Background work - get everything set up for figures and stats!

library tidyverse

library(tidyverse)

Import the data

import the individual and multiple species lab info

one<- read.csv("C:/Users/harr4718/OneDrive - University of Idaho/Research/Grass Combustion/copy of burn data/one_sp_to_graph.csv")
two<- read.csv("C:/Users/harr4718/OneDrive - University of Idaho/Research/Grass Combustion/copy of burn data/two_sp_to_Graph.csv")

First we need to turn the two conditions we will use as factors for anovas and graphing into factors!

two$AG.GOAL.DRY.MASS <- as.factor(two$AG.GOAL.DRY.MASS)
two$AG.GOAL.MOISTURE. <- as.factor(two$AG.GOAL.MOISTURE.)
one$goal_moisture_percent <-as.factor(one$goal_moisture_percent)
one$goal_weight <-as.factor(one$weight_goal)

#order species for figures
one$SPECIES <- factor(one$SPECIES,levels = c("BRTE", "ACTH7", "PSSP6"))

Remove 5 an 10 % BRTE FM for the poster

#one <- filter(one, !goal_moisture_percent==5)
#one <- filter(one, !goal_moisture_percent==10)

can we group all three thermocouples together?

Create a gathered dataset where outputs (i.e. max temp) from all three thermocouples are combined into one column, and then test is the output differs by channel type.

Max temp

Two_gathered_1 <- gather(two, channel, max, max_ch1:max_ch3) 
aov1 <- aov(max ~ channel, data = Two_gathered_1)
summary(aov1)
##              Df   Sum Sq Mean Sq F value Pr(>F)    
## channel       2  8085577 4042789   41.55 <2e-16 ***
## Residuals   417 40571291   97293                   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
TukeyHSD(aov1)
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = max ~ channel, data = Two_gathered_1)
## 
## $channel
##                     diff       lwr       upr     p adj
## max_ch2-max_ch1 -54.2880 -141.9781  33.40206 0.3132604
## max_ch3-max_ch1 263.4086  175.7185 351.09863 0.0000000
## max_ch3-max_ch2 317.6966  230.0065 405.38663 0.0000000

Channel 3 is significantly different from both 1 and 2

Heat Load

Two_gathered_2 <- gather(two, channel, load, load_ch1:load_ch3)
aov1 <- aov(load ~ channel, data = Two_gathered_2)
summary(aov1)
##              Df    Sum Sq   Mean Sq F value Pr(>F)    
## channel       2 1.681e+11 8.407e+10   80.45 <2e-16 ***
## Residuals   417 4.358e+11 1.045e+09                   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
TukeyHSD(aov1)
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = load ~ channel, data = Two_gathered_2)
## 
## $channel
##                        diff       lwr      upr     p adj
## load_ch2-load_ch1  6906.695 -2181.644 15995.03 0.1750145
## load_ch3-load_ch1 45475.130 36386.791 54563.47 0.0000000
## load_ch3-load_ch2 38568.435 29480.096 47656.77 0.0000000

Channel 3 is significantly different from both 1 and 2

Burn Duration

Two_gathered_3 <- gather(two, channel, dur, dur_ch1:dur_ch3)

aov1 <- aov(dur ~ channel, data = Two_gathered_3)
summary(aov1)
##              Df Sum Sq Mean Sq F value  Pr(>F)    
## channel       2  48929   24464   16.18 1.7e-07 ***
## Residuals   417 630389    1512                    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
TukeyHSD(aov1)
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = dur ~ channel, data = Two_gathered_3)
## 
## $channel
##                     diff       lwr      upr     p adj
## dur_ch2-dur_ch1 10.34286 -0.587776 21.27349 0.0680840
## dur_ch3-dur_ch1 26.24286 15.312224 37.17349 0.0000001
## dur_ch3-dur_ch2 15.90000  4.969367 26.83063 0.0019746

Channel 3 is significantly different from both 1 and 2

No we cannot group all three thermocouples together

we will just use combination of TC 1 and 2

Set theme for figures

theme_set(theme_bw(base_size = 15)+
  theme(
    panel.background = element_rect(fill='transparent'), #transparent panel bg
    plot.background = element_rect(fill='transparent', color=NA), #transparent plot bg
    panel.grid.major = element_blank(), #remove major gridlines
    panel.grid.minor = element_blank(), #remove minor gridlines
    legend.background = element_rect(fill='transparent'), #transparent legend bg
    legend.box.background = element_rect(fill='transparent'), #transparent legend panel
    axis.text = element_text(color="black")
  ))

Title: Flammability of annual and perennial grasses of the Western US from green-up through senescence

Question 1: Did combustion traits differ among different grass species?

