Baca Data

Data hasil kuesioner

if(!require(googlesheets4)){
  install.packages("googlesheets4")
  library(googlesheets4)
}

gs4_deauth()
form <- "https://docs.google.com/spreadsheets/d/1BctPP-J7X2qz6bm6QTCVDAZDNS3l37G9godqdfIng0Q/edit#gid=752027602"

raw_data <- NULL
raw_data <- data.frame(read_sheet(form))

# library(readxl)
# data <- read_excel("Kuesioner Penelitian (Responses).xlsx")

# membuang timestamp
raw_data <- raw_data[,-1]

# membuang pertanyaan x1-18 yang double
raw_data <- raw_data[,-20]

# Mengganti nama variabel x1 : kolom 2 - 22
colnames(raw_data)[2:22] <- paste0("x1-",1:21)
# Mengganti nama variabel x2 : kolom 35 - 56
colnames(raw_data)[35:56] <- paste0("x2-",1:22)
# Mengganti nama variabel x3 : kolom 23 - 34
colnames(raw_data)[23:34] <- paste0("x3-",1:12)
# Mengganti nama variabel y1 : kolom 57 - 68
colnames(raw_data)[57:68] <- paste0("y1-",1:12)
# Mengganti nama variabel y2 : kolom 69 - 79
colnames(raw_data)[69:79] <- paste0("y2-",1:11)


# Konversi jawaban ke angka 1 hingga 5
for (i in 2:ncol(raw_data)){
  raw_data[,i] <- sapply(raw_data[,i], switch,
                     "Sangat Setuju" = 5,
                     "Setuju" = 4,
                     "Ragu-ragu" = 3,
                     "Tidak Setuju" = 2,
                     "Sangat Tidak Setuju" = 1)
}

library(downloadthis)

Banyaknya responden adalah orang.

Data dengan konversi jawaban bisa diunduh di sini

Pembagian Data

Variabel \(X_1\) terdiri atas \(X_{11}\), \(X_{12}\), \(X_{13}\), dan \(X_{14}\).

Variabel \(X_2\) terdiri atas \(X_{21}\), \(X_{22}\), \(X_{23}\), \(X_{24}\), dan \(X_{25}\).

Variabel \(X_3\) terdiri atas \(X_{31}\), \(X_{32}\), dan \(X_{33}\).

Variabel \(Y_1\) terdiri atas \(Y_{11}\), \(Y_{12}\), dan \(Y_{13}\).

Variabel \(Y_2\) terdiri atas \(Y_{21}\), \(Y_{22}\), \(Y_{23}\), dan \(Y_{24}\).

No Variabel Indikator Item
Pendidikan Kewirausahaan (\(X_1\))
  1. Mengetahui tentang apa
x1.1 s/d x1.5
  1. Mengetahui tentang mengapa
x1.6 s/d x1.10
  1. Mengetahui tentang siapa
x1.11 s/d x1.16
  1. Mengetahui tentang bagaimana
x1.17 s/d x1.21
Efikasi Diri (\(X_2\))
  1. Pemasaran
x2.1 s/d x2.6
  1. Inovasi
x2.7 s/d x2.10
  1. Manajemen
x2.11 s/d x2.15
  1. Resiko
x2.16 s/d x2.19
  1. Pengendalian keuangan
x2.20 s/d x2.22
Peran Orang Tua (\(X_3\))
  1. Kesediaan berdiskusi
x3.1 s/d x3.4
  1. Dukungan dana/moral
x3.5 s/d x3.8
  1. Keteladanan
x3.9 s/d x3.12
Sikap berwirausaha (\(Y_1\))
  1. Mendapatkan uang
y1.1 s/d y1.4
  1. Menyikapi perubahan
y1.5 s/d y1.8
  1. Menyikapi persaingan
y1.9 s/d y1.12
Niat berusaha mahasiswa (\(Y_2\))
  1. Keterlibatan dalam program kewirausahaan di kampus
y2.1 s/d y2.2
  1. Memulai berwirausaha sendiri setelah lulus
y2.3 s/d y2.5
  1. Bekerja dengan partner yang baik setelah lulus
y2.6 s/d y2.8
  1. Memulai berwirausaha jika ada dukungan pendanaan
y2.9 s/d y2.11
data <- raw_data[10:209,]
x11 <- apply(data[, 2:6], 1, mean)
x12 <- apply(data[, 7:11], 1, mean)
x13 <- apply(data[, 12:17], 1, mean)
x14 <- apply(data[, 17:21], 1, mean)

x21 <- apply(data[, 35:40], 1, mean)
x22 <- apply(data[, 41:44], 1, mean)
x23 <- apply(data[, 45:49], 1, mean)
x24 <- apply(data[, 50:53], 1, mean)
x25 <- apply(data[, 54:56], 1, mean)

x31 <- apply(data[, 23:26], 1, mean)
x32 <- apply(data[, 27:30], 1, mean)
x33 <- apply(data[, 31:34], 1, mean)

y11 <- apply(data[, 57:60], 1, mean)
y12 <- apply(data[, 61:64], 1, mean)
y13 <- apply(data[, 65:68], 1, mean)

y21 <- apply(data[, 69:70], 1, mean)
y22 <- apply(data[, 71:73], 1, mean)
y23 <- apply(data[, 74:76], 1, mean)
y24 <- apply(data[, 77:79], 1, mean)

dat <- data.frame(x11, x12, x13, x14,
                 x21, x22, x23, x24, x25,
                 x31, x32, x33,
                 y11, y12, y13,
                 y21, y22, y23, y24)

Deskripsi Data

Variabel \(X_1\)

# fungsi untuk membuat distribusi frekuensi
sebaran <- function(data){
  data.frame(Variabel = names(data),
             N = nrow(data),
             Minimum = apply(data, 2, min),
             Maximum = apply(data, 2, max),
             Rerata = round(apply(data, 2, mean),4),
             Std_Deviation = round(apply(data, 2, sd),4),
             Variance = round(apply(data, 2, var),4),
             row.names = NULL)
}
dat_x1 <- data.frame(x11,x12,x13,x14)
dat_x2 <- data.frame(x21,x22,x23,x24,x25)
dat_x3 <- data.frame(x31,x32,x33)
dat_y1 <- data.frame(y11,y12,y13)
dat_y2 <- data.frame(y21,y22,y23,y24)

Distribusi frekuensi variabel \(X_1\)

sebaran(dat_x1)

Nilai rata-rata untuk variabel \(X_1\) adalah: 4.1727

Variabel \(X_2\)

Distribusi frekuensi variabel \(X_2\)

sebaran(dat_x2)

Nilai rata-rata untuk variabel \(X_2\) adalah: 3.9711

Variabel \(X_3\)

Distribusi frekuensi variabel \(X_3\)

sebaran(dat_x3)

Nilai rata-rata untuk variabel \(X_3\) adalah: 3.83

Variabel \(Y_1\)

Distribusi frekuensi variabel \(Y_1\)

sebaran(dat_y1)

Nilai rata-rata untuk variabel \(Y_1\) adalah: 3.8409

Variabel \(Y_2\)

Distribusi frekuensi variabel \(Y_2\)

sebaran(dat_y2)

Nilai rata-rata untuk variabel \(Y_2\) adalah: 3.6252

CFA

Confirmatory Factor Analysis (CFA) \(X_1\)

Package yang digunakan: lavaan

if(!require(lavaan)){
  install.packages("lavaan")
  library(lavaan)
}

#if(!require(tidySEM)){
#  install.packages("tidySEM")
#  library(tidySEM)
#}

if(!require(semPlot)){
  install.packages("semPlot")
  library(semPlot)
}

if(!require(semTools)){
  install.packages("semTools")
  library(semTools)
}
mod1 <- 'x1 =~ x11 + x12 + x13 + x14'
fit <- cfa(mod1, data = dat)
summary(fit, fit.measures = T, standardized = T)
## lavaan 0.6-12 ended normally after 30 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                         8
## 
##   Number of observations                           200
## 
## Model Test User Model:
##                                                       
##   Test statistic                                54.337
##   Degrees of freedom                                 2
##   P-value (Chi-square)                           0.000
## 
## Model Test Baseline Model:
## 
##   Test statistic                               795.562
##   Degrees of freedom                                 6
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.934
##   Tucker-Lewis Index (TLI)                       0.801
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)               -224.075
##   Loglikelihood unrestricted model (H1)       -196.907
##                                                       
##   Akaike (AIC)                                 464.150
##   Bayesian (BIC)                               490.537
##   Sample-size adjusted Bayesian (BIC)          465.192
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.362
##   90 Percent confidence interval - lower         0.282
##   90 Percent confidence interval - upper         0.448
##   P-value RMSEA <= 0.05                          0.000
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.033
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   x1 =~                                                                 
##     x11               1.000                               0.422    0.864
##     x12               1.097    0.061   17.871    0.000    0.463    0.901
##     x13               1.107    0.063   17.545    0.000    0.467    0.893
##     x14               1.123    0.059   18.921    0.000    0.474    0.928
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .x11               0.061    0.007    8.246    0.000    0.061    0.254
##    .x12               0.049    0.007    7.360    0.000    0.049    0.187
##    .x13               0.055    0.007    7.614    0.000    0.055    0.202
##    .x14               0.036    0.006    6.225    0.000    0.036    0.138
##     x1                0.178    0.023    7.592    0.000    1.000    1.000
standardizedSolution(fit)
semPaths(fit, what = "path", whatLabels = "stand", rotation = 1)

lavInspect(fit, what = "std")
## $lambda
##        x1
## x11 0.864
## x12 0.901
## x13 0.893
## x14 0.928
## 
## $theta
##     x11   x12   x13   x14  
## x11 0.254                  
## x12 0.000 0.187            
## x13 0.000 0.000 0.202      
## x14 0.000 0.000 0.000 0.138
## 
## $psi
##    x1
## x1 1

