library(vcfR)
##
## ***** *** vcfR *** *****
## This is vcfR 1.13.0
## browseVignettes('vcfR') # Documentation
## citation('vcfR') # Citation
## ***** ***** ***** *****
library(vegan)
## Loading required package: permute
## Loading required package: lattice
## This is vegan 2.6-4
library(ggplot2)
library(ggpubr)
Check the working directory.
getwd()
## [1] "/Users/vinishasant/Documents/Fall2022/BIOSC1540/CompBioCode/FinalProject"
Check the files found in the working directory to make sure that the vcf.gz file containing SNPs is found in the same folder.
list.files(pattern = "vcf")
## [1] "my_snps.vcf.gz" "vcf_num_df.csv" "vcf_num_df2.csv" "vcf_num.csv"
## [5] "vcf_scaled.csv"
Load the VCF Data into R. my_vcf is an object containing the name of the VCF file.
my_vcf <- "my_snps.vcf.gz"
vcf <- vcfR::read.vcfR(my_vcf, convertNA = T)
## Scanning file to determine attributes.
## File attributes:
## meta lines: 130
## header_line: 131
## variant count: 8213
## column count: 2513
##
Meta line 130 read in.
## All meta lines processed.
## gt matrix initialized.
## Character matrix gt created.
## Character matrix gt rows: 8213
## Character matrix gt cols: 2513
## skip: 0
## nrows: 8213
## row_num: 0
##
Processed variant 1000
Processed variant 2000
Processed variant 3000
Processed variant 4000
Processed variant 5000
Processed variant 6000
Processed variant 7000
Processed variant 8000
Processed variant: 8213
## All variants processed
Convert the raw VCF file to genotype scores (allele counts), stored into an object called vcf_num.
vcf_num <- vcfR::extract.gt(vcf, element = "GT", IDtoRowNames = F, as.numeric = T, convertNA = T)
Save the CSV file
write.csv(vcf_num, file = "vcf_num.csv", row.names = F)
Confirm the presence of the file in the working directory
list.files(pattern = "csv")
## [1] "1000genomes_people_info2.csv" "vcf_num_df.csv"
## [3] "vcf_num_df2.csv" "vcf_num.csv"
## [5] "vcf_scaled.csv"
Transpose the original VCF data to the R dataframe orientation using t() and convert it to a dataframe object
vcf_num_t <- t(vcf_num)
vcf_num_df <- data.frame(vcf_num_t)
Get sample names and add this information to the dataframe
sample <- row.names(vcf_num_df)
vcf_num_df <- data.frame(sample, vcf_num_df)
Save the CSV file
write.csv(vcf_num_df, file = "vcf_num_df.csv", row.names = F)
Confirm the presence of the file in the working directory
list.files(pattern = "csv")
## [1] "1000genomes_people_info2.csv" "vcf_num_df.csv"
## [3] "vcf_num_df2.csv" "vcf_num.csv"
## [5] "vcf_scaled.csv"
Load the population meta data
pop_meta <- read.csv(file = "1000genomes_people_info2.csv")
Check to make sure “sample” appears in both, the meta data and the SNP data
names(pop_meta)
## [1] "pop" "super_pop" "sample" "sex" "lat" "lng"
names(vcf_num_df[1:10])
## [1] "sample" "X1" "X2" "X3" "X4" "X5" "X6" "X7"
## [9] "X8" "X9"
Merge the meta data with SNP data
vcf_num_df2 <- merge(pop_meta, vcf_num_df, by = "sample")
Verify the dimensions before and after the merge
nrow(vcf_num_df) == nrow(vcf_num_df2)
## [1] TRUE
Verify the names of the new dataframe
names(vcf_num_df2[1:15])
## [1] "sample" "pop" "super_pop" "sex" "lat" "lng"
## [7] "X1" "X2" "X3" "X4" "X5" "X6"
## [13] "X7" "X8" "X9"
Save the CSV file and confirm its presence in the working directory
write.csv(vcf_num_df2, file = "vcf_num_df2.csv", row.names = F)
list.files(pattern = "csv")
## [1] "1000genomes_people_info2.csv" "vcf_num_df.csv"
## [3] "vcf_num_df2.csv" "vcf_num.csv"
## [5] "vcf_scaled.csv"
invar_omit() function
invar_omit <- function(x){
cat("Dataframe of dim", dim(x), "processed...\n")
sds <- apply(x, 2, sd, na.rm = TRUE)
i_var0 <- which(sds == 0)
cat(length(i_var0), "columns removed \n")
if(length(i_var0) > 0){
x <- x[, -i_var0]
}
return(x)
}
Check which colums have character data so we can skip them when running invar_omit()
names(vcf_num_df2[1:10])
## [1] "sample" "pop" "super_pop" "sex" "lat" "lng"
## [7] "X1" "X2" "X3" "X4"
Run the data through the invar_omit() function
vcf_no_invar <- vcf_num_df2
vcf_no_invar <- data.frame(vcf_no_invar[,c(1:6)], invar_omit(vcf_no_invar[,-c(1:6)]))
