e-02 5.380618e-03 2.151521e-02 7.859687e-03
##  [286] 2.978436e-02 9.135899e-03 5.363423e-03 1.276618e-02 4.103276e-02
##  [291] 3.234882e-02 2.645793e-02 3.093412e-02 1.369737e-02 3.731309e-02
##  [296] 1.271837e-02 3.685883e-02 3.886531e-02 2.719947e-02 3.472466e-02
##  [301] 4.205458e-02 1.272140e-02 1.406175e-03 3.701373e-02 1.818003e-02
##  [306] 4.058256e-02 1.158018e-02 6.888535e-03 3.580753e-04 2.088078e-02
##  [311] 7.373116e-03 3.302581e-02 2.496342e-03 1.936818e-02 3.292679e-04
##  [316] 2.978722e-02 1.008036e-02 1.525129e-02 1.166014e-02 4.532908e-02
##  [321] 1.031833e-02 3.194496e-02 2.013371e-03 2.355481e-02 1.294223e-02
##  [326] 2.966910e-02 2.149667e-02 2.700873e-02 1.958414e-02 3.090479e-02
##  [331] 1.250524e-02 3.431684e-02 1.107496e-02 4.236464e-02 8.070724e-03
##  [336] 2.906450e-02 4.125017e-02 4.305612e-02 6.638586e-03 3.603024e-02
##  [341] 3.051492e-02 4.334313e-02 1.958703e-02 2.357269e-02 4.312786e-02
##  [346] 1.670621e-02 3.632999e-02 8.152741e-04 2.306268e-02 9.857315e-03
##  [351] 2.901137e-03 7.062069e-03 2.132691e-02 3.053065e-02 3.519169e-02
##  [356] 1.938567e-02 7.784131e-03 6.845774e-04 7.736467e-03 1.225574e-02
##  [361] 3.509615e-02 3.645673e-02 1.462848e-03 2.222238e-02 2.089079e-02
##  [366] 3.483021e-02 1.589283e-02 1.018155e-02 1.865077e-02 1.700222e-02
##  [371] 3.210574e-02 1.208581e-02 2.025172e-02 2.884894e-02 2.164405e-02
##  [376] 3.377902e-02 4.215325e-02 3.490157e-02 9.923679e-03 2.924496e-02
##  [381] 4.706821e-04 3.922623e-02 1.034385e-02 2.315796e-02 4.247386e-02
##  [386] 2.130341e-02 4.076977e-02 3.072819e-02 1.244167e-02 2.809452e-02
##  [391] 4.154588e-03 2.428266e-02 3.536935e-02 2.647456e-02 3.413209e-02
##  [396] 3.160116e-03 5.639382e-03 2.753327e-02 3.939996e-02 1.240744e-02
##  [401] 1.002063e-02 3.517620e-02 5.017568e-03 2.390092e-02 1.113854e-02
##  [406] 1.170517e-02 3.446189e-02 3.330904e-02 4.788576e-03 3.674031e-03
##  [411] 1.728683e-02 1.877628e-02 4.038442e-02 1.052286e-02 1.053029e-02
##  [416] 2.339494e-02 1.932659e-02 2.952414e-02 2.888606e-02 8.675596e-03
##  [421] 1.741520e-02 4.527936e-02 2.995365e-02 4.276306e-02 9.709044e-03
##  [426] 1.016224e-02 1.225061e-02 3.286272e-02 4.055940e-02 3.580593e-02
##  [431] 2.632440e-02 3.259799e-02 1.445989e-02 2.610287e-02 3.522255e-02
##  [436] 4.318085e-02 1.774932e-02 3.838760e-02 3.942312e-02 3.568817e-03
##  [441] 2.036527e-02 9.750783e-04 1.371470e-02 3.189026e-02 4.911983e-03
##  [446] 2.758783e-02 2.278873e-02 1.771561e-02 4.735256e-03 1.973194e-03
##  [451] 3.327262e-02 1.921394e-02 3.375339e-02 3.291060e-02 1.821652e-02
##  [456] 2.440859e-02 2.437106e-02 2.216208e-02 2.283562e-02 1.797040e-02
##  [461] 5.028526e-04 2.061196e-02 3.138615e-02 1.273789e-03 3.233897e-02
##  [466] 7.009476e-03 3.635550e-02 3.688375e-02 4.115168e-02 8.497266e-03
##  [471] 2.370324e-02 2.463886e-02 2.841204e-02 2.517632e-02 1.724741e-02
##  [476] 2.201084e-02 4.581835e-03 2.599579e-02 2.330930e-02 8.246597e-03
##  [481] 2.901776e-02 1.773819e-02 1.059786e-02 7.168380e-03 4.296358e-02
##  [486] 4.441480e-02 4.468152e-02 4.208416e-02 4.469538e-02 3.214314e-02
##  [491] 3.432471e-05 2.894597e-02 2.455752e-02 1.753619e-02 3.664457e-02
##  [496] 4.107368e-02 4.334040e-03 1.278581e-02 3.180150e-02 5.247064e-03
##  [501] 4.070986e-02 4.051900e-02 4.496145e-02 9.416055e-03 2.137908e-02
##  [506] 2.894434e-02 1.142816e-02 3.630485e-02 1.866692e-02 4.305573e-02
##  [511] 3.923883e-02 1.808173e-03 5.832156e-03 7.147438e-04 2.371691e-02
##  [516] 7.086596e-03 6.436649e-03 2.107638e-02 1.147587e-02 3.823299e-02
##  [521] 2.340433e-02 4.109038e-02 5.148993e-03 5.809245e-03 3.381859e-02
##  [526] 4.954404e-03 8.882881e-03 1.641376e-02 7.050822e-05 1.499933e-02
##  [531] 2.421720e-02 3.564453e-02 2.043673e-02 3.092543e-02 4.051162e-02
##  [536] 1.061229e-02 4.492695e-02 4.571370e-02 2.947248e-02 1.552300e-02
##  [541] 1.785777e-02 3.190026e-02 4.904103e-03 1.828288e-02 4.514112e-02
##  [546] 3.898278e-02 4.207198e-02 3.003325e-02 2.504888e-02 1.244050e-02
##  [551] 2.580802e-02 2.037247e-02 3.144820e-02 2.908994e-02 3.572292e-02
##  [556] 8.241733e-04 3.410481e-03 4.221431e-02 3.803005e-02 2.249426e-02
##  [561] 2.990068e-02 1.699087e-02 3.008485e-02 3.192830e-03 1.257736e-02
##  [566] 3.715656e-02 1.845805e-02 3.913645e-02 3.427627e-03 3.106614e-02
##  [571] 2.246608e-02 3.683489e-02 1.212957e-02 3.617463e-02 2.730302e-02
##  [576] 4.211570e-02 3.967763e-02 3.761936e-02 4.172118e-04 7.106769e-03
##  [581] 4.101084e-02 3.002670e-02 2.711373e-02 3.579338e-02 4.048286e-02
##  [586] 1.025934e-02 1.954258e-02 6.113114e-03 3.012467e-02 3.817288e-02
##  [591] 1.484613e-02 4.029347e-02 2.760323e-02 4.147829e-02 3.004827e-02
##  [596] 4.186815e-02 1.177274e-03 1.479548e-02 3.092055e-03 6.221035e-03
##  [601] 4.703574e-03 3.344789e-03 3.900873e-02 4.224284e-02 3.120702e-02
##  [606] 2.807630e-03 2.034393e-02 1.110615e-02 5.563498e-03 2.532366e-02
##  [611] 3.072920e-02 2.849631e-02 3.543096e-02 4.839884e-03 2.704825e-02
##  [616] 2.447205e-02 2.986538e-02 1.184730e-02 3.105543e-02 3.592034e-02
##  [621] 2.393801e-03 4.398596e-02 2.453941e-02 2.831245e-02 2.018698e-02
##  [626] 2.622309e-04 7.521975e-03 8.813409e-03 1.986800e-02 1.126647e-02
##  [631] 3.413732e-02 3.981988e-02 2.635060e-02 4.069756e-02 4.200880e-02
##  [636] 4.317349e-02 4.127825e-02 4.349635e-02 2.402720e-02 3.083079e-02
##  [641] 1.998321e-02 5.913020e-03 3.338621e-02 4.047272e-02 9.541329e-03
##  [646] 2.513442e-02 9.707317e-03 6.738506e-04 3.190130e-02 1.356138e-02
##  [651] 4.168587e-02 4.492243e-02 1.149658e-02 1.578503e-02 2.964201e-02
##  [656] 2.683475e-02 2.468725e-02 2.172867e-02 1.473665e-02 3.810304e-02
##  [661] 3.111739e-02 3.967904e-03 1.707183e-02 7.378061e-03 1.521873e-02
##  [666] 4.229194e-02 2.904860e-02 1.374094e-02 2.424112e-02 2.691047e-03
##  [671] 1.582524e-02 3.019657e-02 1.967370e-02 3.717350e-02 8.477793e-03
##  [676] 2.800292e-02 3.550213e-02 2.028828e-02 8.663873e-03 1.240558e-02
##  [681] 1.518055e-04 3.600323e-02 4.476622e-02 8.882348e-03 3.225778e-02
##  [686] 2.622341e-02 3.257355e-02 1.800799e-02 4.507273e-02 2.663667e-02
##  [691] 2.813570e-02 4.075252e-02 3.574304e-02 4.134483e-02 1.930805e-02
##  [696] 2.866271e-02 1.912813e-02 4.296648e-02 2.143641e-02 