1. Maximum temperature

one_max_condensed <- gather(one, channel, max, max_ch1:max_ch2)
one_max_condensed$max <- as.numeric(one_max_condensed$max)
one_max_condensed$SPECIES <- factor(one_max_condensed$SPECIES,levels = c("BRTE", "ACTH7", "PSSP6"))


g1 <- ggplot(data = one_max_condensed, aes(x = SPECIES, 
                                           y= max, fill =goal_moisture_percent))
g1 <- g1 + geom_boxplot()+
  scale_fill_brewer(palette = "Oranges")+ 
  scale_y_continuous(limits = c(0, 1500),  expand = c(0, 0))
g1 <- g1 + labs(x = "Species", y = "Maximum temperature (C)")+
  guides(fill=guide_legend(title="FM (%)"))
g1 <- g1 + labs(title = "Combustibility: Max temperature") 
g1<- g1 + scale_x_discrete(labels=c("BRTE" = "Cheatgrass", "ACTH7" = "Needlegrass",
                              "PSSP6" = "Bluebunch"))+theme(legend.position = "none")
g1

#save plot
ggsave <- g1
ggsave('figures/indiv_sp/indiv_species_maxTemp.png', ggsave, width = 5, height = 4, bg='transparent')

save one with legend

g1 <- ggplot(data = one_max_condensed, aes(x = SPECIES, 
                                           y= max, fill =goal_moisture_percent))
g1 <- g1 + geom_boxplot()+
  scale_fill_brewer(palette = "Oranges")+ 
  scale_y_continuous(limits = c(0, 1500),  expand = c(0, 0))
g1 <- g1 + labs(x = "Species", y = "Maximum temperature (C)")+
  guides(fill=guide_legend(title="FM (%)"))
g1 <- g1 + labs(title = "Combustibility: Max temperature") 
g1<- g1 + scale_x_discrete(labels=c("BRTE" = "Cheatgrass", "ACTH7" = "Needlegrass",
                              "PSSP6" = "Bluebunch"))
g1

#save plot
ggsave <- g1
ggsave('figures/indiv_sp/legend_side.png', ggsave, width = 5, height = 4, bg='transparent')



g1 <- ggplot(data = one_max_condensed, aes(x = SPECIES, 
                                           y= max, fill =goal_moisture_percent))
g1 <- g1 + geom_boxplot()+
  scale_fill_brewer(palette = "Oranges")+ 
  scale_y_continuous(limits = c(0, 1500),  expand = c(0, 0))
g1 <- g1 + labs(x = "Species", y = "Maximum temperature (C)")+
  guides(fill=guide_legend(title="FM (%)"))
g1 <- g1 + labs(title = "Combustibility: Max temperature") 
g1<- g1 + scale_x_discrete(labels=c("BRTE" = "Cheatgrass", "ACTH7" = "Needlegrass",
                              "PSSP6" = "Bluebunch"))+
  theme(legend.position = "top")
g1

#save plot
ggsave <- g1
ggsave('figures/indiv_sp/legend_top.png', ggsave, width = 5, height = 4, bg='transparent')

stats

aov1 <- aov(max ~ SPECIES + goal_moisture_percent + SPECIES*goal_moisture_percent, data = one_max_condensed) 
summary(aov1)#interaction was non sign, remove for post hoc
##                                Df   Sum Sq Mean Sq F value  Pr(>F)    
## SPECIES                         2   668106  334053   3.460  0.0337 *  
## goal_moisture_percent           6  5687439  947907   9.818 2.9e-09 ***
## SPECIES:goal_moisture_percent   8  1220117  152515   1.580  0.1343    
## Residuals                     167 16123578   96548                    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
aov2 <- aov(max ~ SPECIES + goal_moisture_percent, data = one_max_condensed) 
summary(aov2)
##                        Df   Sum Sq Mean Sq F value   Pr(>F)    
## SPECIES                 2   668106  334053   3.371   0.0366 *  
## goal_moisture_percent   6  5687439  947907   9.564 4.32e-09 ***
## Residuals             175 17343695   99107                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
TukeyHSD(aov2)
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = max ~ SPECIES + goal_moisture_percent, data = one_max_condensed)
## 
## $SPECIES
##                  diff         lwr      upr     p adj
## ACTH7-BRTE   93.02638  -41.049313 227.1021 0.2316211
## PSSP6-BRTE  138.33081    5.987281 270.6743 0.0381982
## PSSP6-ACTH7  45.30443 -105.070310 195.6792 0.7566319
## 
## $goal_moisture_percent
##             diff       lwr         upr     p adj
## 10-5   250.61075 -194.8290  696.050537 0.6314381
## 15-5    23.08342 -343.9688  390.135629 0.9999962
## 25-5   -22.40417 -398.8695  354.061158 0.9999973
## 35-5  -184.81993 -545.7542  176.114315 0.7279678
## 45-5  -316.88515 -693.3505   59.580185 0.1617851
## 55-5  -358.32698 -731.9933   15.339315 0.0695401
## 15-10 -227.52733 -563.2073  108.152629 0.4046907
## 25-10 -273.01492 -618.9627   72.932842 0.2247922
## 35-10 -435.43068 -764.4098 -106.451593 0.0021580
## 45-10 -567.49590 -913.4437 -221.548131 0.0000456
## 55-10 -608.93773 -951.8374 -266.038021 0.0000072
## 25-15  -45.48759 -282.1109  191.135685 0.9974707
## 35-15 -207.90335 -418.9435    3.136832 0.0564542
## 45-15 -339.96857 -576.5918 -103.345288 0.0005888
## 55-15 -381.41040 -613.5546 -149.266200 0.0000440
## 35-25 -162.41576 -389.4329   64.601381 0.3374805
## 45-25 -294.48097 -545.4579  -43.504086 0.0103933
## 55-25 -335.92281 -582.6813  -89.164317 0.0014137
## 45-35 -132.06522 -359.0824   94.951918 0.5933666
## 55-35 -173.50705 -395.8517   48.837578 0.2368101
## 55-45  -41.44183 -288.2003  205.316656 0.9988171
#first test for differences by species using an anova
aov1 <- aov(max ~ SPECIES, data = one_max_condensed) 
summary(aov1)#nope
##              Df   Sum Sq Mean Sq F value Pr(>F)  
## SPECIES       2   668106  334053   2.625 0.0752 .
## Residuals   181 23031134  127244                 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#tranform the fm into a continious variable for linear regression
one_max_condensed$goal_moisture_percent_cont <- as.numeric(one_max_condensed$goal_moisture_percent)

