The key things to update are 1) file names and columns names, 2) the number of columns with information on samples to drop from your PCA, and 3) metadata on your data / analysis such as the number of NAs removes or percentage of variation captured by the PCs.
This report summarizes the analysis workflow and results of an analysis of SNPs from the 1000 Genomes Project.
SNPs were downloaded using the Ensembl Data Slicer from chromosome 14 between genomic coordinates 24,353,369 and 24,593,369. This represents 0.224% of the chromosome. A total of 7716 variants genotyped in 2504 individuals were downloaded.
The VCF file was loaded into R using the vcfR package
(function read.vcfR) and converted to counts of the minor
allele using the function vcfR::extract.gt().
These data were collected from volunteers with informed consent based on their ethnic heritage. Inconsistencies in population selection/representation resulted in a largely skewed and incomplete model of world’s genetic heritage.
These SNPs were then screened for any SNPs that were
invariant (fixed), resulting in removal of
1914 SNPs (features). This was done using the
invar_omit() function by Nathan Brouwer.
NOTE: The original workflow code for removing
invariant SNPs contained and error that resulted in no
columns actually being removed (Brouwer, personal
communication). The code was updated and a reduction in the size of
the dataframe after omitting invariant columns confirmed by checking the
dimensions of the dataframes before and after this process using
dim().
The data were then screened for rows (people) with >50% NAs. There were no NAs in the data, so no rows were removed due to the presence of excessive NAs. Similarly, because no NAs were present no imputation was required.
The data were then centered and scaled using R’s
scale() function. (Alternatively a SNP-specific centering
technique common in other studies could have been applied).
The data were then saved in .csv format using
write.csv() for PCA analysis.
After final processing the data contained 5796 SNPS and 2504 samples (people).
The code below carries out a PCA on the data and presents the results. The key steps are:
read.csv().prcomp().The following packages were used in this analysis:
# plotting:
library(ggplot2)
library(ggpubr)
# scores() function
library(vegan)
## Warning: package 'vegan' was built under R version 4.2.2
## Loading required package: permute
## Warning: package 'permute' was built under R version 4.2.2
## Loading required package: lattice
## This is vegan 2.6-4
# 3D scatter plot
library(scatterplot3d)
Load the fully processed data:
NOTE: with 5796 SNPs, this CSV is ~248 megabytes. There are more specialized packages for doing PCA with data sets this big. I do not recommend working with more than 10,000 SNPs with basic R functions as we have done in class.
vcf_scaled <- read.csv(file = "vcf_scaled.csv")
Check the dimensions of the data to confirm this is the correct data:
dim(vcf_scaled)
## [1] 2504 5802
The data are scaled and ready for analysis. Here we see the first 6 columns contain character data and need to be omitted.
head(vcf_scaled[,1:10])
## sample pop super_pop sex lat lng X1 X3
## 1 HG00096 GBR EUR male 52.48624 -1.890401 -0.267265 -0.07222675
## 2 HG00097 GBR EUR female 52.48624 -1.890401 -0.267265 -0.07222675
## 3 HG00099 GBR EUR female 52.48624 -1.890401 -0.267265 -0.07222675
## 4 HG00100 GBR EUR female 52.48624 -1.890401 -0.267265 -0.07222675
## 5 HG00101 GBR EUR male 52.48624 -1.890401 -0.267265 -0.07222675
## 6 HG00102 GBR EUR female 52.48624 -1.890401 -0.267265 -0.07222675
## X4 X5
## 1 -0.04472137 -0.4724028
## 2 -0.04472137 2.1159923
## 3 -0.04472137 -0.4724028
## 4 -0.04472137 -0.4724028
## 5 -0.04472137 -0.4724028
## 6 -0.04472137 -0.4724028
Principal Components Analysis was run using
prcomp().
vcf_pca <- prcomp(vcf_scaled[,7:5802])
Get the PCA scores, which will be plotted.:
vcf_pca_scores <- vegan::scores(vcf_pca)
Combine the scores with the sample information into a dataframe.
vcf_pca_scores2 <- data.frame(population = vcf_scaled$super_pop,
vcf_pca_scores)
vcf_pca_scores2$population <- factor(vcf_pca_scores2$population)
The following steps help us understand the PCA output and determine how many PCs should be plotted and/or used in further analyses such as scans for natural selection, cluster analysis, and GWAS.
A default R scree plot was created with screeplot().
This plot does not provide extra information for assessing the
importance of the PCs.
screeplot(vcf_pca,
xlab = "Principal Components")
This function extracts information needed to make a more advanced, annotated scree plot.
PCA_variation <- function(pca){
pca_summary <- summary(pca)
variance <- pca_summary$importance[1,]
var_explained <- pca_summary$importance[2,]*100
var_explained <- round(var_explained,3)
var_cumulative <- pca_summary$importance[3,]*100
var_cumulative <- round(var_cumulative,3)
N.PCs <- length(var_explained)
var_df <- data.frame(PC = 1:N.PCs,
var_raw = variance,
var_percent = var_explained,
cumulative_percent = var_cumulative)
return(var_df)
}
This function makes a more advanced scree plot better suited for PCS on for SNPs.
screeplot_snps <- function(var_df){
total_var <- sum(var_df$var_raw)
N <- length(var_df$var_raw)
var_cutoff <- total_var/N
var_cut_percent <- var_cutoff/total_var*100
var_cut_percent_rnd <- round(var_cut_percent,2)
i_above_cut <- which(var_df$var_percent > var_cut_percent)
i_cut <- max(i_above_cut)
ti <- paste0("Cutoff = ",
var_cut_percent_rnd,
"%\n","Useful PCs = ",i_cut)
plot(var_df$var_percent,
main =ti, type = "l",
xlab = "PC",
ylab = "Percent variation",
col = 0)
segments(x0 = var_df$PC,
x1 = var_df$PC,
y0 = 0,
y1 = var_df$var_percent,
col = 1)
segments(x0 = 0,
x1 = N,
y0 = var_cut_percent,
y1 = var_cut_percent,
col = 2)
}
#var_df <- PCA_variation(vcf_pca)
#screeplot_snps(var_df)
This makes a plot complementary to a scree plot. A scree plot plots the amount of variation explained by each PC. This plot plots a curve of cumulative amount of variation explained by the PCs.