1.478622e-02
##  [701] 2.284788e-02 3.441072e-02 1.568774e-02 2.867439e-02 4.300174e-02
##  [706] 4.267817e-02 9.957785e-03 3.791209e-02 9.216372e-03 1.111326e-02
##  [711] 3.570420e-02 3.624585e-02 4.205692e-02 4.332463e-02 5.019939e-03
##  [716] 1.770717e-02 2.496854e-02 1.081603e-02 1.880746e-02 3.684184e-02
##  [721] 3.308282e-02 3.611276e-02 5.799809e-04 8.931671e-03 1.359433e-02
##  [726] 3.161595e-02 3.109843e-02 1.282274e-02 2.132630e-02 2.387204e-02
##  [731] 1.006905e-02 4.680985e-04 3.752199e-02 1.375336e-02 4.293491e-02
##  [736] 2.965803e-02 2.208311e-04 3.480655e-02 3.567160e-02 2.239024e-02
##  [741] 4.017525e-02 8.201058e-03 2.644049e-02 4.482778e-03 3.546454e-03
##  [746] 3.316546e-02 3.969054e-02 1.497688e-02 5.581554e-03 1.094346e-02
##  [751] 2.507944e-02 2.452227e-02 1.120598e-02 3.998381e-02 2.672964e-02
##  [756] 1.509778e-02 1.273471e-02 3.938318e-02 2.281420e-03 2.724054e-02
##  [761] 7.863409e-03 2.428605e-02 2.599237e-02 4.465144e-02 3.202547e-02
##  [766] 2.628133e-02 3.449371e-02 1.426183e-02 2.327198e-02 4.516885e-02
##  [771] 4.274852e-02 2.668694e-02 2.269814e-02 9.059664e-03 3.278662e-02
##  [776] 2.400877e-03 4.745040e-03 4.558225e-03 9.410693e-03 2.379332e-02
##  [781] 7.836154e-03 1.643825e-02 1.155527e-02 5.483577e-03 1.319906e-02
##  [786] 2.897413e-02 3.879203e-02 2.984535e-02 1.421165e-02 3.792219e-02
##  [791] 6.439603e-03 2.858892e-02 2.058525e-02 1.558992e-03 2.924037e-02
##  [796] 5.511467e-03 1.989862e-02 3.863273e-02 2.999753e-02 2.458263e-02
##  [801] 8.619305e-03 2.340411e-02 1.176078e-02 3.969784e-02 1.879102e-02
##  [806] 1.780681e-02 3.314012e-02 3.385951e-02 1.467967e-02 8.732139e-03
##  [811] 1.894709e-02 1.394982e-02 1.439178e-02 3.336343e-03 6.857966e-04
##  [816] 3.737394e-02 3.434971e-03 1.227926e-02 4.328448e-02 1.907512e-02
##  [821] 3.574836e-02 1.528798e-02 1.968934e-02 2.325684e-02 3.531334e-02
##  [826] 2.725585e-02 2.990307e-03 2.115985e-02 3.815173e-02 2.123259e-02
##  [831] 2.050390e-02 4.247981e-02 2.305630e-02 2.490699e-02 2.776499e-02
##  [836] 4.528350e-02 3.690563e-02 7.020419e-03 1.226848e-02 3.873631e-02
##  [841] 2.311051e-02 4.401690e-02 2.027149e-02 1.753718e-02 4.503697e-02
##  [846] 3.146843e-02 4.123481e-02 4.485092e-02 8.560544e-03 4.215464e-02
##  [851] 4.003597e-03 1.772113e-02 2.610497e-02 7.131673e-03 2.153609e-02
##  [856] 3.817198e-03 3.046045e-02 8.068836e-03 4.497463e-02 2.823737e-02
##  [861] 7.830348e-03 4.093235e-02 4.445496e-02 1.056178e-02 4.017639e-02
##  [866] 3.780308e-02 9.035599e-03 3.101854e-03 4.113935e-02 1.257523e-02
##  [871] 2.631830e-02 3.845719e-02 2.347882e-02 3.138712e-04 1.220615e-02
##  [876] 2.262208e-02 2.954907e-02 2.407494e-02 2.420638e-03 6.563327e-03
##  [881] 1.577601e-02 4.266677e-02 4.249415e-02 1.414537e-02 1.339426e-02
##  [886] 4.167883e-02 2.094022e-02 2.219800e-02 1.011960e-02 1.762601e-02
##  [891] 3.613058e-02 2.055867e-03 3.032761e-04 3.504451e-02 3.675562e-02
##  [896] 2.415869e-02 1.839303e-02 4.458913e-02 1.868497e-02 1.749397e-02
##  [901] 3.940973e-02 4.288929e-02 1.412668e-02 5.253999e-03 6.090144e-03
##  [906] 3.958131e-02 1.293308e-02 