#then test for differences by fuel moisture 
lm <-lm(max~ goal_moisture_percent_cont,
        data = one_max_condensed)
summary(lm)
## 
## Call:
## lm(formula = max ~ goal_moisture_percent_cont, data = one_max_condensed)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -682.76 -292.01  -12.74  279.38  747.61 
## 
## Coefficients:
##                            Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                  998.47      71.50  13.965  < 2e-16 ***
## goal_moisture_percent_cont   -87.77      14.62  -6.001 1.04e-08 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 329.7 on 182 degrees of freedom
## Multiple R-squared:  0.1652, Adjusted R-squared:  0.1606 
## F-statistic: 36.01 on 1 and 182 DF,  p-value: 1.036e-08

The maximum temperature of BRTE was less than both perennial grass species. For all species, maximum temperature decreased with increasing FM.

2. Flame length

g1 <- ggplot(data = one, aes(x = SPECIES, y= FLAME.HEIGHT.CM, fill = goal_moisture_percent))
g1 <- g1 + 
 geom_boxplot()+
    scale_fill_brewer(palette = "Oranges")+ 
  scale_y_continuous(limits = c(15, 150),  expand = c(0, 0))
g1 <- g1 + labs(x = "Species", y = "Flame length (cm)")+
  guides(fill=guide_legend(title="FM (%)"))
g1 <- g1 + labs(title = "Combustibility: Flame length") + scale_x_discrete(labels=c("BRTE" = "Cheatgrass", "ACTH7" = "Needlegrass",
                              "PSSP6" = "Bluebunch"))+theme(legend.position = "none")
g1
## Warning: Removed 15 rows containing non-finite values (stat_boxplot).

ggsave <- g1
ggsave('figures/indiv_sp/indiv_sp_fl.png', ggsave, height = 4, width = 5, bg='transparent')
## Warning: Removed 15 rows containing non-finite values (stat_boxplot).
aov1 <- aov(FLAME.HEIGHT.CM ~ SPECIES + goal_moisture_percent + SPECIES* goal_moisture_percent , data = one)
summary(aov1) #interaction non sig, remove 
##                               Df Sum Sq Mean Sq F value   Pr(>F)    
## SPECIES                        2   1544   771.9   1.591    0.212    
## goal_moisture_percent          6  18819  3136.5   6.466 2.69e-05 ***
## SPECIES:goal_moisture_percent  8   2608   326.0   0.672    0.714    
## Residuals                     60  29104   485.1                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 15 observations deleted due to missingness
aov2 <- aov(FLAME.HEIGHT.CM ~ SPECIES + goal_moisture_percent, data = one)
summary(aov2) #interaction non sig, remove 
##                       Df Sum Sq Mean Sq F value   Pr(>F)    
## SPECIES                2   1544   771.9   1.655    0.199    
## goal_moisture_percent  6  18819  3136.5   6.726 1.27e-05 ***
## Residuals             68  31712   466.4                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 15 observations deleted due to missingness
TukeyHSD(aov2)
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = FLAME.HEIGHT.CM ~ SPECIES + goal_moisture_percent, data = one)
## 
## $SPECIES
##                   diff       lwr       upr     p adj
## ACTH7-BRTE  -10.000000 -24.05504  4.055040 0.2108064
## PSSP6-BRTE   -7.619048 -22.06311  6.825011 0.4203539
## PSSP6-ACTH7   2.380952 -13.23656 17.998461 0.9291659
## 
## $goal_moisture_percent
##              diff       lwr        upr     p adj
## 10-5    2.7500000 -41.26479  46.764791 0.9999958
## 15-5   11.6997354 -24.56942  47.968894 0.9566441
## 25-5    5.0396825 -32.84222  42.921583 0.9996378
## 35-5    5.1934524 -31.48554  41.872445 0.9994814
## 45-5   -5.0811688 -43.39113  33.228789 0.9996441
## 55-5  -37.1158009 -75.42576   1.194157 0.0636566
## 15-10   8.9497354 -24.21947  42.118939 0.9820987
## 25-10   2.2896825 -32.63570  37.215069 0.9999943
## 35-10   2.4434524 -31.17340  36.060304 0.9999896
## 45-10  -7.8311688 -43.22039  27.558054 0.9936964
## 55-10 -39.8658009 -75.25502  -4.476578 0.0173537
## 25-15  -6.6600529 -31.11271  17.792609 0.9812193
## 35-15  -6.5062831 -29.05052  16.037957 0.9748393
## 45-15 -16.7809043 -41.89160   8.329794 0.4056227
## 55-15 -48.8155363 -73.92623 -23.704838 0.0000025
## 35-25   0.1537698 -24.90275  25.210292 1.0000000
## 45-25 -10.1208514 -37.50942  17.267717 0.9189122
## 55-25 -42.1554834 -69.54405 -14.766915 0.0002786
## 45-35 -10.2746212 -35.97372  15.424480 0.8860633
## 55-35 -42.3092532 -68.00835 -16.610152 0.0000841
## 55-45 -32.0346320 -60.01227  -4.056994 0.0147199
#first test for differences by species using an anova
aov1 <- aov(FLAME.HEIGHT.CM ~ SPECIES, data = one) 
summary(aov1)#nope
##             Df Sum Sq Mean Sq F value Pr(>F)
## SPECIES      2   1544   771.9    1.13  0.328
## Residuals   74  50531   682.9               
## 15 observations deleted due to missingness
#tranform the fm into a continious variable for linear regression
one$goal_moisture_percent_cont <- as.numeric(one$goal_moisture_percent)