Reliability Komposit dan Konvergen validity

Reliabilitas komposit menggunakan fungsi semTools::compRelSEM()

semTools::reliability(fit)
##               x1
## alpha  0.9425130
## omega  0.9430212
## omega2 0.9430212
## omega3 0.9427553
## avevar 0.8056643
semTools::AVE(fit)
##    x1 
## 0.806
semTools::compRelSEM(fit) # composite reliability
##    x1 
## 0.943

Perhitungan reliabilitas komposit secara manual

sum(inspect(fit,"std")$lambda)^2/(sum(inspect(fit,"std")$lambda)^2 + sum(inspect(fit,"std")$theta))
## [1] 0.9426913

Confirmatory Factor Analysis (CFA) \(X_2\)

mod2 <- 'x2 =~ x21 + x22 + x23 + x24 + x25'
fit <- cfa(mod2, data = dat)
summary(fit, fit.measures = T)
## lavaan 0.6-12 ended normally after 34 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        10
## 
##   Number of observations                           200
## 
## Model Test User Model:
##                                                       
##   Test statistic                                27.807
##   Degrees of freedom                                 5
##   P-value (Chi-square)                           0.000
## 
## Model Test Baseline Model:
## 
##   Test statistic                              1193.995
##   Degrees of freedom                                10
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.981
##   Tucker-Lewis Index (TLI)                       0.961
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)               -371.764
##   Loglikelihood unrestricted model (H1)       -357.860
##                                                       
##   Akaike (AIC)                                 763.528
##   Bayesian (BIC)                               796.511
##   Sample-size adjusted Bayesian (BIC)          764.830
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.151
##   90 Percent confidence interval - lower         0.099
##   90 Percent confidence interval - upper         0.208
##   P-value RMSEA <= 0.05                          0.001
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.016
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)
##   x2 =~                                               
##     x21               1.000                           
##     x22               1.023    0.049   20.838    0.000
##     x23               0.901    0.043   20.929    0.000
##     x24               0.894    0.042   21.481    0.000
##     x25               0.983    0.047   20.918    0.000
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##    .x21               0.089    0.011    8.418    0.000
##    .x22               0.071    0.009    7.934    0.000
##    .x23               0.054    0.007    7.890    0.000
##    .x24               0.047    0.006    7.589    0.000
##    .x25               0.065    0.008    7.895    0.000
##     x2                0.360    0.044    8.121    0.000
standardizedSolution(fit)
#lay <- get_layout("", "", "x2", "", "",
#                  "x21","x22","x23","x24","x25", rows = 2)
#graph_sem(fit)
semPaths(fit, what = "path", whatLabels = "stand", rotation = 1)

lavInspect(fit, what = "std")
## $lambda
##        x2
## x21 0.896
## x22 0.917
## x23 0.918
## x24 0.927
## x25 0.918
## 
## $theta
##     x21   x22   x23   x24   x25  
## x21 0.197                        
## x22 0.000 0.159                  
## x23 0.000 0.000 0.156            
## x24 0.000 0.000 0.000 0.140      
## x25 0.000 0.000 0.000 0.000 0.157
## 
## $psi
##    x2
## x2 1

Reliability Komposit dan Konvergen validity

semTools::reliability(fit)
##               x2
## alpha  0.9616131
## omega  0.9622675
## omega2 0.9622675
## omega3 0.9620207
## avevar 0.8364920
semTools::AVE(fit)
##    x2 
## 0.836
semTools::compRelSEM(fit) # composite reliability
##    x2 
## 0.962

Perhitungan reliabilitas komposit secara manual

sum(inspect(fit,"std")$lambda)^2/(sum(inspect(fit,"std")$lambda)^2 + sum(inspect(fit,"std")$theta))
## [1] 0.9628043

Confirmatory Factor Analysis (CFA) \(X_3\)

mod3 <- 'x3 =~ x31 + x32 + x33'
fit <- cfa(mod3, data = dat)
summary(fit, fit.measures = T)
## lavaan 0.6-12 ended normally after 17 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                         6
## 
##   Number of observations                           200
## 
## Model Test User Model:
##                                                       
##   Test statistic                                 0.000
##   Degrees of freedom                                 0
## 
## Model Test Baseline Model:
## 
##   Test statistic                               349.350
##   Degrees of freedom                                 3
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    1.000
##   Tucker-Lewis Index (TLI)                       1.000
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)               -513.155
##   Loglikelihood unrestricted model (H1)       -513.155
##                                                       
##   Akaike (AIC)                                1038.310
##   Bayesian (BIC)                              1058.100
##   Sample-size adjusted Bayesian (BIC)         1039.092
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.000
##   90 Percent confidence interval - lower         0.000
##   90 Percent confidence interval - upper         0.000
##   P-value RMSEA <= 0.05                             NA
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.000
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)
##   x3 =~                                               
##     x31               1.000                           
##     x32               1.510    0.120   12.589    0.000
##     x33               1.449    0.115   12.571    0.000
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##    .x31               0.191    0.022    8.586    0.000
##    .x32               0.130    0.029    4.472    0.000
##    .x33               0.128    0.027    4.714    0.000
##     x3                0.246    0.041    6.005    0.000
standardizedSolution(fit)
#graph_sem(fit)
semPaths(fit, what = "path", whatLabels = "stand", rotation = 1)

lavInspect(fit, what = "std")
## $lambda
##        x3
## x31 0.750
## x32 0.901
## x33 0.895
## 
## $theta
##     x31   x32   x33  
## x31 0.438            
## x32 0.000 0.189      
## x33 0.000 0.000 0.199
## 
## $psi
##    x3
## x3 1

Reliability Komposit dan Konvergen validity

semTools::reliability(fit)
##               x3
## alpha  0.8821535
## omega  0.8954410
## omega2 0.8954410
## omega3 0.8954410
## avevar 0.7461529
semTools::AVE(fit)
##    x3 
## 0.746
semTools::compRelSEM(fit) # composite reliability
##    x3 
## 0.895

Perhitungan reliabilitas komposit secara manual

sum(inspect(fit,"std")$lambda)^2/(sum(inspect(fit,"std")$lambda)^2 + sum(inspect(fit,"std")$theta))
## [1] 0.8870264

Confirmatory Factor Analysis (CFA) \(Y_1\)

mod4 <- 'y1 =~ y11 + y12 + y13'
fit <- cfa(mod4, data = dat)
summary(fit, fit.measures = T)
## lavaan 0.6-12 ended normally after 18 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                         6
## 
##   Number of observations                           200
## 
## Model Test User Model:
##                                                       
##   Test statistic                                 0.000
##   Degrees of freedom                                 0
## 
## Model Test Baseline Model:
## 
##   Test statistic                               246.222
##   Degrees of freedom                                 3
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    1.000
##   Tucker-Lewis Index (TLI)                       1.000
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)               -457.557
##   Loglikelihood unrestricted model (H1)       -457.557
##                                                       
##   Akaike (AIC)                                 927.113
##   Bayesian (BIC)                               946.903
##   Sample-size adjusted Bayesian (BIC)          927.895
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.000
##   90 Percent confidence interval - lower         0.000
##   90 Percent confidence interval - upper         0.000
##   P-value RMSEA <= 0.05                             NA
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.000
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)
##   y1 =~                                               
##     y11               1.000                           
##     y12               0.855    0.083   10.329    0.000
##     y13               0.998    0.097   10.256    0.000
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##    .y11               0.244    0.032    7.742    0.000
##    .y12               0.076    0.016    4.627    0.000
##    .y13               0.155    0.025    6.152    0.000
##     y1                0.286    0.051    5.601    0.000
standardizedSolution(fit)
#graph_sem(fit)
semPaths(fit, what = "path", whatLabels = "stand", rotation = 1)

lavInspect(fit, what = "std")
## $lambda
##        y1
## y11 0.735
## y12 0.856
## y13 0.805
## 
## $theta
##     y11   y12   y13  
## y11 0.460            
## y12 0.000 0.267      
## y13 0.000 0.000 0.352
## 
## $psi
##    y1
## y1 1

Reliability Komposit dan Konvergen validity

semTools::reliability(fit)
##               y1
## alpha  0.8286532
## omega  0.8307704
## omega2 0.8307704
## omega3 0.8307704
## avevar 0.6218878
semTools::AVE(fit)
##    y1 
## 0.622
semTools::compRelSEM(fit) # composite reliability
##    y1 
## 0.831

Perhitungan reliabilitas komposit secara manual

sum(inspect(fit,"std")$lambda)^2/(sum(inspect(fit,"std")$lambda)^2 + sum(inspect(fit,"std")$theta))
## [1] 0.8418983