2.526153e-02 4.296249e-02 4.475916e-02
##  [911] 3.562339e-02 2.197616e-02 3.934630e-02 1.897555e-02 1.490746e-02
##  [916] 3.641148e-02 2.646678e-02 3.743065e-02 1.722247e-02 9.310793e-04
##  [921] 2.091391e-02 2.380775e-02 1.832907e-03 5.678027e-03 2.506565e-02
##  [926] 1.531826e-02 2.994159e-03 4.657484e-03 9.101961e-03 3.524810e-03
##  [931] 1.702176e-02 3.603233e-02 1.340116e-02 3.574988e-02 3.143267e-02
##  [936] 3.903179e-02 2.939816e-02 2.038582e-02 4.160475e-03 1.291112e-02
##  [941] 6.289666e-03 2.843574e-02 4.134898e-02 1.600748e-02 3.095385e-02
##  [946] 8.146132e-03 2.326760e-02 4.241448e-03 1.819773e-03 2.368686e-04
##  [951] 4.278128e-02 2.304398e-02 2.463900e-02 3.865279e-03 4.505418e-02
##  [956] 2.031962e-02 2.471117e-02 1.754006e-03 3.021995e-02 4.446453e-03
##  [961] 1.298202e-02 2.713160e-02 1.452239e-02 4.160805e-02 2.897585e-02
##  [966] 1.947880e-02 2.952078e-02 4.018906e-02 1.966140e-02 1.846426e-03
##  [971] 4.488350e-02 1.843231e-02 3.695805e-02 2.431156e-03 6.069857e-03
##  [976] 1.391765e-02 2.977582e-02 2.133163e-02 4.136789e-02 2.845469e-02
##  [981] 3.280762e-02 8.435481e-03 1.214882e-02 3.280017e-02 3.290361e-02
##  [986] 3.757744e-02 2.542544e-02 2.666068e-02 3.132306e-02 1.095761e-02
##  [991] 2.586898e-02 8.781245e-03 1.861225e-02 1.793753e-02 8.169260e-03
##  [996] 3.136325e-02 8.513183e-03 3.397851e-02 3.323680e-02 3.833107e-02
pexp(sqrt_LotArea_samp,                 
     rate = 0.045788314,
     lower.tail = TRUE, # If TRUE, probabilities are P(X <= x), or P(X > x) otherwise
     log.p = FALSE)
##    [1] 0.988575912 0.601592348 0.600781685 0.245106498 0.210030321 0.380377075
##    [7] 0.298728363 0.056865842 0.802371779 0.779768502 0.060583272 0.041404175
##   [13] 0.386886735 0.797599236 0.269178385 0.414478509 0.065857221 0.205191506
##   [19] 0.310907047 0.399696925 0.105662764 0.963899462 0.192416644 0.566717919
##   [25] 0.074097266 0.389132410 0.199702763 0.956698274 0.902575077 0.434896340
##   [31] 0.221033192 0.577568910 0.026809662 0.866876157 0.063973684 0.666899907
##   [37] 0.133024683 0.952374381 0.964877305 0.072776605 0.467735172 0.482753955
##   [43] 0.671570180 0.628377513 0.886718109 0.957178658 0.938920072 0.584936229
##   [49] 0.113533544 0.870959230 0.240883096 0.294031509 0.348073251 0.907237797
##   [55] 0.533248647 0.299015116 0.543107450 0.469184446 0.605570645 0.822954536
##   [61] 0.787583594 0.165088317 0.511582208 0.774707162 0.681120617 0.070377718
##   [67] 0.345580636 0.895192399 0.051349439 0.479287837 0.263443093 0.313641607
##   [73] 0.642892731 0.380626540 0.993493600 0.855011381 0.561250380 0.082358805
##   [79] 0.930681653 0.617665714 0.146486670 0.264246609 0.264513266 0.162621612
##   [85] 0.673465679 0.500767129 0.937924750 0.695544583 0.357271798 0.598875429
##   [91] 0.152596309 0.076496140 0.037241083 0.840877036 0.441625184 0.586302694
##   [97] 0.969793316 0.472466059 0.788852791 0.556381453 0.373063611 0.341096496
##  [103] 0.207239772 0.924363683 0.378641443 0.234023039 0.505139999 0.750825016
##  [109] 0.499336662 0.508747910 0.946956716 0.900296219 0.256854436 0.111057775
