library(vcfR)
## 
##    *****       ***   vcfR   ***       *****
##    This is vcfR 1.13.0 
##      browseVignettes('vcfR') # Documentation
##      citation('vcfR') # Citation
##    *****       *****      *****       *****
library(vegan)
## Loading required package: permute
## Loading required package: lattice
## This is vegan 2.6-4
library(ggplot2)
library(ggpubr)
getwd()
## [1] "/Users/harshitakadiyala/Documents/BIOSC 1540/MyPortfolio"
list.files(pattern = "vcf")
## [1] "8.37585180-37825180.ALL.chr8_GRCh38.genotypes.20170504.vcf"   
## [2] "8.37585180-37825180.ALL.chr8_GRCh38.genotypes.20170504.vcf.gz"
## [3] "vcf_num_df.csv"                                               
## [4] "vcf_num_df2.csv"                                              
## [5] "vcf_num.csv"
my_vcf <- "8.37585180-37825180.ALL.chr8_GRCh38.genotypes.20170504.vcf.gz"
vcf <- vcfR::read.vcfR(my_vcf,
                       convertNA = T)
## Scanning file to determine attributes.
## File attributes:
##   meta lines: 130
##   header_line: 131
##   variant count: 6771
##   column count: 2513
## 
Meta line 130 read in.
## All meta lines processed.
## gt matrix initialized.
## Character matrix gt created.
##   Character matrix gt rows: 6771
##   Character matrix gt cols: 2513
##   skip: 0
##   nrows: 6771
##   row_num: 0
## 
Processed variant 1000
Processed variant 2000
Processed variant 3000
Processed variant 4000
Processed variant 5000
Processed variant 6000
Processed variant: 6771
## All variants processed
vcf_num <- vcfR::extract.gt(vcf,
                            element = "GT",
                            IDtoRowNames = F,
                            as.numeric = T,
                            convertNA = T)
write.csv(vcf_num, file = "vcf_num.csv", row.names = F)
list.files()
##  [1] "1000genomes_people_info2-1 (1).csv"                           
##  [2] "8.37585180-37825180.ALL.chr8_GRCh38.genotypes.20170504.vcf"   
##  [3] "8.37585180-37825180.ALL.chr8_GRCh38.genotypes.20170504.vcf.gz"
##  [4] "final_report.html"                                            
##  [5] "final_report.Rmd"                                             
##  [6] "gwas_pheno_env.csv"                                           
##  [7] "my_portfolio.csv"                                             
##  [8] "MyPortfolio.Rproj"                                            
##  [9] "pheno.csv"                                                    
## [10] "rsconnect"                                                    
## [11] "vcf_num_df.csv"                                               
## [12] "vcf_num_df2.csv"                                              
## [13] "vcf_num.csv"                                                  
## [14] "Workflow.html"                                                
## [15] "Workflow.Rmd"
vcf_num_t <- t(vcf_num)
vcf_num_df <- data.frame(vcf_num_t)
sample <- row.names(vcf_num_df)
vcf_num_df <- data.frame(sample,
                         vcf_num_df)
getwd()
## [1] "/Users/harshitakadiyala/Documents/BIOSC 1540/MyPortfolio"
write.csv(vcf_num_df,
          file = "vcf_num_df.csv",
          row.names = F)
list.files()
##  [1] "1000genomes_people_info2-1 (1).csv"                           
##  [2] "8.37585180-37825180.ALL.chr8_GRCh38.genotypes.20170504.vcf"   
##  [3] "8.37585180-37825180.ALL.chr8_GRCh38.genotypes.20170504.vcf.gz"
##  [4] "final_report.html"                                            
##  [5] "final_report.Rmd"                                             
##  [6] "gwas_pheno_env.csv"                                           
##  [7] "my_portfolio.csv"                                             
##  [8] "MyPortfolio.Rproj"                                            
##  [9] "pheno.csv"                                                    
## [10] "rsconnect"                                                    
## [11] "vcf_num_df.csv"                                               
## [12] "vcf_num_df2.csv"                                              
## [13] "vcf_num.csv"                                                  
## [14] "Workflow.html"                                                
## [15] "Workflow.Rmd"
pop_meta <- read.csv(file = "1000genomes_people_info2-1 (1).csv")
names(pop_meta)
## [1] "pop"       "super_pop" "sample"    "sex"       "lat"       "lng"
vcf_num_df2 <- merge(pop_meta,
                     vcf_num_df,
                     by = "sample")
nrow(vcf_num_df) == nrow(vcf_num_df2)
## [1] TRUE
names(vcf_num_df2)[1:15]
##  [1] "sample"    "pop"       "super_pop" "sex"       "lat"       "lng"      
##  [7] "X1"        "X2"        "X3"        "X4"        "X5"        "X6"       
## [13] "X7"        "X8"        "X9"
getwd()
## [1] "/Users/harshitakadiyala/Documents/BIOSC 1540/MyPortfolio"
write.csv(vcf_num_df2, file = "vcf_num_df2.csv", row.names = F)
list.files()
##  [1] "1000genomes_people_info2-1 (1).csv"                           
##  [2] "8.37585180-37825180.ALL.chr8_GRCh38.genotypes.20170504.vcf"   
##  [3] "8.37585180-37825180.ALL.chr8_GRCh38.genotypes.20170504.vcf.gz"
##  [4] "final_report.html"                                            
##  [5] "final_report.Rmd"                                             
##  [6] "gwas_pheno_env.csv"                                           
##  [7] "my_portfolio.csv"                                             
##  [8] "MyPortfolio.Rproj"                                            
##  [9] "pheno.csv"                                                    
## [10] "rsconnect"                                                    
## [11] "vcf_num_df.csv"                                               
## [12] "vcf_num_df2.csv"                                              
## [13] "vcf_num.csv"                                                  
## [14] "Workflow.html"                                                
## [15] "Workflow.Rmd"
invar_omit <- function(x){
  cat("Dataframe of dim", dim(x), "processed...\n")
  sds <- apply(x, 2, sd, na.rm = TRUE)
  i_var0 <- which(sds == 0)
  