Confirmatory Factor Analysis (CFA) \(Y_2\)

mod5 <- 'y2 =~ y21 + y22 + y23 + y24'
fit <- cfa(mod5, data = dat)
summary(fit, fit.measures = T)
## lavaan 0.6-12 ended normally after 23 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                         8
## 
##   Number of observations                           200
## 
## Model Test User Model:
##                                                       
##   Test statistic                                40.550
##   Degrees of freedom                                 2
##   P-value (Chi-square)                           0.000
## 
## Model Test Baseline Model:
## 
##   Test statistic                               247.914
##   Degrees of freedom                                 6
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.841
##   Tucker-Lewis Index (TLI)                       0.522
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)               -776.676
##   Loglikelihood unrestricted model (H1)       -756.401
##                                                       
##   Akaike (AIC)                                1569.352
##   Bayesian (BIC)                              1595.739
##   Sample-size adjusted Bayesian (BIC)         1570.394
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.310
##   90 Percent confidence interval - lower         0.232
##   90 Percent confidence interval - upper         0.397
##   P-value RMSEA <= 0.05                          0.000
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.092
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)
##   y2 =~                                               
##     y21               1.000                           
##     y22               0.890    0.164    5.430    0.000
##     y23               1.444    0.193    7.472    0.000
##     y24               1.015    0.136    7.467    0.000
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##    .y21               0.361    0.041    8.784    0.000
##    .y22               0.563    0.060    9.446    0.000
##    .y23               0.109    0.038    2.860    0.004
##    .y24               0.193    0.027    7.189    0.000
##     y2                0.191    0.046    4.144    0.000
standardizedSolution(fit)
semPaths(fit, what = "path", whatLabels = "stand", rotation = 1)

lavInspect(fit, what = "std")
## $lambda
##        y2
## y21 0.589
## y22 0.461
## y23 0.886
## y24 0.711
## 
## $theta
##     y21   y22   y23   y24  
## y21 0.653                  
## y22 0.000 0.788            
## y23 0.000 0.000 0.215      
## y24 0.000 0.000 0.000 0.495
## 
## $psi
##    y2
## y2 1

Reliability Komposit dan Konvergen validity

semTools::reliability(fit)
##               y2
## alpha  0.7536757
## omega  0.7469534
## omega2 0.7469534
## omega3 0.7267026
## avevar 0.4337205
semTools::AVE(fit)
##    y2 
## 0.434
semTools::compRelSEM(fit) # composite reliability
##    y2 
## 0.727

Karena nilai AVE = 0.4337205 kurang dari 0.5, maka terdapat faktor yang tidak valid. Faktor yang tidak valid adalah faktor dengan standardized loadings terkecil (\(y_{22}\))

inspect(fit,"std")$lambda
##        y2
## y21 0.589
## y22 0.461
## y23 0.886
## y24 0.711

\(y_{22}\) dikeluarkan dari model.

mod5 <- 'y2 =~ y21 + y23 + y24'
fit <- cfa(mod5, data = dat)
summary(fit, fit.measures = T)
## lavaan 0.6-12 ended normally after 19 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                         6
## 
##   Number of observations                           200
## 
## Model Test User Model:
##                                                       
##   Test statistic                                 0.000
##   Degrees of freedom                                 0
## 
## Model Test Baseline Model:
## 
##   Test statistic                               169.150
##   Degrees of freedom                                 3
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    1.000
##   Tucker-Lewis Index (TLI)                       1.000
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)               -545.655
##   Loglikelihood unrestricted model (H1)       -545.655
##                                                       
##   Akaike (AIC)                                1103.311
##   Bayesian (BIC)                              1123.101
##   Sample-size adjusted Bayesian (BIC)         1104.092
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.000
##   90 Percent confidence interval - lower         0.000
##   90 Percent confidence interval - upper         0.000
##   P-value RMSEA <= 0.05                             NA
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.000
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)
##   y2 =~                                               
##     y21               1.000                           
##     y23               1.530    0.234    6.550    0.000
##     y24               1.121    0.158    7.101    0.000
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##    .y21               0.383    0.043    8.872    0.000
##    .y23               0.112    0.048    2.339    0.019
##    .y24               0.178    0.031    5.792    0.000
##     y2                0.169    0.044    3.808    0.000
standardizedSolution(fit)
semPaths(fit, what = "path", whatLabels = "stand", rotation = 1)

lavInspect(fit, what = "std")
## $lambda
##        y2
## y21 0.554
## y23 0.883
## y24 0.738
## 
## $theta
##     y21   y23   y24  
## y21 0.693            
## y23 0.000 0.220      
## y24 0.000 0.000 0.455
## 
## $psi
##    y2
## y2 1

Reliability Komposit dan Konvergen validity

semTools::reliability(fit)
##               y2
## alpha  0.7572136
## omega  0.7705845
## omega2 0.7705845
## omega3 0.7705845
## avevar 0.5367130
semTools::AVE(fit)
##    y2 
## 0.537
semTools::compRelSEM(fit) # composite reliability
##    y2 
## 0.771

Nilai AVE sudah di atas 0.5 (semua faktor sudah valid).

SEM

Model 1: Model Awal

modsem1 <- 'PKWU =~ x11 + x12 + x13 + x14
            ED =~ x21 + x22 + x23 + x24 + x25
            POT =~ x31 + x32 + x33
            SKP =~ y11 + y12 + y13
            NKWU =~ y23 + y24

            # Regression
            SKP ~ PKWU + ED + POT
            NKWU ~ PKWU + ED + POT
            NKWU ~ SKP'


fit1 <- sem(modsem1, data = dat, estimator = "MLR")
summary(fit1, fit.measures = T, standardized = T)
## lavaan 0.6-12 ended normally after 103 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        44
## 
##   Number of observations                           200
## 
## Model Test User Model:
##                                               Standard      Robust
##   Test Statistic                               324.578     263.235
##   Degrees of freedom                               109         109
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.233
##     Yuan-Bentler correction (Mplus variant)                       
## 
## Model Test Baseline Model:
## 
##   Test statistic                              3727.602    3155.133
##   Degrees of freedom                               136         136
##   P-value                                        0.000       0.000
##   Scaling correction factor                                  1.181
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.940       0.949
##   Tucker-Lewis Index (TLI)                       0.925       0.936
##                                                                   
##   Robust Comparative Fit Index (CFI)                         0.947
##   Robust Tucker-Lewis Index (TLI)                            0.933
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)              -1522.404   -1522.404
##   Scaling correction factor                                  1.536
##       for the MLR correction                                      
##   Loglikelihood unrestricted model (H1)      -1360.115   -1360.115
##   Scaling correction factor                                  1.320
##       for the MLR correction                                      
##                                                                   
##   Akaike (AIC)                                3132.809    3132.809
##   Bayesian (BIC)                              3277.935    3277.935
##   Sample-size adjusted Bayesian (BIC)         3138.538    3138.538
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.099       0.084
##   90 Percent confidence interval - lower         0.087       0.072
##   90 Percent confidence interval - upper         0.112       0.096
##   P-value RMSEA <= 0.05                          0.000       0.000
##                                                                   
##   Robust RMSEA                                               0.093
##   90 Percent confidence interval - lower                     0.079
##   90 Percent confidence interval - upper                     0.108
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.046       0.046
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   PKWU =~                                                               
##     x11               1.000                               0.414    0.847
##     x12               1.090    0.058   18.884    0.000    0.451    0.879
##     x13               1.152    0.088   13.108    0.000    0.477    0.911
##     x14               1.158    0.090   12.929    0.000    0.479    0.939
##   ED =~                                                                 
##     x21               1.000                               0.607    0.906
##     x22               1.017    0.052   19.478    0.000    0.617    0.921
##     x23               0.886    0.060   14.811    0.000    0.537    0.913
##     x24               0.880    0.053   16.568    0.000    0.534    0.923
##     x25               0.970    0.057   17.114    0.000    0.589    0.916
##   POT =~                                                                
##     x31               1.000                               0.504    0.762
##     x32               1.491    0.148   10.074    0.000    0.751    0.904
##     x33               1.409    0.134   10.510    0.000    0.710    0.884
##   SKP =~                                                                
##     y11               1.000                               0.530    0.728
##     y12               0.851    0.069   12.349    0.000    0.452    0.845
##     y13               1.028    0.078   13.117    0.000    0.545    0.822
##   NKWU =~                                                               
##     y23               1.000                               0.568    0.796
##     y24               0.901    0.078   11.511    0.000    0.512    0.819
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   SKP ~                                                                 
##     PKWU              0.409    0.110    3.706    0.000    0.319    0.319
##     ED                0.225    0.101    2.240    0.025    0.258    0.258
##     POT               0.382    0.125    3.052    0.002    0.363    0.363
##   NKWU ~                                                                
##     PKWU             -0.155    0.135   -1.147    0.251   -0.113   -0.113
##     ED                0.405    0.133    3.057    0.002    0.433    0.433
##     POT               0.021    0.139    0.151    0.880    0.019    0.019
##     SKP               0.722    0.192    3.753    0.000    0.675    0.675
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   PKWU ~~                                                               
##     ED                0.193    0.053    3.612    0.000    0.767    0.767
##     POT               0.146    0.044    3.290    0.001    0.702    0.702
##   ED ~~                                                                 
##     POT               0.256    0.052    4.953    0.000    0.837    0.837
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .x11               0.067    0.015    4.596    0.000    0.067    0.283
##    .x12               0.060    0.010    5.773    0.000    0.060    0.228
##    .x13               0.046    0.007    6.248    0.000    0.046    0.170
##    .x14               0.031    0.006    4.995    0.000    0.031    0.118
##    .x21               0.081    0.017    4.688    0.000    0.081    0.180
##    .x22               0.068    0.011    5.920    0.000    0.068    0.152
##    .x23               0.058    0.011    5.110    0.000    0.058    0.166
##    .x24               0.050    0.008    6.229    0.000    0.050    0.149
##    .x25               0.067    0.012    5.694    0.000    0.067    0.162
##    .x31               0.184    0.028    6.566    0.000    0.184    0.420
##    .x32               0.127    0.022    5.864    0.000    0.127    0.183
##    .x33               0.140    0.023    6.043    0.000    0.140    0.218
##    .y11               0.249    0.040    6.259    0.000    0.249    0.470
##    .y12               0.082    0.015    5.513    0.000    0.082    0.286
##    .y13               0.143    0.028    5.077    0.000    0.143    0.325
##    .y23               0.186    0.029    6.358    0.000    0.186    0.366
##    .y24               0.129    0.026    4.980    0.000    0.129    0.329
##     PKWU              0.171    0.055    3.105    0.002    1.000    1.000
##     ED                0.368    0.058    6.332    0.000    1.000    1.000
##     POT               0.254    0.058    4.351    0.000    1.000    1.000
##    .SKP               0.072    0.018    3.972    0.000    0.255    0.255
##    .NKWU              0.011    0.020    0.567    0.570    0.035    0.035
standardizedSolution(fit1)
semPaths(fit1, what = "paths", whatLabels = "stand", rotation = 3)