##  [115] 0.340814297 0.824406277 0.751563365 0.117278074 0.353128582 0.415334137
##  [121] 0.082547626 0.449173694 0.190815686 0.853732394 0.304033840 0.773973787
##  [127] 0.360801893 0.658024479 0.119388044 0.332180292 0.778692634 0.826945276
##  [133] 0.225077764 0.151133046 0.598675336 0.402574543 0.163518221 0.831034539
##  [139] 0.190064983 0.234476050 0.956860072 0.955845884 0.497507839 0.911364766
##  [145] 0.037895548 0.001628185 0.640542782 0.330983290 0.844570291 0.692148243
##  [151] 0.128881640 0.590745613 0.895754564 0.888607764 0.144950876 0.707310679
##  [157] 0.998653080 0.663392347 0.477195478 0.095385494 0.471920465 0.001688081
##  [163] 0.775651425 0.692080994 0.383524283 0.430892403 0.982854022 0.510409627
##  [169] 0.692325725 0.925662315 0.528041075 0.284197604 0.418496805 0.068364507
##  [175] 0.686554098 0.715093758 0.195767931 0.015473280 0.975528731 0.812624181
##  [181] 0.995099062 0.390216203 0.293001638 0.449126384 0.692462750 0.573976931
##  [187] 0.831878078 0.668777480 0.294015622 0.199641767 0.036673328 0.127516979
##  [193] 0.281501499 0.948052241 0.439390214 0.107154197 0.927471209 0.831606760
##  [199] 0.195735740 0.497585212 0.151936247 0.573913437 0.596205090 0.601785248
##  [205] 0.698316588 0.499189962 0.057690957 0.220075791 0.727336468 0.817795493
##  [211] 0.391520039 0.247778251 0.590703504 0.798631108 0.407245834 0.512585240
##  [217] 0.949418148 0.742313084 0.320740733 0.542677629 0.461642558 0.140921861
##  [223] 0.958327570 0.165707943 0.097696365 0.275134149 0.162593379 0.995995417
##  [229] 0.105623030 0.043665274 0.580976533 0.698451236 0.708839504 0.538314692
##  [235] 0.602859550 0.054381860 0.835997179 0.045499318 0.436523591 0.263681118
##  [241] 0.398219415 0.522990646 0.931309018 0.097727430 0.142300199 0.714204736
##  [247] 0.771796806 0.056137281 0.772611828 0.661782246 0.283697261 0.325760602
##  [253] 0.954987529 0.679286841 0.598270820 0.112990879 0.076134036 0.599449808
##  [259] 0.820954024 0.852434965 0.069969436 0.784664081 0.147268217 0.495235343
##  [265] 0.757871550 0.646294683 0.249129832 0.952594185 0.109358901 0.677771463
##  [271] 0.285536664 0.223654513 0.066582335 0.812040415 0.448148372 0.942635793
##  [277] 0.459585486 0.169453749 0.412299851 0.244814450 0.421652833 0.393510987
##  [283] 0.882489284 0.530115756 0.828347318 0.349520463 0.800475304 0.882864799
##  [289] 0.721191243 0.103859520 0.293513558 0.422168590 0.324410188 0.700854423
##  [295] 0.185095790 0.722235363 0.195016639 0.151195856 0.405973460 0.241626229
##  [301] 0.081543350 0.722169250 0.969289649 0.191633646 0.602954840 0.113691680
##  [307] 0.747093197 0.849556919 0.992179767 0.543971356 0.838973855 0.278728514
##  [313] 0.945480804 0.577006145 0.992808911 0.349458115 0.779848629 0.666917439
##  [319] 0.745346714 0.010029611 0.774651463 0.302333868 0.956028710 0.485571647
##  [325] 0.717346388 0.352037656 0.530520519 0.410139151 0.572289647 0.325050641
##  [331] 0.726890115 0.250532807 0.758126864 0.074771861 0.823738356 0.365241985
##  [337] 0.099111347 0.059670023 0.855015721 0.213112721 0.333565434 0.053401828
##  [343] 