LogitBoost is an efficient computational method for learning accurate classifiers and it has been applied successfully to a variety of classification problems. It is easy to implement, not requires external optimization tools. LogitBoost classification algorithm defines a classifier using an additive model as a family of weak learners. The weak classifiers are sequentially added to the model to minimize the residual loss. The strong (non-linear) classifier is built as the combination of all the weak (linear) classifiers. The Final classification based on weighted vote of weak classifiers. In this work, LogitBoost was adopted here to model Lithofacies given core analysis and well logs data in order to predict discrete and posterior probability distributions of the Lithofacies in Karpur Dataset.

Install the packages required to implement LogitBoost algorithm with their functions.

require(caTools)
## Loading required package: caTools
require(MASS)
## Loading required package: MASS
library(caTools)
library(MASS)

Call the dataset and visualize it: -

##    depth caliper ind.deep ind.med  gamma phi.N R.deep  R.med      SP
## 1 5667.0   8.685  618.005 569.781 98.823 0.410  1.618  1.755 -56.587
## 2 5667.5   8.686  497.547 419.494 90.640 0.307  2.010  2.384 -61.916
## 3 5668.0   8.686  384.935 300.155 78.087 0.203  2.598  3.332 -55.861
## 4 5668.5   8.686  278.324 205.224 66.232 0.119  3.593  4.873 -41.860
## 5 5669.0   8.686  183.743 131.155 59.807 0.069  5.442  7.625 -34.934
## 6 5669.5   8.686  109.512  75.633 57.109 0.048  9.131 13.222 -39.769
##   density.corr density phi.core   k.core Facies
## 1       -0.033   2.205  33.9000 2442.590     F1
## 2       -0.067   2.040  33.4131 3006.989     F1
## 3       -0.064   1.888  33.1000 3370.000     F1
## 4       -0.053   1.794  34.9000 2270.000     F1
## 5       -0.054   1.758  35.0644 2530.758     F1
## 6       -0.058   1.759  35.3152 2928.314     F1
##      depth         caliper         ind.deep          ind.med       
##  Min.   :5667   Min.   :8.487   Min.   :  6.532   Min.   :  9.386  
##  1st Qu.:5769   1st Qu.:8.556   1st Qu.: 28.799   1st Qu.: 27.892  
##  Median :5872   Median :8.588   Median :217.849   Median :254.383  
##  Mean   :5873   Mean   :8.622   Mean   :275.357   Mean   :273.357  
##  3rd Qu.:5977   3rd Qu.:8.686   3rd Qu.:566.793   3rd Qu.:544.232  
##  Max.   :6083   Max.   :8.886   Max.   :769.484   Max.   :746.028  
##                                                                    
##      gamma            phi.N            R.deep            R.med        
##  Min.   : 16.74   Min.   :0.0150   Min.   :  1.300   Min.   :  1.340  
##  1st Qu.: 40.89   1st Qu.:0.2030   1st Qu.:  1.764   1st Qu.:  1.837  
##  Median : 51.37   Median :0.2450   Median :  4.590   Median :  3.931  
##  Mean   : 53.42   Mean   :0.2213   Mean   : 24.501   Mean   : 21.196  
##  3rd Qu.: 62.37   3rd Qu.:0.2640   3rd Qu.: 34.724   3rd Qu.: 35.853  
##  Max.   :112.40   Max.   :0.4100   Max.   :153.085   Max.   :106.542  
##                                                                       
##        SP          density.corr          density         phi.core    
##  Min.   :-73.95   Min.   :-0.067000   Min.   :1.758   Min.   :15.70  
##  1st Qu.:-42.01   1st Qu.:-0.016000   1st Qu.:2.023   1st Qu.:23.90  
##  Median :-32.25   Median :-0.007000   Median :2.099   Median :27.60  
##  Mean   :-30.98   Mean   :-0.008883   Mean   :2.102   Mean   :26.93  
##  3rd Qu.:-19.48   3rd Qu.: 0.002000   3rd Qu.:2.181   3rd Qu.:30.70  
##  Max.   : 25.13   Max.   : 0.089000   Max.   :2.387   Max.   :36.30  
##                                                                      
##      k.core             Facies   
##  Min.   :    0.42   F8     :184  
##  1st Qu.:  657.33   F9     :172  
##  Median : 1591.22   F10    :171  
##  Mean   : 2251.91   F1     :111  
##  3rd Qu.: 3046.82   F5     :109  
##  Max.   :15600.00   F3     : 55  
##                     (Other): 17

The following shows the modeling Lithofacies given well logs and core data. Also, predict the 1st 10 observations of discrete and posterior distribution in addtion to plot the boxplot of the predicted lthofacies by LogitBoost Algorithm.