lavInspect(fit1, what = "std")
## $lambda
##      PKWU    ED   POT   SKP  NKWU
## x11 0.847 0.000 0.000 0.000 0.000
## x12 0.879 0.000 0.000 0.000 0.000
## x13 0.911 0.000 0.000 0.000 0.000
## x14 0.939 0.000 0.000 0.000 0.000
## x21 0.000 0.906 0.000 0.000 0.000
## x22 0.000 0.921 0.000 0.000 0.000
## x23 0.000 0.913 0.000 0.000 0.000
## x24 0.000 0.923 0.000 0.000 0.000
## x25 0.000 0.916 0.000 0.000 0.000
## x31 0.000 0.000 0.762 0.000 0.000
## x32 0.000 0.000 0.904 0.000 0.000
## x33 0.000 0.000 0.884 0.000 0.000
## y11 0.000 0.000 0.000 0.728 0.000
## y12 0.000 0.000 0.000 0.845 0.000
## y13 0.000 0.000 0.000 0.822 0.000
## y23 0.000 0.000 0.000 0.000 0.796
## y24 0.000 0.000 0.000 0.000 0.819
## 
## $theta
##     x11   x12   x13   x14   x21   x22   x23   x24   x25   x31   x32   x33  
## x11 0.283                                                                  
## x12 0.000 0.228                                                            
## x13 0.000 0.000 0.170                                                      
## x14 0.000 0.000 0.000 0.118                                                
## x21 0.000 0.000 0.000 0.000 0.180                                          
## x22 0.000 0.000 0.000 0.000 0.000 0.152                                    
## x23 0.000 0.000 0.000 0.000 0.000 0.000 0.166                              
## x24 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.149                        
## x25 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.162                  
## x31 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.420            
## x32 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.183      
## x33 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.218
## y11 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
## y12 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
## y13 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
## y23 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
## y24 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
##     y11   y12   y13   y23   y24  
## x11                              
## x12                              
## x13                              
## x14                              
## x21                              
## x22                              
## x23                              
## x24                              
## x25                              
## x31                              
## x32                              
## x33                              
## y11 0.470                        
## y12 0.000 0.286                  
## y13 0.000 0.000 0.325            
## y23 0.000 0.000 0.000 0.366      
## y24 0.000 0.000 0.000 0.000 0.329
## 
## $psi
##      PKWU  ED    POT   SKP   NKWU 
## PKWU 1.000                        
## ED   0.767 1.000                  
## POT  0.702 0.837 1.000            
## SKP  0.000 0.000 0.000 0.255      
## NKWU 0.000 0.000 0.000 0.000 0.035
## 
## $beta
##        PKWU    ED   POT   SKP NKWU
## PKWU  0.000 0.000 0.000 0.000    0
## ED    0.000 0.000 0.000 0.000    0
## POT   0.000 0.000 0.000 0.000    0
## SKP   0.319 0.258 0.363 0.000    0
## NKWU -0.113 0.433 0.019 0.675    0

Reliability Komposit dan Konvergen validity

semTools::reliability(fit1)
##             PKWU        ED       POT       SKP      NKWU
## alpha  0.9425130 0.9616131 0.8821535 0.8286532 0.7851762
## omega  0.9418486 0.9626247 0.8955416 0.8312010 0.7872959
## omega2 0.9418486 0.9626247 0.8955416 0.8312010 0.7872959
## omega3 0.9377383 0.9630932 0.8972242 0.8309890 0.7872962
## avevar 0.8024747 0.8379197 0.7459212 0.6229458 0.6498190
semTools::AVE(fit1)
##  PKWU    ED   POT   SKP  NKWU 
## 0.802 0.838 0.746 0.623 0.650
semTools::compRelSEM(fit1) # composite reliability
##  PKWU    ED   POT   SKP  NKWU 
## 0.938 0.963 0.897 0.831 0.787

Discriminant Validity

semTools::discriminantValidity(fit1)
htmt(modsem1, dat)
##      PKWU  ED    POT   SKP   NKWU 
## PKWU 1.000                        
## ED   0.751 1.000                  
## POT  0.698 0.851 1.000            
## SKP  0.750 0.792 0.810 1.000      
## NKWU 0.730 0.897 0.836 0.953 1.000

Model performance

sumber yang digunakan untuk membuat pengukuran kinerja model diambil dari https://rdrr.io/cran/performance/man/model_performance.lavaan.html

Berikut adalah fungsi kinerja untuk menentukan model performance berdasarkan acuan di atas.

kinerja <- function(model){
  a <- lavaan::fitmeasures(model, c("chisq.scaled", "pvalue.scaled", "df.scaled", "srmr", "rmsea.scaled",
                                    "gfi", "agfi", "cfi.scaled", "ifi.scaled", "nnfi.scaled", "aic"))
  tabel <- NULL
  tabel <- data.frame(ukuran = names(a[1:3]),
                      koefisien = round(a[1:3], 2))
  tabel <- rbind(tabel, data.frame(ukuran = "Cmin", koefisien = round(a[1]/a[3],2)))
  tabel <- rbind(tabel, data.frame(ukuran = names(a[4:11]), koefisien = round(a[4:11], 2)))
  tabel$kriteria <- c("kecil", ">= 0.05", "---", "<= 2.00", "<= 0.08", "<= 0.08", ">= 0.90",
                      ">= 0.90", ">= 0.90", ">= 0.90", ">= 0.90", "Kecil")
  tabel$kesimpulan[1] <- "Baik, terpenuhi"
  tabel$kesimpulan[2] <- ifelse(tabel$koefisien[2] >= 0.05, "Baik, terpenuhi", "Tidak terpenuhi")
  tabel$kesimpulan[3] <- "---"
  tabel$kesimpulan[4] <- ifelse(tabel$koefisien[4] <= 2, "Baik, terpenuhi", "Tidak terpenuhi")
  tabel$kesimpulan[5] <- ifelse(tabel$koefisien[5] <= 0.08, "Baik, terpenuhi", "Tidak terpenuhi")
  tabel$kesimpulan[6] <- ifelse(tabel$koefisien[6] <= 0.08, "Baik, terpenuhi", "Tidak terpenuhi")
  tabel$kesimpulan[7] <- ifelse(tabel$koefisien[7] >= 0.9, "Baik, terpenuhi", "Tidak terpenuhi")
  tabel$kesimpulan[8] <- ifelse(tabel$koefisien[8] >= 0.9, "Baik, terpenuhi", "Tidak terpenuhi")
  tabel$kesimpulan[9] <- ifelse(tabel$koefisien[9] >= 0.9, "Baik, terpenuhi", "Tidak terpenuhi")
  tabel$kesimpulan[10] <- ifelse(tabel$koefisien[10] >= 0.9, "Baik, terpenuhi", "Tidak terpenuhi")
  tabel$kesimpulan[11] <- ifelse(tabel$koefisien[11] >= 0.9, "Baik, terpenuhi", "Tidak terpenuhi")
  tabel$kesimpulan[12] <- "Kecil"
  
  print(tabel, row.names = F)
}

Berikut adalah kinerja dari model 1

kinerja_mod1 <- kinerja(fit1)
##         ukuran koefisien kriteria      kesimpulan
##   chisq.scaled    263.24    kecil Baik, terpenuhi
##  pvalue.scaled      0.00  >= 0.05 Tidak terpenuhi
##      df.scaled    109.00      ---             ---
##           Cmin      2.42  <= 2.00 Tidak terpenuhi
##           srmr      0.05  <= 0.08 Baik, terpenuhi
##   rmsea.scaled      0.08  <= 0.08 Baik, terpenuhi
##            gfi      0.84  >= 0.90 Tidak terpenuhi
##           agfi      0.77  >= 0.90 Tidak terpenuhi
##     cfi.scaled      0.95  >= 0.90 Baik, terpenuhi
##     ifi.scaled      0.95  >= 0.90 Baik, terpenuhi
##    nnfi.scaled      0.94  >= 0.90 Baik, terpenuhi
##            aic   3132.81    Kecil           Kecil

Model 2

\(y_{21}\) dan \(y_{22}\) dikeluarkan dari model

modsem2 <- 'PKWU =~ x11 + x12 + x13 + x14
            ED =~ x22 + x23 + x24
            POT =~ x31 + x32 + x33
            SKP =~ y11 + y12 + y13
            NKWU =~ y21 + y23 + y24
            