0.572226371 0.485181176 0.058103272 0.635142578 0.206566374 0.982194712
##  [349] 0.496319534 0.784719863 0.936640233 0.845767003 0.534228195 0.333221705
##  [355] 0.231426389 0.576624146 0.829997422 0.985049080 0.831038400 0.732339219
##  [361] 0.233513039 0.203798439 0.968051942 0.514671266 0.543752870 0.239320876
##  [367] 0.652906440 0.777638597 0.592673963 0.628677818 0.298822339 0.736050281
##  [373] 0.557709945 0.369949771 0.527301961 0.262278623 0.079388478 0.237762480
##  [379] 0.783270498 0.361300691 0.989720475 0.143313599 0.774094188 0.494238572
##  [385] 0.072386479 0.534741362 0.109603091 0.328907639 0.728278406 0.386425937
##  [391] 0.909265316 0.469675608 0.227546271 0.421805254 0.254567731 0.930984229
##  [397] 0.876837966 0.398683367 0.139519265 0.729025956 0.781153139 0.231764700
##  [403] 0.890418152 0.478012607 0.756738459 0.744363362 0.247364841 0.272542872
##  [409] 0.895419248 0.919760516 0.622461988 0.589932874 0.118019102 0.770184652
##  [415] 0.770022359 0.489063190 0.577914404 0.355203659 0.369138978 0.810528167
##  [421] 0.619658417 0.011115393 0.345823349 0.066070515 0.787958041 0.778060498
##  [427] 0.732451087 0.282290304 0.114197544 0.218011633 0.425084719 0.288071736
##  [433] 0.684201363 0.429922780 0.230752425 0.056946116 0.612361413 0.161628799
##  [439] 0.139013448 0.922058337 0.555229859 0.978704648 0.700476071 0.303528412
##  [445] 0.892724094 0.397491819 0.502302529 0.613097531 0.896583733 0.956906162
##  [451] 0.273338261 0.580374689 0.262838359 0.281244520 0.602157947 0.466925352
##  [457] 0.467745088 0.515988382 0.501278389 0.607533123 0.989017883 0.549842416
##  [463] 0.314537993 0.972180908 0.293728807 0.846915603 0.206009153 0.194472312
##  [469] 0.101262353 0.814422814 0.482329956 0.461896402 0.379491493 0.450158319
##  [475] 0.623322848 0.519291367 0.899934396 0.432261456 0.490933362 0.819897338
##  [481] 0.366262725 0.612604435 0.768546528 0.843445198 0.061691130 0.029996971
##  [487] 0.024171958 0.080897298 0.023869339 0.298005496 0.999250361 0.367830536
##  [493] 0.463672694 0.617016019 0.199696122 0.102965977 0.905346160 0.720762500
##  [499] 0.305466799 0.885406054 0.110911521 0.115079879 0.018058504 0.794356817
##  [505] 0.533088625 0.367866126 0.750413244 0.207115402 0.592321409 0.059678636
##  [511] 0.143038275 0.960510154 0.872627860 0.984390257 0.482031347 0.845231351
##  [517] 0.859425937 0.539699679 0.749371267 0.165005493 0.488857922 0.102601201
##  [523] 0.887547875 0.873128228 0.261414303 0.891797631 0.806001128 0.641529482
##  [529] 0.998460126 0.672420091 0.471105205 0.221536519 0.553669299 0.324599893
##  [535] 0.115241097 0.768231570 0.018811947 0.001629436 0.356331911 0.660983473
##  [541] 0.609992900 0.303309948 0.892896187 0.600708682 0.014134423 0.148630383
##  [547] 0.081163349 0.344084853 0.452941660 0.728304010 0.436362224 0.555072704
##  [553] 0.313182871 0.364686397 0.219824601 0.982000357 0.925516336 0.078055036
##  [559] 0.169437651 0.508733515 0.346980073 0.628925537 0.342957895 0.930269760
##  [565] 0.725315120 0.188514341 0.596882894 0.145274307 0.925141892 0.321526940
##  [571] 0.509348996 