#then test for differences by fuel moisture 
lm <-lm(FLAME.HEIGHT.CM~ goal_moisture_percent_cont,
        data = one)
summary(lm)
## 
## Call:
## lm(formula = FLAME.HEIGHT.CM ~ goal_moisture_percent_cont, data = one)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -70.701 -10.322  -0.511  14.678  41.894 
## 
## Coefficients:
##                            Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                 142.537      7.334  19.436  < 2e-16 ***
## goal_moisture_percent_cont   -7.405      1.555  -4.763 9.11e-06 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 23.09 on 75 degrees of freedom
##   (15 observations deleted due to missingness)
## Multiple R-squared:  0.2322, Adjusted R-squared:  0.222 
## F-statistic: 22.68 on 1 and 75 DF,  p-value: 9.109e-06

Results: Across all species, flame lengths decrease with increasing fuel moisture.

3. Mass Consumption

g1 <- ggplot(data = one, aes(x = SPECIES, y= MASS.CONSUMPTION, , fill = goal_moisture_percent))
g1 <- g1 + 
 geom_boxplot()+
    scale_fill_brewer(palette = "Oranges")+ 
  scale_y_continuous(limits = c(25, 100),  expand = c(0, 0))
g1 <- g1 + labs(x = "Species", y = "Mass Consumption (%)")+
  guides(fill=guide_legend(title="FM (%)"))
g1 <- g1 + labs(title = "Consumption") + scale_x_discrete(labels=c("BRTE" = "Cheatgrass", "ACTH7" = "Needlegrass",
                              "PSSP6" = "Bluebunch"))+theme(legend.position = "none")
g1

ggsave <- g1
ggsave('figures/indiv_sp/indiv_species_MC.png', plot = ggsave, width = 5, height =4, bg='transparent')
aov1 <- aov(MASS.CONSUMPTION ~ SPECIES + goal_moisture_percent + SPECIES * goal_moisture_percent, data = one)
summary(aov1) #no sig interation, remove
##                               Df Sum Sq Mean Sq F value  Pr(>F)    
## SPECIES                        2   1806   903.1   6.055 0.00365 ** 
## goal_moisture_percent          6   4406   734.4   4.924 0.00027 ***
## SPECIES:goal_moisture_percent  8   2073   259.1   1.737 0.10365    
## Residuals                     75  11186   149.1                    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
aov2 <- aov(MASS.CONSUMPTION ~ SPECIES + goal_moisture_percent, data = one)
summary(aov2) 
##                       Df Sum Sq Mean Sq F value   Pr(>F)    
## SPECIES                2   1806   903.1   5.653 0.004991 ** 
## goal_moisture_percent  6   4406   734.4   4.597 0.000446 ***
## Residuals             83  13258   159.7                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
TukeyHSD(aov2)
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = MASS.CONSUMPTION ~ SPECIES + goal_moisture_percent, data = one)
## 
## $SPECIES
##                   diff        lwr       upr     p adj
## ACTH7-BRTE  -10.828198 -18.513445 -3.142951 0.0033227
## PSSP6-BRTE   -3.803373 -11.389332  3.782586 0.4586011
## PSSP6-ACTH7   7.024825  -1.594687 15.644337 0.1326376
## 
## $goal_moisture_percent
##              diff       lwr         upr     p adj
## 10-5   -3.4554643 -29.07567 22.16473691 0.9996253
## 15-5    1.6328321 -19.47878 22.74444293 0.9999856
## 25-5    2.1399722 -19.51305 23.79299430 0.9999389
## 35-5   -5.3463521 -26.10608 15.41337390 0.9864472
## 45-5  -12.2552367 -33.90826  9.39778535 0.6112017
## 55-5  -16.6119496 -38.10398  4.88008121 0.2398533
## 15-10   5.0882964 -14.21889 24.39548075 0.9847231
## 25-10   5.5954365 -14.30232 25.49319068 0.9787025
## 35-10  -1.8908878 -20.81266 17.03088482 0.9999348
## 45-10  -8.7997724 -28.69753 11.09798174 0.8327866
## 55-10 -13.1564853 -32.87893  6.56595482 0.4127653
## 25-15   0.5071401 -13.10264 14.11691680 0.9999998
## 35-15  -6.9791842 -19.11751  5.15913859 0.5932757
## 45-15 -13.8880688 -27.49785 -0.27829214 0.0423944
## 55-15 -18.2447817 -31.59694 -4.89262663 0.0016193
## 35-25  -7.4863243 -20.54359  5.57093927 0.5965226
## 45-25 -14.3952089 -28.83056  0.04013911 0.0511204
## 55-25 -18.7519218 -32.94464 -4.55920195 0.0025935
## 45-35  -6.9088846 -19.96615  6.14837900 0.6833498
## 55-35 -11.2655975 -24.05411  1.52291911 0.1212764
## 55-45  -4.3567129 -18.54943  9.83600700 0.9670304
#first test for differences by species using an anova
aov1 <- aov(MASS.CONSUMPTION ~ SPECIES, data = one) 
summary(aov1)#yes
##             Df Sum Sq Mean Sq F value Pr(>F)  
## SPECIES      2   1806   903.1    4.55 0.0131 *
## Residuals   89  17664   198.5                 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
TukeyHSD(aov1) #ACTH7-BRTE only sig
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = MASS.CONSUMPTION ~ SPECIES, data = one)
## 
## $SPECIES
##                   diff        lwr       upr     p adj
## ACTH7-BRTE  -10.828198 -19.384326 -2.272070 0.0092565
## PSSP6-BRTE   -3.803373 -12.248962  4.642216 0.5330003
## PSSP6-ACTH7   7.024825  -2.571438 16.621088 0.1944119
#then test for differences by fuel moisture 
lm <-lm(MASS.CONSUMPTION~ goal_moisture_percent_cont,
        data = one)
summary(lm)
## 
## Call:
## lm(formula = MASS.CONSUMPTION ~ goal_moisture_percent_cont, data = one)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -53.084  -2.680   2.821   7.416  18.841 
## 
## Coefficients:
##                            Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                 106.502      3.989  26.697  < 2e-16 ***
## goal_moisture_percent_cont   -4.086      0.816  -5.008 2.72e-06 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 13.01 on 90 degrees of freedom
## Multiple R-squared:  0.2179, Adjusted R-squared:  0.2092 
## F-statistic: 25.08 on 1 and 90 DF,  p-value: 2.725e-06