            # Regression
            SKP ~ PKWU + ED + POT
            NKWU ~ PKWU + ED + POT
            NKWU ~ SKP
            '

fit2 <- sem(modsem2, data = dat, estimator = "MLR")
summary(fit2, fit.measures = T, standardized = T)
## lavaan 0.6-12 ended normally after 91 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        42
## 
##   Number of observations                           200
## 
## Model Test User Model:
##                                               Standard      Robust
##   Test Statistic                               275.922     238.028
##   Degrees of freedom                                94          94
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.159
##     Yuan-Bentler correction (Mplus variant)                       
## 
## Model Test Baseline Model:
## 
##   Test statistic                              3093.765    2800.154
##   Degrees of freedom                               120         120
##   P-value                                        0.000       0.000
##   Scaling correction factor                                  1.105
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.939       0.946
##   Tucker-Lewis Index (TLI)                       0.922       0.931
##                                                                   
##   Robust Comparative Fit Index (CFI)                         0.944
##   Robust Tucker-Lewis Index (TLI)                            0.928
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)              -1640.300   -1640.300
##   Scaling correction factor                                  1.483
##       for the MLR correction                                      
##   Loglikelihood unrestricted model (H1)      -1502.339   -1502.339
##   Scaling correction factor                                  1.259
##       for the MLR correction                                      
##                                                                   
##   Akaike (AIC)                                3364.599    3364.599
##   Bayesian (BIC)                              3503.128    3503.128
##   Sample-size adjusted Bayesian (BIC)         3370.068    3370.068
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.098       0.088
##   90 Percent confidence interval - lower         0.085       0.075
##   90 Percent confidence interval - upper         0.112       0.100
##   P-value RMSEA <= 0.05                          0.000       0.000
##                                                                   
##   Robust RMSEA                                               0.094
##   90 Percent confidence interval - lower                     0.079
##   90 Percent confidence interval - upper                     0.109
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.051       0.051
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   PKWU =~                                                               
##     x11               1.000                               0.415    0.848
##     x12               1.090    0.058   18.938    0.000    0.452    0.879
##     x13               1.150    0.088   13.122    0.000    0.477    0.911
##     x14               1.155    0.089   12.985    0.000    0.479    0.938
##   ED =~                                                                 
##     x22               1.000                               0.607    0.907
##     x23               0.898    0.046   19.610    0.000    0.545    0.926
##     x24               0.883    0.044   20.234    0.000    0.536    0.927
##   POT =~                                                                
##     x31               1.000                               0.502    0.759
##     x32               1.499    0.149   10.046    0.000    0.753    0.905
##     x33               1.414    0.135   10.472    0.000    0.710    0.885
##   SKP =~                                                                
##     y11               1.000                               0.534    0.733
##     y12               0.840    0.070   11.971    0.000    0.448    0.838
##     y13               1.026    0.076   13.479    0.000    0.548    0.825
##   NKWU =~                                                               
##     y21               1.000                               0.384    0.517
##     y23               1.525    0.216    7.068    0.000    0.586    0.821
##     y24               1.323    0.210    6.300    0.000    0.508    0.813
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   SKP ~                                                                 
##     PKWU              0.415    0.111    3.725    0.000    0.322    0.322
##     ED                0.200    0.099    2.024    0.043    0.227    0.227
##     POT               0.417    0.127    3.277    0.001    0.393    0.393
##   NKWU ~                                                                
##     PKWU             -0.138    0.094   -1.465    0.143   -0.149   -0.149
##     ED                0.211    0.088    2.393    0.017    0.333    0.333
##     POT               0.061    0.092    0.663    0.508    0.080    0.080
##     SKP               0.527    0.144    3.674    0.000    0.732    0.732
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   PKWU ~~                                                               
##     ED                0.192    0.054    3.580    0.000    0.764    0.764
##     POT               0.146    0.044    3.289    0.001    0.701    0.701
##   ED ~~                                                                 
##     POT               0.250    0.050    5.044    0.000    0.819    0.819
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .x11               0.067    0.015    4.584    0.000    0.067    0.281
##    .x12               0.060    0.010    5.777    0.000    0.060    0.227
##    .x13               0.046    0.007    6.204    0.000    0.046    0.170
##    .x14               0.031    0.006    5.015    0.000    0.031    0.120
##    .x22               0.080    0.015    5.476    0.000    0.080    0.178
##    .x23               0.049    0.012    4.132    0.000    0.049    0.143
##    .x24               0.047    0.009    5.459    0.000    0.047    0.142
##    .x31               0.185    0.028    6.549    0.000    0.185    0.424
##    .x32               0.125    0.022    5.776    0.000    0.125    0.180
##    .x33               0.140    0.023    6.103    0.000    0.140    0.217
##    .y11               0.246    0.039    6.346    0.000    0.246    0.463
##    .y12               0.085    0.015    5.637    0.000    0.085    0.297
##    .y13               0.141    0.027    5.181    0.000    0.141    0.319
##    .y21               0.404    0.046    8.859    0.000    0.404    0.733
##    .y23               0.166    0.028    5.869    0.000    0.166    0.326
##    .y24               0.132    0.024    5.502    0.000    0.132    0.339
##     PKWU              0.172    0.055    3.111    0.002    1.000    1.000
##     ED                0.369    0.055    6.669    0.000    1.000    1.000
##     POT               0.252    0.058    4.331    0.000    1.000    1.000
##    .SKP               0.073    0.018    3.974    0.000    0.255    0.255
##    .NKWU              0.009    0.009    0.948    0.343    0.058    0.058
standardizedSolution(fit2)
semPaths(fit2, what = "paths", whatLabels = "stand", rotation = 3)

lavInspect(fit2, what = "std")
## $lambda
##      PKWU    ED   POT   SKP  NKWU
## x11 0.848 0.000 0.000 0.000 0.000
## x12 0.879 0.000 0.000 0.000 0.000
## x13 0.911 0.000 0.000 0.000 0.000
## x14 0.938 0.000 0.000 0.000 0.000
## x22 0.000 0.907 0.000 0.000 0.000
## x23 0.000 0.926 0.000 0.000 0.000
## x24 0.000 0.927 0.000 0.000 0.000
## x31 0.000 0.000 0.759 0.000 0.000
## x32 0.000 0.000 0.905 0.000 0.000
## x33 0.000 0.000 0.885 0.000 0.000
## y11 0.000 0.000 0.000 0.733 0.000
## y12 0.000 0.000 0.000 0.838 0.000
## y13 0.000 0.000 0.000 0.825 0.000
## y21 0.000 0.000 0.000 0.000 0.517
## y23 0.000 0.000 0.000 0.000 0.821
## y24 0.000 0.000 0.000 0.000 0.813
## 
## $theta
##     x11   x12   x13   x14   x22   x23   x24   x31   x32   x33   y11   y12  
## x11 0.281                                                                  
## x12 0.000 0.227                                                            
## x13 0.000 0.000 0.170                                                      
## x14 0.000 0.000 0.000 0.120                                                
## x22 0.000 0.000 0.000 0.000 0.178                                          
## x23 0.000 0.000 0.000 0.000 0.000 0.143                                    
## x24 0.000 0.000 0.000 0.000 0.000 0.000 0.142                              
## x31 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.424                        
## x32 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.180                  
## x33 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.217            
## y11 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.463      
## y12 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.297
## y13 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
## y21 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
## y23 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
## y24 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
##     y13   y21   y23   y24  
## x11                        
## x12                        
## x13                        
## x14                        
## x22                        
## x23                        
## x24                        
## x31                        
## x32                        
## x33                        
## y11                        
## y12                        
## y13 0.319                  
## y21 0.000 0.733            
## y23 0.000 0.000 0.326      
## y24 0.000 0.000 0.000 0.339
## 
## $psi
##      PKWU  ED    POT   SKP   NKWU 
## PKWU 1.000                        
## ED   0.764 1.000                  
## POT  0.701 0.819 1.000            
## SKP  0.000 0.000 0.000 0.255      
## NKWU 0.000 0.000 0.000 0.000 0.058
## 
## $beta
##        PKWU    ED   POT   SKP NKWU
## PKWU  0.000 0.000 0.000 0.000    0
## ED    0.000 0.000 0.000 0.000    0
## POT   0.000 0.000 0.000 0.000    0
## SKP   0.322 0.227 0.393 0.000    0
## NKWU -0.149 0.333 0.080 0.732    0

Reliability Komposit dan Konvergen validity

semTools::reliability(fit2)
##             PKWU        ED       POT       SKP      NKWU
## alpha  0.9425130 0.9393789 0.8821535 0.8286532 0.7572136
## omega  0.9419499 0.9416111 0.8955624 0.8322241 0.7566716
## omega2 0.9419499 0.9416111 0.8955624 0.8322241 0.7566716
## omega3 0.9381461 0.9428717 0.8968696 0.8328099 0.7453517
## avevar 0.8027534 0.8435642 0.7460763 0.6248713 0.5159670
semTools::AVE(fit2)
##  PKWU    ED   POT   SKP  NKWU 
## 0.803 0.844 0.746 0.625 0.516
semTools::compRelSEM(fit2) # composite reliability
##  PKWU    ED   POT   SKP  NKWU 
## 0.938 0.943 0.897 0.833 0.745

Discriminant Validity

semTools::discriminantValidity(fit2)
htmt(modsem2, dat)