0.195539518 0.735094618 0.209959245 0.403711953 0.080208557
##  [577] 0.133455009 0.178407059 0.990888248 0.844790772 0.104338356 0.344227977
##  [583] 0.407846172 0.218285647 0.115869139 0.775939705 0.573197196 0.866491833
##  [589] 0.342088168 0.166318275 0.675765958 0.120005311 0.397155538 0.094129253
##  [595] 0.343756856 0.085614901 0.974288777 0.676872179 0.932470661 0.864134883
##  [601] 0.897275674 0.926951026 0.148063693 0.077431759 0.318450120 0.938682380
##  [607] 0.555695954 0.757445828 0.878495234 0.446940528 0.328885562 0.377651071
##  [613] 0.226200801 0.894298713 0.409276224 0.465539428 0.347751064 0.741259235
##  [619] 0.321760682 0.215512951 0.947720260 0.039362745 0.464068270 0.381666531
##  [625] 0.559123816 0.994272974 0.835722828 0.807518377 0.566090249 0.753944407
##  [631] 0.254453491 0.130348381 0.424512580 0.111180187 0.082543196 0.057106809
##  [637] 0.098498216 0.050055716 0.475254707 0.326666887 0.563573959 0.870861817
##  [643] 0.270857455 0.116090567 0.791620874 0.451073535 0.787995760 0.985283350
##  [649] 0.303287403 0.703824477 0.089595768 0.018910687 0.748919007 0.655260754
##  [655] 0.352629456 0.413938984 0.460839499 0.525453911 0.678156951 0.167843549
##  [661] 0.320407663 0.913342420 0.627157555 0.838865842 0.667628508 0.076359437
##  [667] 0.365589226 0.699902848 0.470582750 0.941228512 0.654382632 0.340517952
##  [673] 0.570333534 0.188144427 0.814848116 0.388426496 0.224646474 0.556911477
##  [679] 0.810784187 0.729066580 0.996684623 0.213702750 0.022322144 0.806012773
##  [685] 0.295501844 0.427290440 0.288605650 0.606712177 0.015628036 0.418264795
##  [691] 0.385526708 0.109979974 0.219385035 0.097044037 0.578319201 0.374016859
##  [697] 0.582248756 0.061627911 0.531836707 0.677074388 0.501010621 0.248482451
##  [703] 0.657385442 0.373761891 0.060857804 0.067924368 0.782525614 0.172013910
##  [709] 0.798717820 0.757290434 0.220233459 0.208403861 0.081492202 0.053805887
##  [715] 0.890366372 0.613281964 0.454696302 0.763781759 0.589252010 0.195387712
##  [721] 0.277483228 0.211310662 0.987333431 0.804935586 0.703104864 0.309519316
##  [727] 0.320821587 0.719956142 0.534241512 0.478643484 0.780095659 0.989776901
##  [733] 0.180533577 0.699631556 0.062317391 0.352279458 0.995177130 0.239837652
##  [739] 0.220945327 0.511005272 0.122587292 0.820891897 0.422549317 0.902097764
##  [745] 0.922546736 0.275678563 0.133173077 0.672910506 0.878100904 0.760998949
##  [751] 0.452274190 0.464442620 0.755265402 0.126768193 0.416234476 0.670269953
##  [757] 0.721878579 0.139885807 0.950174628 0.405076530 0.828266029 0.469601475
##  [763] 0.432336190 0.024828872 0.300575376 0.426025315 0.246670111 0.688526945
##  [769] 0.491748481 0.013528817 0.066387978 0.417166933 0.504280854 0.802140269
##  [775] 0.283952149 0.947565719 0.896370076 0.900450043 0.794473912 0.480362520
##  [781] 0.828861272 0.640994719 0.747637209 0.880240695 0.711737456 0.367215589
##  [787] 0.152796369 0.348188523 0.689622859 0.171793293 0.859361424 0.375628477
##  [793] 0.550425747 0.965952176 0.361401038 0.879631582 0.565421368 0.156275404
##  [799] 0.344864959 