  cat(length(i_var0), "columns removed\n")
  
  if(length(i_var0) > 0){
    x <- x[,-i_var0]
  }
  return(x)
}
names(vcf_num_df2)[1:10]
##  [1] "sample"    "pop"       "super_pop" "sex"       "lat"       "lng"      
##  [7] "X1"        "X2"        "X3"        "X4"
vcf_noinvar <- vcf_num_df2
vcf_noinvar[, -c(1:6)] <- invar_omit(vcf_noinvar[, -c(1:6)])
## Dataframe of dim 2504 6771 processed...
## 1770 columns removed
my_meta_N_invar_cols <- 1770
find_NAs <- function(x){
  NAs_TF <- is.na(x)
  i_NA <- which(NAs_TF == TRUE)
  N_NA <- length(i_NA)
  
  return(i_NA)
}
N_rows <- nrow(vcf_noinvar)
N_NA <- rep(x=0, times= N_rows)
N_SNPs <- ncol(vcf_noinvar)
N_rows <- nrow(vcf_num_t)
N_NA <- rep(x = 0, times = N_rows)
N_SNPs <- ncol(vcf_num_t)
for(i in 1:N_rows){
i_NA <- find_NAs(vcf_num_t[i,])
N_NA_i <- length(i_NA)
N_NA[i] <- N_NA_i
}
cutoff50 <- N_SNPs*0.5
percent_NA <- N_NA/N_SNPs*100
any(percent_NA > 50)
## [1] FALSE
mean(percent_NA)
## [1] 0.002748519
my_meta_N_meanNA_rows <- mean(percent_NA)
mean_imputation <- function(df){
  n_cols <- ncol(df)
  for(i in 1:n_cols)
      {
    column_i <- df[, i]
    mean_i <- mean(column_i, na.rm = TRUE)
    NAs_i <- which(is.na(column_i))
    N_NAs <- length(NAs_i)
    column_i[NAs_i] <- mean_i
    df[, i] <- column_i
  }
  return(df)
}
names(vcf_noinvar)[1:10]
##  [1] "sample"    "pop"       "super_pop" "sex"       "lat"       "lng"      
##  [7] "X1"        "X2"        "X3"        "X4"
vcf_noNA <- vcf_noinvar
vcf_noNA[, -c(1:6)] <- mean_imputation(vcf_noinvar[, -c(1:6)])
vcf_scaled <- vcf_noNA
vcf_scaled[, -c(1:6)] <- scale(vcf_noNA[, -c(1:6)])
write.csv(vcf_noNA, file = "my_portfolio.csv",
          row.names = F)
list.files(pattern = ".csv")
## [1] "1000genomes_people_info2-1 (1).csv" "gwas_pheno_env.csv"                
## [3] "my_portfolio.csv"                   "pheno.csv"                         
## [5] "vcf_num_df.csv"                     "vcf_num_df2.csv"                   
## [7] "vcf_num.csv"