Berikut adalah kinerja dari model 2

kinerja_mod2 <- kinerja(fit2)
##         ukuran koefisien kriteria      kesimpulan
##   chisq.scaled    238.03    kecil Baik, terpenuhi
##  pvalue.scaled      0.00  >= 0.05 Tidak terpenuhi
##      df.scaled     94.00      ---             ---
##           Cmin      2.53  <= 2.00 Tidak terpenuhi
##           srmr      0.05  <= 0.08 Baik, terpenuhi
##   rmsea.scaled      0.09  <= 0.08 Tidak terpenuhi
##            gfi      0.84  >= 0.90 Tidak terpenuhi
##           agfi      0.78  >= 0.90 Tidak terpenuhi
##     cfi.scaled      0.95  >= 0.90 Baik, terpenuhi
##     ifi.scaled      0.95  >= 0.90 Baik, terpenuhi
##    nnfi.scaled      0.93  >= 0.90 Baik, terpenuhi
##            aic   3364.60    Kecil           Kecil

Model 3

\(y_{11}\) dan \(x_{31}\) dikeluarkan dari model

modsem3 <- 'PKWU =~ x12 + x13 + x14
            ED =~ x22 + x23 + x24
            POT =~ x32 + x33
            SKP =~ y12 + y13
            NKWU =~ y23 + y24
            
            # Regression
            SKP ~ PKWU + ED + POT
            NKWU ~ PKWU + ED + POT
            NKWU ~ SKP
            '

fit3 <- sem(modsem3, data = dat, estimator = "MLR")
summary(fit3, fit.measures = T, standardized = T)
## lavaan 0.6-12 ended normally after 75 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        34
## 
##   Number of observations                           200
## 
## Model Test User Model:
##                                               Standard      Robust
##   Test Statistic                               123.276     106.445
##   Degrees of freedom                                44          44
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.158
##     Yuan-Bentler correction (Mplus variant)                       
## 
## Model Test Baseline Model:
## 
##   Test statistic                              2386.797    2187.548
##   Degrees of freedom                                66          66
##   P-value                                        0.000       0.000
##   Scaling correction factor                                  1.091
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.966       0.971
##   Tucker-Lewis Index (TLI)                       0.949       0.956
##                                                                   
##   Robust Comparative Fit Index (CFI)                         0.969
##   Robust Tucker-Lewis Index (TLI)                            0.953
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)              -1131.014   -1131.014
##   Scaling correction factor                                  1.451
##       for the MLR correction                                      
##   Loglikelihood unrestricted model (H1)      -1069.376   -1069.376
##   Scaling correction factor                                  1.286
##       for the MLR correction                                      
##                                                                   
##   Akaike (AIC)                                2330.028    2330.028
##   Bayesian (BIC)                              2442.171    2442.171
##   Sample-size adjusted Bayesian (BIC)         2334.455    2334.455
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.095       0.084
##   90 Percent confidence interval - lower         0.075       0.065
##   90 Percent confidence interval - upper         0.115       0.103
##   P-value RMSEA <= 0.05                          0.000       0.002
##                                                                   
##   Robust RMSEA                                               0.091
##   90 Percent confidence interval - lower                     0.069
##   90 Percent confidence interval - upper                     0.113
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.040       0.040
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   PKWU =~                                                               
##     x12               1.000                               0.437    0.851
##     x13               1.092    0.064   17.170    0.000    0.477    0.912
##     x14               1.118    0.057   19.735    0.000    0.489    0.957
##   ED =~                                                                 
##     x22               1.000                               0.608    0.907
##     x23               0.896    0.046   19.554    0.000    0.545    0.925
##     x24               0.882    0.043   20.286    0.000    0.536    0.926
##   POT =~                                                                
##     x32               1.000                               0.765    0.920
##     x33               0.919    0.046   19.896    0.000    0.703    0.876
##   SKP =~                                                                
##     y12               1.000                               0.450    0.842
##     y13               1.209    0.116   10.442    0.000    0.544    0.819
##   NKWU =~                                                               
##     y23               1.000                               0.564    0.792
##     y24               0.912    0.079   11.559    0.000    0.515    0.824
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   SKP ~                                                                 
##     PKWU              0.351    0.098    3.567    0.000    0.341    0.341
##     ED                0.248    0.093    2.663    0.008    0.336    0.336
##     POT               0.161    0.061    2.648    0.008    0.274    0.274
##   NKWU ~                                                                
##     PKWU             -0.169    0.137   -1.239    0.216   -0.131   -0.131
##     ED                0.313    0.140    2.245    0.025    0.338    0.338
##     POT               0.102    0.090    1.137    0.255    0.139    0.139
##     SKP               0.842    0.264    3.195    0.001    0.671    0.671
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   PKWU ~~                                                               
##     ED                0.203    0.053    3.867    0.000    0.766    0.766
##     POT               0.230    0.051    4.528    0.000    0.689    0.689
##   ED ~~                                                                 
##     POT               0.375    0.054    6.980    0.000    0.806    0.806
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .x12               0.073    0.012    6.331    0.000    0.073    0.276
##    .x13               0.046    0.008    5.730    0.000    0.046    0.168
##    .x14               0.022    0.006    3.458    0.001    0.022    0.084
##    .x22               0.079    0.015    5.415    0.000    0.079    0.176
##    .x23               0.050    0.012    4.128    0.000    0.050    0.144
##    .x24               0.048    0.009    5.525    0.000    0.048    0.142
##    .x32               0.106    0.025    4.206    0.000    0.106    0.153
##    .x33               0.150    0.026    5.666    0.000    0.150    0.233
##    .y12               0.083    0.018    4.760    0.000    0.083    0.292
##    .y13               0.145    0.028    5.249    0.000    0.145    0.329
##    .y23               0.190    0.030    6.400    0.000    0.190    0.373
##    .y24               0.126    0.026    4.854    0.000    0.126    0.322
##     PKWU              0.191    0.054    3.543    0.000    1.000    1.000
##     ED                0.369    0.055    6.681    0.000    1.000    1.000
##     POT               0.586    0.065    9.008    0.000    1.000    1.000
##    .SKP               0.049    0.013    3.716    0.000    0.243    0.243
##    .NKWU              0.012    0.020    0.612    0.541    0.039    0.039
standardizedSolution(fit3)
semPaths(fit3, what = "paths", whatLabels = "stand", rotation = 3)

lavInspect(fit3, what = "std")
## $lambda
##      PKWU    ED   POT   SKP  NKWU
## x12 0.851 0.000 0.000 0.000 0.000
## x13 0.912 0.000 0.000 0.000 0.000
## x14 0.957 0.000 0.000 0.000 0.000
## x22 0.000 0.907 0.000 0.000 0.000
## x23 0.000 0.925 0.000 0.000 0.000
## x24 0.000 0.926 0.000 0.000 0.000
## x32 0.000 0.000 0.920 0.000 0.000
## x33 0.000 0.000 0.876 0.000 0.000
## y12 0.000 0.000 0.000 0.842 0.000
## y13 0.000 0.000 0.000 0.819 0.000
## y23 0.000 0.000 0.000 0.000 0.792
## y24 0.000 0.000 0.000 0.000 0.824
## 
## $theta
##     x12   x13   x14   x22   x23   x24   x32   x33   y12   y13   y23   y24  
## x12 0.276                                                                  
## x13 0.000 0.168                                                            
## x14 0.000 0.000 0.084                                                      
## x22 0.000 0.000 0.000 0.176                                                
## x23 0.000 0.000 0.000 0.000 0.144                                          
## x24 0.000 0.000 0.000 0.000 0.000 0.142                                    
## x32 0.000 0.000 0.000 0.000 0.000 0.000 0.153                              
## x33 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.233                        
## y12 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.292                  
## y13 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.329            
## y23 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.373      
## y24 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.322
## 
## $psi
##      PKWU  ED    POT   SKP   NKWU 
## PKWU 1.000                        
## ED   0.766 1.000                  
## POT  0.689 0.806 1.000            
## SKP  0.000 0.000 0.000 0.243      
## NKWU 0.000 0.000 0.000 0.000 0.039
## 
## $beta
##        PKWU    ED   POT   SKP NKWU
## PKWU  0.000 0.000 0.000 0.000    0
## ED    0.000 0.000 0.000 0.000    0
## POT   0.000 0.000 0.000 0.000    0
## SKP   0.341 0.336 0.274 0.000    0
## NKWU -0.131 0.338 0.139 0.671    0

Reliability Komposit dan Konvergen validity

semTools::reliability(fit3)
##             PKWU        ED       POT       SKP      NKWU
## alpha  0.9315885 0.9393789 0.8923855 0.8049280 0.7851762
## omega  0.9332951 0.9416544 0.8939867 0.8121942 0.7868536
## omega2 0.9332951 0.9416544 0.8939867 0.8121942 0.7868536
## omega3 0.9343787 0.9429270 0.8939861 0.8121939 0.7868533
## avevar 0.8237657 0.8436793 0.8085737 0.6856996 0.6490909
semTools::AVE(fit3)
##  PKWU    ED   POT   SKP  NKWU 
## 0.824 0.844 0.809 0.686 0.649
semTools::compRelSEM(fit3) # composite reliability
##  PKWU    ED   POT   SKP  NKWU 
## 0.934 0.943 0.894 0.812 0.787

Discriminant Validity

semTools::discriminantValidity(fit3)
htmt(modsem3, dat)

Berikut adalah kinerja dari model 3

kinerja_mod3 <- kinerja(fit3)
##         ukuran koefisien kriteria      kesimpulan
##   chisq.scaled    106.45    kecil Baik, terpenuhi
##  pvalue.scaled      0.00  >= 0.05 Tidak terpenuhi
##      df.scaled     44.00      ---             ---
##           Cmin      2.42  <= 2.00 Tidak terpenuhi
##           srmr      0.04  <= 0.08 Baik, terpenuhi
##   rmsea.scaled      0.08  <= 0.08 Baik, terpenuhi
##            gfi      0.90  >= 0.90 Baik, terpenuhi
##           agfi      0.83  >= 0.90 Tidak terpenuhi
##     cfi.scaled      0.97  >= 0.90 Baik, terpenuhi
##     ifi.scaled      0.97  >= 0.90 Baik, terpenuhi
##    nnfi.scaled      0.96  >= 0.90 Baik, terpenuhi
##            aic   2330.03    Kecil           Kecil