At the lowest FM, all grasses had nearly complete consumption. Cheatgrass maintained high mass consumption even at high fuel moistures.

4. Flaming duration

one_dur_condensed <- gather(one, channel, dur, dur_ch1:dur_ch2)
one_dur_condensed$dur <- as.numeric(one_dur_condensed$dur)
one_max_condensed$SPECIES <- factor(one_max_condensed$SPECIES,levels = c("BRTE", "ACTH7", "PSSP6"))

g1 <- ggplot(data = one_dur_condensed, 
             aes(x = SPECIES, y= dur, fill =goal_moisture_percent))
g1 <- g1 + geom_boxplot()+
    scale_fill_brewer(palette = "Oranges")+ 
  scale_y_continuous(limits = c(0, 150),  expand = c(0, 0))
g1 <- g1 + labs(x = "Species", y = "Flaming duration >100 C (s)")+
  guides(fill=guide_legend(title="FM (%)"))
g1 <- g1 + labs(title = "Sustainability") + scale_x_discrete(labels=c("BRTE" = "Cheatgrass", "ACTH7" = "Needlegrass",
                              "PSSP6" = "Bluebunch"))+theme(legend.position = "none")

g1
## Warning: Removed 16 rows containing non-finite values (stat_boxplot).

ggsave <- g1
ggsave('figures/indiv_sp/indiv_species_dur.png', plot = ggsave, width =5, height = 4,  bg='transparent')
## Warning: Removed 16 rows containing non-finite values (stat_boxplot).
aov1 <- aov(dur ~ SPECIES + goal_moisture_percent + SPECIES*goal_moisture_percent, data = one_dur_condensed)
summary(aov1) #no sig interaction, remove 
##                                Df Sum Sq Mean Sq F value   Pr(>F)    
## SPECIES                         2   7797    3898   6.044 0.002986 ** 
## goal_moisture_percent           6  18847    3141   4.870 0.000141 ***
## SPECIES:goal_moisture_percent   8   4789     599   0.928 0.495183    
## Residuals                     151  97404     645                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 16 observations deleted due to missingness
aov2 <- aov(dur ~ SPECIES + goal_moisture_percent, data = one_dur_condensed)
summary(aov2)
##                        Df Sum Sq Mean Sq F value  Pr(>F)    
## SPECIES                 2   7797    3898   6.066 0.00289 ** 
## goal_moisture_percent   6  18847    3141   4.887 0.00013 ***
## Residuals             159 102193     643                    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 16 observations deleted due to missingness
TukeyHSD(aov2)
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = dur ~ SPECIES + goal_moisture_percent, data = one_dur_condensed)
## 
## $SPECIES
##                  diff         lwr       upr     p adj
## ACTH7-BRTE  15.232961   3.9713909 26.494532 0.0046992
## PSSP6-BRTE  11.791385   0.6754362 22.907334 0.0347662
## PSSP6-ACTH7 -3.441576 -15.8172113  8.934059 0.7881400
## 
## $goal_moisture_percent
##             diff       lwr        upr     p adj
## 10-5    8.950000 -26.96372 44.8637164 0.9895139
## 15-5    6.062682 -23.53101 35.6563759 0.9963677
## 25-5   10.529098 -20.08186 41.1400527 0.9470248
## 35-5    2.965459 -26.62823 32.5591537 0.9999401
## 45-5  -16.606829 -47.21778 14.0041266 0.6695343
## 55-5  -15.584414 -46.19537 15.0265408 0.7321960
## 15-10  -2.887318 -29.95162 24.1769788 0.9999134
## 25-10   1.579098 -26.59394 29.7521346 0.9999981
## 35-10  -5.984541 -33.04884 21.0797566 0.9944809
## 45-10 -25.556829 -53.72987  2.6162085 0.1026852
## 55-10 -24.534414 -52.70745  3.6386227 0.1327351
## 25-15   4.466416 -15.01978 23.9526094 0.9932954
## 35-15  -3.097222 -20.94289 14.7484469 0.9985616
## 45-15 -22.669510 -42.15570 -3.1833166 0.0115263
## 55-15 -21.647096 -41.13329 -2.1609024 0.0189590
## 35-25  -7.563638 -27.04983 11.9225552 0.9081561
## 45-25 -27.135926 -48.13487 -6.1369841 0.0030797
## 55-25 -26.113512 -47.11245 -5.1145699 0.0051503
## 45-35 -19.572288 -39.05848 -0.0860944 0.0482125
## 55-35 -18.549874 -38.03607  0.9363198 0.0733622
## 55-45   1.022414 -19.97653 22.0213562 0.9999992
#first test for differences by species using an anova
aov1 <- aov(dur ~ SPECIES, data = one_dur_condensed) 
summary(aov1)#yes
##              Df Sum Sq Mean Sq F value Pr(>F)   
## SPECIES       2   7797    3898   5.314 0.0058 **
## Residuals   165 121040     734                  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 16 observations deleted due to missingness
TukeyHSD(aov1) #ACTH7-BRTE only sig
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = dur ~ SPECIES, data = one_dur_condensed)
## 
## $SPECIES
##                  diff          lwr       upr     p adj
## ACTH7-BRTE  15.232961   3.20589109 27.260031 0.0088336
## PSSP6-BRTE  11.791385  -0.08016505 23.662935 0.0520005
## PSSP6-ACTH7 -3.441576 -16.65843909  9.775287 0.8116660
#tranform the fm into a continious variable for linear regression
one_dur_condensed$goal_moisture_percent_cont <- as.numeric(one_dur_condensed$goal_moisture_percent)