## Dataframe of dim 2504 8213 processed...
## 1995 columns removed
N_invar_cols <- 1995
find_Nas() function
find_Nas <- function(x){
NAs_TF <- is.na(x)
i_NA <- which(NAs_TF == TRUE)
N_NA <- length(i_NA)
return(i_NA)
}
for() loop to search for NAs
N_rows <- nrow(vcf_no_invar) #number of rows(individuals)
N_SNPs <- ncol(vcf_no_invar) #total number of columns (SNPs)
N_NA <- rep(x = 0, times = N_rows) #vector to hold output (number of NAs)
for(i in 1:N_rows){
#for each row, find the location of NAs
i_NA <- find_Nas(vcf_no_invar[i,])
#determine how many NAs with length()
N_NA_i <- length(i_NA)
#save the output to our storage vector
N_NA[i] <- N_NA_i
}
Check to see if any row in the dataframe has >50% NAs
cutoff50 <- N_SNPs*0.5
percent_NA <- N_NA/N_SNPs*100
any(percent_NA > 50)
## [1] FALSE
Check the average percent of NAs per row
mean(percent_NA)
## [1] 6.416469e-06
N_meanNA_rows <- mean(percent_NA)
mean_imputation() function
mean_imputation <- function(df){
cat("This may take some time :)")
n_cols <- ncol(df)
for(i in 1:n_cols){
#get the current column
column_i <- df[, i]
#get the mean of the current column
mean_i <- mean(column_i, na.rm = TRUE)
#get the NAs in the current column
NAs_i <- which(is.na(column_i))
#report the number of NAs
N_NAs <- length(NAs_i)
#replace the NAs in the current column
column_i[NAs_i] <- mean_i
#replace the original column with the updated columns
df[, i] <- column_i
}
return(df)
}
Run the mean_imputation() function on all the numeric columns
vcf_noNA <- vcf_no_invar
vcf_noNA[, -c(1:6)] <- mean_imputation(vcf_no_invar[, -c(1:6)])
## This may take some time :)
Scale the numeric features using scale()
vcf_scaled <- vcf_noNA
vcf_scaled[, -c(1:6)] <- scale(vcf_noNA[, -c(1:6)])
Save the CSV file and confirm its presence in the working directory
write.csv(vcf_scaled, file = "vcf_scaled.csv", row.names = F)
list.files(pattern = "csv")
## [1] "1000genomes_people_info2.csv" "vcf_num_df.csv"
## [3] "vcf_num_df2.csv" "vcf_num.csv"
## [5] "vcf_scaled.csv"
Run the PCA analysis using prcomp() on only the numeric features
vcf_pca <- prcomp(vcf_scaled[, -c(1:6)])
Create a screeplot of the data using screeplot()
screeplot(vcf_pca)
The default screeplot does not provide much guidance on how many PCs we
should retain in analysis
PCA_variation() function
PCA_variation <- function(pca_summary, PCs = 2){
var_explained <- pca_summary$importance[2,1:PCs]*100
var_explained <- round(var_explained, 3)
return(var_explained)
}
Extract PCA variation data and calculate percentage variation
vcf_pca_summary <- summary(vcf_pca)
#extracting raw variation data
var_out <- PCA_variation(vcf_pca_summary, PCs = 500)
#calculate the cut off for the rule of thumb
N_columns <- ncol(vcf_scaled)
cut_off <- 1/N_columns*100
#calculate the PCs which exceed the cutoff
i_cut_off <- which(var_out < cut_off)
i_cut_off <- min(i_cut_off) #first value below cutoff
## Warning in min(i_cut_off): no non-missing arguments to min; returning Inf
N_meanNA_rowsPCs <- i_cut_off #save this value
Extract the amount of variation explained by the first 3 PCs
var_PC123 <- var_out[c(1,2,3)]
Plot the percentage variation
barplot(var_out, main = "Percent variation (%) Screeplot",
ylab = "Percent variation (%) explained",
names.arg = 1:length(var_out))
abline(h = cut_off, col = 2, lwd = 2)
abline(v = i_cut_off)
legend("topright", col = c(2,1), lty = c(1,1),
legend = c("Vertical line: cutoff",
"Horizontal line: 1st value below cutoff"))
Plot cumulative percentage variation
cumulative_variation <- cumsum(var_out)
plot(cumulative_variation, type = "l")
Get the scores using vegan::scores()
vcf_pca_scores <- vegan::scores(vcf_pca)
Combine the scores with the species information into a dataframe, and look at the information on the variation explained by the PCs
vcf_pca_scores2 <- data.frame(super_pop = vcf_noNA$super_pop, vcf_pca_scores)
var_PC123[1]
## PC1
## 2.739
var_PC123[2]
## PC2
## 2.147
Plot PC1 versus PC2
ggpubr::ggscatter(data = vcf_pca_scores2,
y = "PC2", x = "PC1",
color = "super_pop",
shape = "super_pop",
main = "PCA Scatterplot",
xlab = "PC1 (2.7% of variation)",
ylab = "PC2 (2.1% of variation")
Plot PC2 versus PC3
ggpubr::ggscatter(data = vcf_pca_scores2,
y = "PC3", x = "PC2",
color = "super_pop",
shape = "super_pop",
main = "PCA Scatterplot",
xlab = "PC2 (2.1% of variation)",
ylab = "PC3 (1.6% of variation")
Plot PC1 versus PC2
ggpubr::ggscatter(data = vcf_pca_scores2,
y = "PC3", x = "PC1",
color = "super_pop",
shape = "super_pop",
main = "PCA Scatterplot",
xlab = "PC1 (2.7% of variation)",
ylab = "PC3 (1.6% of variation")