Model 4

dikeluarkan dari model

modsem4 <- 'PKWU =~ x13 + x14
            ED =~ x23 + x24
            POT =~ x32 + x33
            SKP =~ y12 + y13
            NKWU =~ y23 + y24
            
            # Regression
            SKP ~ PKWU + ED + POT
            NKWU ~ PKWU + ED + POT
            NKWU ~ SKP
            '

fit4 <- sem(modsem4, data = dat, estimator = "MLR")
summary(fit4, fit.measures = T, standardized = T)
## lavaan 0.6-12 ended normally after 69 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        30
## 
##   Number of observations                           200
## 
## Model Test User Model:
##                                               Standard      Robust
##   Test Statistic                                69.587      60.052
##   Degrees of freedom                                25          25
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.159
##     Yuan-Bentler correction (Mplus variant)                       
## 
## Model Test Baseline Model:
## 
##   Test statistic                              1814.420    1649.676
##   Degrees of freedom                                45          45
##   P-value                                        0.000       0.000
##   Scaling correction factor                                  1.100
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.975       0.978
##   Tucker-Lewis Index (TLI)                       0.955       0.961
##                                                                   
##   Robust Comparative Fit Index (CFI)                         0.977
##   Robust Tucker-Lewis Index (TLI)                            0.959
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)              -1036.229   -1036.229
##   Scaling correction factor                                  1.428
##       for the MLR correction                                      
##   Loglikelihood unrestricted model (H1)      -1001.435   -1001.435
##   Scaling correction factor                                  1.306
##       for the MLR correction                                      
##                                                                   
##   Akaike (AIC)                                2132.457    2132.457
##   Bayesian (BIC)                              2231.407    2231.407
##   Sample-size adjusted Bayesian (BIC)         2136.364    2136.364
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.094       0.084
##   90 Percent confidence interval - lower         0.068       0.059
##   90 Percent confidence interval - upper         0.121       0.109
##   P-value RMSEA <= 0.05                          0.004       0.016
##                                                                   
##   Robust RMSEA                                               0.090
##   90 Percent confidence interval - lower                     0.061
##   90 Percent confidence interval - upper                     0.120
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.032       0.032
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   PKWU =~                                                               
##     x13               1.000                               0.494    0.944
##     x14               0.951    0.050   18.859    0.000    0.470    0.920
##   ED =~                                                                 
##     x23               1.000                               0.543    0.923
##     x24               1.005    0.043   23.285    0.000    0.546    0.943
##   POT =~                                                                
##     x32               1.000                               0.766    0.921
##     x33               0.918    0.046   19.933    0.000    0.703    0.875
##   SKP =~                                                                
##     y12               1.000                               0.448    0.837
##     y13               1.221    0.118   10.365    0.000    0.546    0.823
##   NKWU =~                                                               
##     y23               1.000                               0.570    0.799
##     y24               0.895    0.076   11.757    0.000    0.510    0.816
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   SKP ~                                                                 
##     PKWU              0.338    0.099    3.432    0.001    0.373    0.373
##     ED                0.236    0.102    2.309    0.021    0.286    0.286
##     POT               0.168    0.060    2.824    0.005    0.288    0.288
##   NKWU ~                                                                
##     PKWU             -0.149    0.135   -1.103    0.270   -0.130   -0.130
##     ED                0.298    0.144    2.064    0.039    0.284    0.284
##     POT               0.125    0.088    1.427    0.154    0.169    0.169
##     SKP               0.892    0.267    3.336    0.001    0.701    0.701
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   PKWU ~~                                                               
##     ED                0.206    0.051    4.032    0.000    0.769    0.769
##     POT               0.273    0.050    5.415    0.000    0.722    0.722
##   ED ~~                                                                 
##     POT               0.326    0.054    5.985    0.000    0.783    0.783
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .x13               0.030    0.009    3.426    0.001    0.030    0.109
##    .x14               0.040    0.009    4.337    0.000    0.040    0.153
##    .x23               0.051    0.013    3.879    0.000    0.051    0.148
##    .x24               0.037    0.009    3.916    0.000    0.037    0.110
##    .x32               0.105    0.025    4.127    0.000    0.105    0.152
##    .x33               0.151    0.026    5.781    0.000    0.151    0.234
##    .y12               0.085    0.018    4.870    0.000    0.085    0.299
##    .y13               0.142    0.028    5.088    0.000    0.142    0.322
##    .y23               0.184    0.029    6.323    0.000    0.184    0.362
##    .y24               0.130    0.025    5.127    0.000    0.130    0.334
##     PKWU              0.244    0.052    4.726    0.000    1.000    1.000
##     ED                0.295    0.056    5.271    0.000    1.000    1.000
##     POT               0.586    0.065    8.992    0.000    1.000    1.000
##    .SKP               0.050    0.013    3.712    0.000    0.247    0.247
##    .NKWU              0.012    0.021    0.591    0.554    0.038    0.038
standardizedSolution(fit4)
semPaths(fit4, what = "paths", whatLabels = "stand", rotation = 3)

lavInspect(fit4, what = "std")
## $lambda
##      PKWU    ED   POT   SKP  NKWU
## x13 0.944 0.000 0.000 0.000 0.000
## x14 0.920 0.000 0.000 0.000 0.000
## x23 0.000 0.923 0.000 0.000 0.000
## x24 0.000 0.943 0.000 0.000 0.000
## x32 0.000 0.000 0.921 0.000 0.000
## x33 0.000 0.000 0.875 0.000 0.000
## y12 0.000 0.000 0.000 0.837 0.000
## y13 0.000 0.000 0.000 0.823 0.000
## y23 0.000 0.000 0.000 0.000 0.799
## y24 0.000 0.000 0.000 0.000 0.816
## 
## $theta
##     x13   x14   x23   x24   x32   x33   y12   y13   y23   y24  
## x13 0.109                                                      
## x14 0.000 0.153                                                
## x23 0.000 0.000 0.148                                          
## x24 0.000 0.000 0.000 0.110                                    
## x32 0.000 0.000 0.000 0.000 0.152                              
## x33 0.000 0.000 0.000 0.000 0.000 0.234                        
## y12 0.000 0.000 0.000 0.000 0.000 0.000 0.299                  
## y13 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.322            
## y23 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.362      
## y24 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.334
## 
## $psi
##      PKWU  ED    POT   SKP   NKWU 
## PKWU 1.000                        
## ED   0.769 1.000                  
## POT  0.722 0.783 1.000            
## SKP  0.000 0.000 0.000 0.247      
## NKWU 0.000 0.000 0.000 0.000 0.038
## 
## $beta
##        PKWU    ED   POT   SKP NKWU
## PKWU  0.000 0.000 0.000 0.000    0
## ED    0.000 0.000 0.000 0.000    0
## POT   0.000 0.000 0.000 0.000    0
## SKP   0.373 0.286 0.288 0.000    0
## NKWU -0.130 0.284 0.169 0.701    0

Reliability Komposit dan Konvergen validity

semTools::reliability(fit4)
##             PKWU        ED       POT       SKP      NKWU
## alpha  0.9296282 0.9309420 0.8923855 0.8049280 0.7851762
## omega  0.9302122 0.9309483 0.8940399 0.8129831 0.7875752
## omega2 0.9302122 0.9309483 0.8940399 0.8129831 0.7875752
## omega3 0.9302123 0.9309484 0.8940397 0.8129831 0.7875751
## avevar 0.8696008 0.8708177 0.8086698 0.6870198 0.6502788
semTools::AVE(fit4)
##  PKWU    ED   POT   SKP  NKWU 
## 0.870 0.871 0.809 0.687 0.650
semTools::compRelSEM(fit4) # composite reliability
##  PKWU    ED   POT   SKP  NKWU 
## 0.930 0.931 0.894 0.813 0.788

Discriminant Validity

semTools::discriminantValidity(fit4)
htmt(modsem4, dat)

Berikut adalah kinerja dari model 4

kinerja_mod4 <- kinerja(fit4)
##         ukuran koefisien kriteria      kesimpulan
##   chisq.scaled     60.05    kecil Baik, terpenuhi
##  pvalue.scaled      0.00  >= 0.05 Tidak terpenuhi
##      df.scaled     25.00      ---             ---
##           Cmin      2.40  <= 2.00 Tidak terpenuhi
##           srmr      0.03  <= 0.08 Baik, terpenuhi
##   rmsea.scaled      0.08  <= 0.08 Baik, terpenuhi
##            gfi      0.93  >= 0.90 Baik, terpenuhi
##           agfi      0.86  >= 0.90 Tidak terpenuhi
##     cfi.scaled      0.98  >= 0.90 Baik, terpenuhi
##     ifi.scaled      0.98  >= 0.90 Baik, terpenuhi
##    nnfi.scaled      0.96  >= 0.90 Baik, terpenuhi
##            aic   2132.46    Kecil           Kecil

Model 5

dikeluarkan dari model

modsem5 <- 'PKWU =~ x13 + x14
            ED =~ x23 + x24
            POT =~ x32 + x33
            SKP =~ y12 + y13
            NKWU =~ y23 + y24
            