#then test for differences by fuel moisture 
lm <-lm(dur~ goal_moisture_percent_cont,
        data = one_dur_condensed)
summary(lm)
## 
## Call:
## lm(formula = dur ~ goal_moisture_percent_cont, data = one_dur_condensed)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -65.213 -16.414  -2.642  19.909  74.697 
## 
## Coefficients:
##                            Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                  91.776      5.972  15.368  < 2e-16 ***
## goal_moisture_percent_cont   -3.795      1.240  -3.061  0.00257 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 27.1 on 166 degrees of freedom
##   (16 observations deleted due to missingness)
## Multiple R-squared:  0.05342,    Adjusted R-squared:  0.04772 
## F-statistic: 9.369 on 1 and 166 DF,  p-value: 0.002575

Cheatgrass has shorter flaming duration than both perennial grasses. In general, flaming duration decreased with increasing fuel moistures.

5. Heat load

one_load_condensed <- gather(one, channel, load, load_ch1:load_ch2)
one_load_condensed$dur <- as.numeric(one_load_condensed$load)
one_load_condensed$SPECIES <- factor(one_load_condensed$SPECIES,levels = c("BRTE", "ACTH7", "PSSP6"))


g1 <- ggplot(data = one_load_condensed, 
             aes(x = SPECIES, y= load/1000, fill =goal_moisture_percent))
g1 <- g1 + geom_boxplot()+
  scale_fill_brewer(palette = "Oranges")+ 
  scale_y_continuous(limits = c(0, 105),  expand = c(0, 0))
g1 <- g1 + labs(x = "Species", y = "Thermal dose (C) / 1,000")+
  guides(fill=guide_legend(title="FM (%)"))
g1 <- g1 + labs(title = "Combustibility: Thermal dose") + scale_x_discrete(labels=c("BRTE" = "Cheatgrass", "ACTH7" = "Needlegrass",
                              "PSSP6" = "Bluebunch"))+theme(legend.position = "none")


g1
## Warning: Removed 15 rows containing non-finite values (stat_boxplot).