##       Lab        F1         F10           F2           F3           F5
##  [1,]   1 0.9999939 0.500000000 3.353501e-04 0.0003353501 6.144175e-06
##  [2,]   1 0.9999992 0.119202922 3.353501e-04 0.0024726232 6.144175e-06
##  [3,]   1 0.9999999 0.119202922 4.539787e-05 0.0024726232 4.539787e-05
##  [4,]   1 0.9999992 0.017986210 4.539787e-05 0.1192029220 3.353501e-04
##  [5,]   1 0.9999992 0.119202922 4.539787e-05 0.0179862100 2.472623e-03
##  [6,]   1 0.9999992 0.017986210 3.353501e-04 0.0024726232 2.472623e-03
##  [7,]   1 0.9999546 0.002472623 3.353501e-04 0.0024726232 3.353501e-04
##  [8,]   1 0.9999992 0.002472623 3.353501e-04 0.0024726232 3.353501e-04
##  [9,]   1 0.9999939 0.002472623 3.353501e-04 0.0024726232 3.353501e-04
## [10,]   1 0.9999939 0.002472623 3.353501e-04 0.0003353501 2.472623e-03
##                 F7           F8           F9
##  [1,] 8.315280e-07 0.0003353501 0.0179862100
##  [2,] 8.315280e-07 0.0179862100 0.0003353501
##  [3,] 6.144175e-06 0.0003353501 0.0003353501
##  [4,] 6.144175e-06 0.0003353501 0.0003353501
##  [5,] 3.353501e-04 0.0003353501 0.0003353501
##  [6,] 3.353501e-04 0.0003353501 0.0003353501
##  [7,] 4.539787e-05 0.0024726232 0.0003353501
##  [8,] 4.539787e-05 0.0024726232 0.0003353501
##  [9,] 4.539787e-05 0.0024726232 0.0003353501
## [10,] 4.539787e-05 0.0024726232 0.0003353501
## [1] F1 F1 F1 F1 F1 F1
## Levels: F1 F10 F2 F3 F5 F7 F8 F9

Modeling Validation by computing the total correct percent.

##      Label
##        F1 F10  F2  F3  F5  F7  F8  F9
##   F1  111   0   0   0   0   0   0   0
##   F10   0 146   0   4   0   0   0   0
##   F2    0   0   6   0   0   0   0   0
##   F3    0   8   0  43   0   0   0   0
##   F5    0   2   0   0 102   0   1   0
##   F7    0   0   0   0   0   7   1   0
##   F8    0   2   0   0   0   0 181   0
##   F9    0   0   0   0   0   0   0 171
##        F1       F10        F2        F3        F5        F7        F8 
## 1.0000000 0.9733333 1.0000000 0.8431373 0.9714286 0.8750000 0.9890710 
##        F9 
## 1.0000000
## [1] 0.9770701

Visualizing the predicted posterior distribution of the Eight Facies.

Combining the posterior distribution of the eight Lithofacies in one plot.

## Warning in bxp(structure(list(stats = structure(c(5667, 5680.75, 5694.5, :
## some notches went outside hinges ('box'): maybe set notch=FALSE
## Warning in bxp(structure(list(stats = structure(c(5667, 5680.75, 5694.5, :
## some notches went outside hinges ('box'): maybe set notch=FALSE

References

  1. Friedman, J., Hastie, T., & Tibshirani, R. (2000). Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics, 28(2), 337-407.

  2. Karpur, L., L. Lake, and K. Sepehrnoori. (2000). Probability Logs for Facies Classification. In Situ 24(1): 57.

  3. Al-Mudhafer, W. J. (2014). Multinomial Logistic Regression for Bayesian Estimation of Vertical Facies Modeling in Heterogeneous Sandstone Reservoirs. Offshore Technology Conference. doi:10.4043/24732-MS.

  4. Al-Mudhafar, W. J. (2015). Integrating Component Analysis & Classification Techniques for Comparative Prediction of Continuous & Discrete Lithofacies Distributions. Offshore Technology Conference. doi:10.4043/25806-MS.

  5. Al-Mudhafar, W. J. (2015). Applied Geostatistics in R: 1. Naive Bayes Classifier for Lithofacies Modeling in a Sandstone Formation. RPubs.