            # Regression
            SKP ~ b1*PKWU + b2*ED + b3*POT
            NKWU ~ b4*PKWU + b5*ED + b6*POT
            NKWU ~ b8*SKP
            
            # indirect effect
            PKWU_SKP_NKWU := b1*b8
            ED_SKP_NKWU := b2*b8
            POT_SKP_NKWU := b3*b8
            
            # total effect
            tot_PKWU := b1*b8 + b4
            tot_ED := b2*b8 + b5
            tot_POT := b3*b8 + b6
            '

fit5 <- sem(modsem5, data = dat, estimator = "MLR")
summary(fit5, fit.measures = T, standardized = T)
## lavaan 0.6-12 ended normally after 69 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        30
## 
##   Number of observations                           200
## 
## Model Test User Model:
##                                               Standard      Robust
##   Test Statistic                                69.587      60.052
##   Degrees of freedom                                25          25
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.159
##     Yuan-Bentler correction (Mplus variant)                       
## 
## Model Test Baseline Model:
## 
##   Test statistic                              1814.420    1649.676
##   Degrees of freedom                                45          45
##   P-value                                        0.000       0.000
##   Scaling correction factor                                  1.100
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.975       0.978
##   Tucker-Lewis Index (TLI)                       0.955       0.961
##                                                                   
##   Robust Comparative Fit Index (CFI)                         0.977
##   Robust Tucker-Lewis Index (TLI)                            0.959
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)              -1036.229   -1036.229
##   Scaling correction factor                                  1.428
##       for the MLR correction                                      
##   Loglikelihood unrestricted model (H1)      -1001.435   -1001.435
##   Scaling correction factor                                  1.306
##       for the MLR correction                                      
##                                                                   
##   Akaike (AIC)                                2132.457    2132.457
##   Bayesian (BIC)                              2231.407    2231.407
##   Sample-size adjusted Bayesian (BIC)         2136.364    2136.364
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.094       0.084
##   90 Percent confidence interval - lower         0.068       0.059
##   90 Percent confidence interval - upper         0.121       0.109
##   P-value RMSEA <= 0.05                          0.004       0.016
##                                                                   
##   Robust RMSEA                                               0.090
##   90 Percent confidence interval - lower                     0.061
##   90 Percent confidence interval - upper                     0.120
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.032       0.032
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   PKWU =~                                                               
##     x13               1.000                               0.494    0.944
##     x14               0.951    0.050   18.859    0.000    0.470    0.920
##   ED =~                                                                 
##     x23               1.000                               0.543    0.923
##     x24               1.005    0.043   23.285    0.000    0.546    0.943
##   POT =~                                                                
##     x32               1.000                               0.766    0.921
##     x33               0.918    0.046   19.933    0.000    0.703    0.875
##   SKP =~                                                                
##     y12               1.000                               0.448    0.837
##     y13               1.221    0.118   10.365    0.000    0.546    0.823
##   NKWU =~                                                               
##     y23               1.000                               0.570    0.799
##     y24               0.895    0.076   11.757    0.000    0.510    0.816
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   SKP ~                                                                 
##     PKWU      (b1)    0.338    0.099    3.432    0.001    0.373    0.373
##     ED        (b2)    0.236    0.102    2.309    0.021    0.286    0.286
##     POT       (b3)    0.168    0.060    2.824    0.005    0.288    0.288
##   NKWU ~                                                                
##     PKWU      (b4)   -0.149    0.135   -1.103    0.270   -0.130   -0.130
##     ED        (b5)    0.298    0.144    2.064    0.039    0.284    0.284
##     POT       (b6)    0.125    0.088    1.427    0.154    0.169    0.169
##     SKP       (b8)    0.892    0.267    3.336    0.001    0.701    0.701
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   PKWU ~~                                                               
##     ED                0.206    0.051    4.032    0.000    0.769    0.769
##     POT               0.273    0.050    5.415    0.000    0.722    0.722
##   ED ~~                                                                 
##     POT               0.326    0.054    5.985    0.000    0.783    0.783
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .x13               0.030    0.009    3.426    0.001    0.030    0.109
##    .x14               0.040    0.009    4.337    0.000    0.040    0.153
##    .x23               0.051    0.013    3.879    0.000    0.051    0.148
##    .x24               0.037    0.009    3.916    0.000    0.037    0.110
##    .x32               0.105    0.025    4.127    0.000    0.105    0.152
##    .x33               0.151    0.026    5.781    0.000    0.151    0.234
##    .y12               0.085    0.018    4.870    0.000    0.085    0.299
##    .y13               0.142    0.028    5.088    0.000    0.142    0.322
##    .y23               0.184    0.029    6.323    0.000    0.184    0.362
##    .y24               0.130    0.025    5.127    0.000    0.130    0.334
##     PKWU              0.244    0.052    4.726    0.000    1.000    1.000
##     ED                0.295    0.056    5.271    0.000    1.000    1.000
##     POT               0.586    0.065    8.992    0.000    1.000    1.000
##    .SKP               0.050    0.013    3.712    0.000    0.247    0.247
##    .NKWU              0.012    0.021    0.591    0.554    0.038    0.038
## 
## Defined Parameters:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     PKWU_SKP_NKWU     0.302    0.127    2.375    0.018    0.262    0.262
##     ED_SKP_NKWU       0.210    0.101    2.073    0.038    0.201    0.201
##     POT_SKP_NKWU      0.150    0.074    2.036    0.042    0.202    0.202
##     tot_PKWU          0.152    0.116    1.312    0.189    0.132    0.132
##     tot_ED            0.508    0.136    3.750    0.000    0.485    0.485
##     tot_POT           0.276    0.081    3.396    0.001    0.371    0.371
standardizedSolution(fit5)
semPaths(fit5, what = "paths", whatLabels = "stand", rotation = 3)

lavInspect(fit5, what = "std")
## $lambda
##      PKWU    ED   POT   SKP  NKWU
## x13 0.944 0.000 0.000 0.000 0.000
## x14 0.920 0.000 0.000 0.000 0.000
## x23 0.000 0.923 0.000 0.000 0.000
## x24 0.000 0.943 0.000 0.000 0.000
## x32 0.000 0.000 0.921 0.000 0.000
## x33 0.000 0.000 0.875 0.000 0.000
## y12 0.000 0.000 0.000 0.837 0.000
## y13 0.000 0.000 0.000 0.823 0.000
## y23 0.000 0.000 0.000 0.000 0.799
## y24 0.000 0.000 0.000 0.000 0.816
## 
## $theta
##     x13   x14   x23   x24   x32   x33   y12   y13   y23   y24  
## x13 0.109                                                      
## x14 0.000 0.153                                                
## x23 0.000 0.000 0.148                                          
## x24 0.000 0.000 0.000 0.110                                    
## x32 0.000 0.000 0.000 0.000 0.152                              
## x33 0.000 0.000 0.000 0.000 0.000 0.234                        
## y12 0.000 0.000 0.000 0.000 0.000 0.000 0.299                  
## y13 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.322            
## y23 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.362      
## y24 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.334
## 
## $psi
##      PKWU  ED    POT   SKP   NKWU 
## PKWU 1.000                        
## ED   0.769 1.000                  
## POT  0.722 0.783 1.000            
## SKP  0.000 0.000 0.000 0.247      
## NKWU 0.000 0.000 0.000 0.000 0.038
## 
## $beta
##        PKWU    ED   POT   SKP NKWU
## PKWU  0.000 0.000 0.000 0.000    0
## ED    0.000 0.000 0.000 0.000    0
## POT   0.000 0.000 0.000 0.000    0
## SKP   0.373 0.286 0.288 0.000    0
## NKWU -0.130 0.284 0.169 0.701    0

Reliability Komposit dan Konvergen validity

semTools::reliability(fit5)
##             PKWU        ED       POT       SKP      NKWU
## alpha  0.9296282 0.9309420 0.8923855 0.8049280 0.7851762
## omega  0.9302122 0.9309483 0.8940399 0.8129831 0.7875752
## omega2 0.9302122 0.9309483 0.8940399 0.8129831 0.7875752
## omega3 0.9302123 0.9309484 0.8940397 0.8129831 0.7875751
## avevar 0.8696008 0.8708177 0.8086698 0.6870198 0.6502788
semTools::AVE(fit5)
##  PKWU    ED   POT   SKP  NKWU 
## 0.870 0.871 0.809 0.687 0.650
semTools::compRelSEM(fit5) # composite reliability
##  PKWU    ED   POT   SKP  NKWU 
## 0.930 0.931 0.894 0.813 0.788

Discriminant Validity

semTools::discriminantValidity(fit5)
htmt(modsem5, dat)

Berikut adalah kinerja dari model 5

kinerja_mod5 <- kinerja(fit5)
##         ukuran koefisien kriteria      kesimpulan
##   chisq.scaled     60.05    kecil Baik, terpenuhi
##  pvalue.scaled      0.00  >= 0.05 Tidak terpenuhi
##      df.scaled     25.00      ---             ---
##           Cmin      2.40  <= 2.00 Tidak terpenuhi
##           srmr      0.03  <= 0.08 Baik, terpenuhi
##   rmsea.scaled      0.08  <= 0.08 Baik, terpenuhi
##            gfi      0.93  >= 0.90 Baik, terpenuhi
##           agfi      0.86  >= 0.90 Tidak terpenuhi
##     cfi.scaled      0.98  >= 0.90 Baik, terpenuhi
##     ifi.scaled      0.98  >= 0.90 Baik, terpenuhi
##    nnfi.scaled      0.96  >= 0.90 Baik, terpenuhi
##            aic   2132.46    Kecil           Kecil