ggsave <- g1
ggsave('figures/indiv_sp/indiv_species_load.png', ggsave, height = 4, width = 5, bg='transparent')
## Warning: Removed 15 rows containing non-finite values (stat_boxplot).
aov1 <- aov(load ~ SPECIES + goal_moisture_percent +SPECIES*goal_moisture_percent , data = one_load_condensed)
summary(aov1) # no sig interaction
##                                Df    Sum Sq   Mean Sq F value   Pr(>F)    
## SPECIES                         2 6.209e+09 3.105e+09   8.781 0.000246 ***
## goal_moisture_percent           6 1.888e+10 3.147e+09   8.902 2.51e-08 ***
## SPECIES:goal_moisture_percent   8 2.196e+09 2.745e+08   0.776 0.624125    
## Residuals                     152 5.374e+10 3.536e+08                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 15 observations deleted due to missingness
aov2 <- aov(load ~ SPECIES + goal_moisture_percent , data = one_load_condensed)
summary(aov2)
##                        Df    Sum Sq   Mean Sq F value   Pr(>F)    
## SPECIES                 2 6.209e+09 3.105e+09   8.880  0.00022 ***
## goal_moisture_percent   6 1.888e+10 3.147e+09   9.002 1.78e-08 ***
## Residuals             160 5.594e+10 3.496e+08                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 15 observations deleted due to missingness
TukeyHSD(aov2)
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = load ~ SPECIES + goal_moisture_percent, data = one_load_condensed)
## 
## $SPECIES
##                  diff         lwr       upr     p adj
## ACTH7-BRTE  14382.250   6076.9528 22687.548 0.0001954
## PSSP6-BRTE   8645.996    498.9908 16793.002 0.0346612
## PSSP6-ACTH7 -5736.254 -14817.4740  3344.966 0.2963474
## 
## $goal_moisture_percent
##             diff        lwr         upr     p adj
## 10-5   17127.729  -9357.719  43613.1764 0.4629414
## 15-5    5777.869 -16046.724  27602.4624 0.9856042
## 25-5   10448.189 -12126.607  33022.9861 0.8106356
## 35-5   -2071.313 -23895.905  19753.2805 0.9999565
## 45-5  -13622.392 -36197.189   8952.4046 0.5487053
## 55-5  -15841.019 -38317.235   6635.1978 0.3549981
## 15-10 -11349.859 -31309.087   8609.3680 0.6183189
## 25-10  -6679.539 -27456.434  14097.3551 0.9616747
## 35-10 -19199.041 -39158.269    760.1860 0.0678894
## 45-10 -30750.121 -51527.015  -9973.2264 0.0003593
## 55-10 -32968.747 -53638.489 -12299.0062 0.0000858
## 25-15   4670.320  -9700.250  19040.8894 0.9596081
## 35-15  -7849.182 -21009.907   5311.5428 0.5627979
## 45-15 -19400.262 -33770.831  -5029.6922 0.0016329
## 55-15 -21618.888 -35834.095  -7403.6806 0.0002182
## 35-25 -12519.502 -26890.071   1851.0677 0.1324420
## 45-25 -24070.582 -39556.764  -8584.3987 0.0001438
## 55-25 -26289.208 -41631.330 -10947.0857 0.0000180
## 45-35 -11551.080 -25921.649   2819.4898 0.2052851
## 55-35 -13769.706 -27984.913    445.5013 0.0643770
## 55-45  -2218.626 -17560.749  13123.4958 0.9994924
#first test for differences by species using an anova
aov1 <- aov(load ~ SPECIES, data = one_load_condensed) 
summary(aov1)#yes
##              Df    Sum Sq   Mean Sq F value  Pr(>F)   
## SPECIES       2 6.209e+09 3.105e+09   6.888 0.00134 **
## Residuals   166 7.482e+10 4.507e+08                   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 15 observations deleted due to missingness
TukeyHSD(aov1) #ACTH7-BRTE only sig, PSSP to BRTE is close
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = load ~ SPECIES, data = one_load_condensed)
## 
## $SPECIES
##                  diff         lwr       upr     p adj
## ACTH7-BRTE  14382.250   4955.1995 23809.301 0.0011819
## PSSP6-BRTE   8645.996   -601.3828 17893.375 0.0722345
## PSSP6-ACTH7 -5736.254 -16044.0272  4571.519 0.3882522
#tranform the fm into a continious variable for linear regression
one_load_condensed$goal_moisture_percent_cont <- as.numeric(one_load_condensed$goal_moisture_percent)

#then test for differences by fuel moisture 
lm <-lm(load~ goal_moisture_percent_cont,
        data = one_load_condensed)
summary(lm)
## 
## Call:
## lm(formula = load ~ goal_moisture_percent_cont, data = one_load_condensed)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -38140 -16134   -273  12955  67996 
## 
## Coefficients:
##                            Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                 60332.9     4558.6  13.235  < 2e-16 ***
## goal_moisture_percent_cont  -4334.0      943.3  -4.595 8.51e-06 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 20750 on 167 degrees of freedom
##   (15 observations deleted due to missingness)
## Multiple R-squared:  0.1122, Adjusted R-squared:  0.1069 
## F-statistic: 21.11 on 1 and 167 DF,  p-value: 8.506e-06

Cheatgrass had lower thermal dose than both perennial grasses. Thermal dose decreases with increasing fuel moistures.

Ignition frequency

summarize the likelyhood that a sample would ignite

one$COMBUSTION. <- as.factor(one$COMBUSTION.)
one_sp_ignition <- one %>%
  group_by(SPECIES,goal_moisture_percent) %>%
  summarise(count_no = sum(COMBUSTION. == "N"),
            count_yes = sum(COMBUSTION. == "Y"),
            ignition_freq = (count_yes/(count_yes+count_no)))
## `summarise()` has grouped output by 'SPECIES'. You can override using the
## `.groups` argument.
one_sp_ignition
## # A tibble: 17 x 5
## # Groups:   SPECIES [3]
##    SPECIES goal_moisture_percent count_no count_yes ignition_freq
##    <fct>   <fct>                    <int>     <int>         <dbl>
##  1 BRTE    5                            0         3          1   
##  2 BRTE    10                           0         5          1   
##  3 BRTE    15                           0         8          1   
##  4 BRTE    25                           1         3          0.75
##  5 BRTE    35                           6         6          0.5 
##  6 BRTE    45                           1         4          0.8 
##  7 BRTE    55                           2         3          0.6 
##  8 ACTH7   15                           0         5          1   
##  9 ACTH7   25                           0         5          1   
## 10 ACTH7   35                           0         5          1   
## 11 ACTH7   45                           0         4          1   
## 12 ACTH7   55                           1         4          0.8 
## 13 PSSP6   15                           0         5          1   
## 14 PSSP6   25                           1         4          0.8 
## 15 PSSP6   35                           1         4          0.8 
## 16 PSSP6   45                           2         3          0.6 
## 17 PSSP6   55                           2         3          0.6
#write.csv(one_sp_ignition, "one_sp_ignition_freq.csv")