PCA_cumulative_var_plot <- function(var_df){
plot(cumulative_percent ~ PC,
data = var_df,
main = "Cumulative percent variation\n explained by PCs",
xlab = "PC",
ylab = "Cumulative %",
type = "l")
total_var <- sum(var_df$var_raw)
N <- length(var_df$var_raw)
var_cutoff <- total_var/N
var_cut_percent <- var_cutoff/total_var*100
var_cut_percent_rnd <- round(var_cut_percent,2)
i_above_cut <- which(var_df$var_percent > var_cut_percent)
i_cut <- max(i_above_cut)
percent_cut_i <- which(var_df$PC == i_cut )
percent_cut <- var_df$cumulative_percent[percent_cut_i]
segments(x0 = i_cut,
x1 = i_cut,
y0 = 0,
y1 = 100,
col = 2)
segments(x0 = -10,
x1 = N,
y0 = percent_cut,
y1 = percent_cut,
col = 2)
}
#PCA_cumulative_var_plot(PCA_variation(vcf_pca))
Extract information on the variance explained by each PC.
var_out <- PCA_variation(vcf_pca)
Look at the output of PCA_variation()
head(var_out)
## PC var_raw var_percent cumulative_percent
## PC1 1 16.476299 4.684 4.684
## PC2 2 12.982275 2.908 7.592
## PC3 3 12.141488 2.543 10.135
## PC4 4 10.341987 1.845 11.980
## PC5 5 9.265079 1.481 13.461
## PC6 6 8.949608 1.382 14.843
This advanced scree plot shows the amount of variation explained by all PCs. It marks with a horizontal line what the cutoff is for the amount of Percent variation explained that is useful, and a vertical line for where that line interacts the curve of the scree plot.The title indicates the percentage value of the cutoff and which PC is the last PC below that value. Though only the first few PCs can be plotted, PCs below the cut off value (“useful PCs) should probably used for further machine learning algorithms.
Make the scree plot with screeplot_snps()
screeplot_snps(var_out)
The cumulative variation plot shows how much variation in the data explained in total as more and more PCs are considered. The vertical red line shows the cutoff value from the scree plot (above). The horizontal line indicates what the total percentage of variation explained by these useful PCs is.
Make cumulative variation plot with
PCA_cumulative_var_plot()
PCA_cumulative_var_plot(var_out)
The object created above var_out indicates how much
variation is explained by each of the Principal components. This
information is often added to the axes of scatter plots of PCA
output.
head(var_out)
## PC var_raw var_percent cumulative_percent
## PC1 1 16.476299 4.684 4.684
## PC2 2 12.982275 2.908 7.592
## PC3 3 12.141488 2.543 10.135
## PC4 4 10.341987 1.845 11.980
## PC5 5 9.265079 1.481 13.461
## PC6 6 8.949608 1.382 14.843
PC 1 explains 4.684% percent of the variation, PC2 explains. 2.91%, and PC3 explains 2.54%. In total, the first 3 PCs explain only 10.13% of the variability in the data. The scree plot indicate that the first 631 PCs explain ~76% of the variation in the data. In further analysis such as GWAS the first 631 PCs should therefore be used.
Plot the scores, with super-population color-coded
ggpubr::ggscatter(data = vcf_pca_scores2,
y = "PC2",
x = "PC1",
color = "population",
shape = "population",
main = "PCA Scatterplot",
ylab = "PC2 (2.91% of variation)",
xlab = "PC1 (4.68% of variation")
Note how in the plot the amount of variation explained by each PC is shown in the axis labels.
Plot the scores, with super population color-coded
ggpubr::ggscatter(data = vcf_pca_scores2,
y = "PC3",
x = "PC2",
color = "population",
shape = "population",
main = "PCA Scatterplot",
ylab = "PC3 (2.54% of variation)",
xlab = "PC2 (2.91% of variation")
Note how in the plot the amount of variation explained by each PC is shown in the axis labels.
Plot the scores, with super population color-coded
ggpubr::ggscatter(data = vcf_pca_scores2,
y = "PC3",
x = "PC1",
ellipse = T,
color = "population",
shape = "population",
main = "PCA Scatterplot",
ylab = "PC3 (2.54% of variation)",
xlab = "PC1 (4.68% of variation")
Note how in the plot the amount of variation explained by each PC is shown in the axis labels.
The first 3 principal components can be presented as a 3D scatterplot.
colors_use <- as.numeric(vcf_pca_scores2$population)
scatterplot3d(x = vcf_pca_scores2$PC1,
y = vcf_pca_scores2$PC2,
z = vcf_pca_scores2$PC3,
color = colors_use,
xlab = "PC1 (4.68%)",
ylab = "PC2 (2.91%)",
zlab = "PC3 (2.54%)")