0.463124321 0.811757529 0.488862801 0.743148863 0.133013783
##  [805] 0.589611011 0.611105756 0.276231941 0.260520807 0.679401428 0.809293290
##  [811] 0.586202603 0.695341088 0.685688768 0.927135491 0.985022454 0.183766786
##  [817] 0.924981493 0.731825473 0.054682772 0.583406445 0.219268808 0.666116104
##  [823] 0.569991940 0.492079156 0.228769573 0.404742171 0.934692784 0.537876581
##  [829] 0.166780214 0.536287940 0.552202410 0.072256522 0.496458780 0.456040369
##  [835] 0.393622876 0.011024947 0.193994464 0.846676618 0.732060794 0.154013110
##  [841] 0.495274963 0.038687099 0.557278071 0.616994442 0.016409115 0.312740984
##  [847] 0.099446812 0.020472362 0.813040866 0.079358052 0.912562903 0.612977098
##  [853] 0.429877098 0.844246884 0.529659696 0.916633805 0.334754957 0.823779585
##  [859] 0.017770486 0.383306129 0.828988076 0.106052489 0.029119933 0.769334671
##  [865] 0.122562324 0.174394663 0.802665826 0.932256648 0.101531677 0.725361658
##  [871] 0.425217895 0.160108982 0.487231185 0.993145169 0.733422091 0.505941999
##  [877] 0.354659218 0.474212153 0.947134147 0.856659344 0.655457680 0.068173315
##  [883] 0.071943425 0.691070290 0.707474268 0.089749587 0.542673255 0.515203790
##  [889] 0.778991593 0.615054467 0.210921333 0.955100620 0.993376561 0.234640644
##  [895] 0.197270836 0.472383106 0.598302885 0.026189832 0.591927006 0.617938087
##  [901] 0.139305883 0.063313645 0.691478449 0.885254584 0.866993489 0.135558783
##  [907] 0.717546294 0.448297344 0.061714906 0.022476412 0.221998211 0.520048824
##  [913] 0.140691189 0.585580862 0.674426475 0.204786538 0.421975135 0.182528427
##  [919] 0.623867529 0.979665570 0.543247781 0.480047517 0.959969984 0.875993973
##  [925] 0.452575472 0.665454784 0.934608673 0.898282250 0.801216512 0.923019439
##  [931] 0.628250938 0.213067205 0.707323575 0.219235647 0.313522071 0.147559900
##  [937] 0.357954981 0.554781088 0.909136755 0.718025924 0.862636004 0.378973814
##  [943] 0.096953418 0.650402510 0.323979246 0.822091452 0.491844151 0.907368335
##  [949] 0.960256829 0.994826878 0.065672537 0.496727935 0.461893361 0.915583731
##  [955] 0.016033113 0.556227020 0.460317148 0.961693148 0.340007442 0.902891099
##  [961] 0.716477367 0.407455706 0.682836337 0.091295487 0.367178087 0.574590105
##  [967] 0.355277090 0.122285569 0.570602229 0.959674738 0.019760793 0.597445185
##  [973] 0.192849663 0.946904438 0.867436541 0.696043562 0.349707019 0.534124918
##  [979] 0.096540439 0.378559990 0.283493578 0.815772196 0.734674124 0.283656383
##  [985] 0.281397225 0.179322496 0.444717694 0.417740601 0.315915876 0.760689826
##  [991] 0.435030985 0.808220835 0.593515207 0.608250864 0.821586357 0.315038193
##  [997] 0.814075205 0.257921710 0.274120497 0.162863488
(sqrt_LotArea_samp_CDF <- ecdf(sqrt_LotArea_samp))
## Empirical CDF 
## Call: ecdf(sqrt_LotArea_samp)
##  x[1:1000] = 0.035588, 0.035615, 0.036898,  ..., 144.36, 157.16

Modeling. Build some type of multiple regression model and submit your model to the competition board. Provide your complete model summary and results with analysis. Report your Kaggle.com user name and score. 10 points