graph the ignition frequency

one_sp_ignition$goal_moisture_percent<- as.factor(one_sp_ignition$goal_moisture_percent)

g1 <- ggplot(data = one_sp_ignition, aes(x = SPECIES, y= ignition_freq))
g1 <- g1 +
  geom_bar(aes(fill = goal_moisture_percent), 
           stat = "identity", color="black", position = "dodge") +
  scale_fill_brewer(palette = "Oranges")+
  scale_y_continuous(limits = c(0, 1),  expand = c(0, 0))
g1 <- g1 + labs(title="Ignitability", x = "Species", y = "Ignition probability")+
  guides(fill=guide_legend(title="FM (%)")) +
  scale_x_discrete(labels=c("BRTE" = "Cheatgrass", "ACTH7" = "Needlegrass",
                              "PSSP6" = "Bluebunch"))+theme(legend.position = "none")
g1

ggsave('figures/indiv_sp/indiv_species_Ignition.png', g1, height = 4, width = 5, bg='transparent')

can we combine all of these stats to one output table

#1. max temp
#first test for differences by species using an anova
max_aov <- aov(max ~ SPECIES, data = one_max_condensed) 
summary(max_aov)#nope
##              Df   Sum Sq Mean Sq F value Pr(>F)  
## SPECIES       2   668106  334053   2.625 0.0752 .
## Residuals   181 23031134  127244                 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#tranform the fm into a continious variable for linear regression
one_max_condensed$goal_moisture_percent_cont <- as.numeric(one_max_condensed$goal_moisture_percent)

#then test for differences by fuel moisture 
max_lm <-lm(max~ goal_moisture_percent_cont,
        data = one_max_condensed)
summary(max_lm)
## 
## Call:
## lm(formula = max ~ goal_moisture_percent_cont, data = one_max_condensed)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -682.76 -292.01  -12.74  279.38  747.61 
## 
## Coefficients:
##                            Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                  998.47      71.50  13.965  < 2e-16 ***
## goal_moisture_percent_cont   -87.77      14.62  -6.001 1.04e-08 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 329.7 on 182 degrees of freedom
## Multiple R-squared:  0.1652, Adjusted R-squared:  0.1606 
## F-statistic: 36.01 on 1 and 182 DF,  p-value: 1.036e-08
#2 flame height 
#first test for differences by species using an anova
fl_aov <- aov(FLAME.HEIGHT.CM ~ SPECIES, data = one) 
summary(fl_aov)#nope
##             Df Sum Sq Mean Sq F value Pr(>F)
## SPECIES      2   1544   771.9    1.13  0.328
## Residuals   74  50531   682.9               
## 15 observations deleted due to missingness
summary(fl_aov)$"Pr(>F)"[1]
## NULL
#tranform the fm into a continious variable for linear regression
one$goal_moisture_percent_cont <- as.numeric(one$goal_moisture_percent)

#then test for differences by fuel moisture 
fl_aov <-lm(FLAME.HEIGHT.CM~ goal_moisture_percent_cont,
        data = one)
summary(fl_aov)
## 
## Call:
## lm(formula = FLAME.HEIGHT.CM ~ goal_moisture_percent_cont, data = one)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -70.701 -10.322  -0.511  14.678  41.894 
## 
## Coefficients:
##                            Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                 142.537      7.334  19.436  < 2e-16 ***
## goal_moisture_percent_cont   -7.405      1.555  -4.763 9.11e-06 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 23.09 on 75 degrees of freedom
##   (15 observations deleted due to missingness)
## Multiple R-squared:  0.2322, Adjusted R-squared:  0.222 
## F-statistic: 22.68 on 1 and 75 DF,  p-value: 9.109e-06
#3 mass consumption
#first test for differences by species using an anova
mc_aov <- aov(MASS.CONSUMPTION ~ SPECIES, data = one) 
summary(mc_aov)#yes
##             Df Sum Sq Mean Sq F value Pr(>F)  
## SPECIES      2   1806   903.1    4.55 0.0131 *
## Residuals   89  17664   198.5                 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
TukeyHSD(mc_aov) #ACTH7-BRTE only sig
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = MASS.CONSUMPTION ~ SPECIES, data = one)
## 
## $SPECIES
##                   diff        lwr       upr     p adj
## ACTH7-BRTE  -10.828198 -19.384326 -2.272070 0.0092565
## PSSP6-BRTE   -3.803373 -12.248962  4.642216 0.5330003
## PSSP6-ACTH7   7.024825  -2.571438 16.621088 0.1944119
#then test for differences by fuel moisture 
mc_lm <-lm(MASS.CONSUMPTION~ goal_moisture_percent_cont,
        data = one)
summary(mc_lm)
## 
## Call:
## lm(formula = MASS.CONSUMPTION ~ goal_moisture_percent_cont, data = one)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -53.084  -2.680   2.821   7.416  18.841 
## 
## Coefficients:
##                            Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                 106.502      3.989  26.697  < 2e-16 ***
## goal_moisture_percent_cont   -4.086      0.816  -5.008 2.72e-06 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 13.01 on 90 degrees of freedom
## Multiple R-squared:  0.2179, Adjusted R-squared:  0.2092 
## F-statistic: 25.08 on 1 and 90 DF,  p-value: 2.725e-06
#4 flaming duration 
#first test for differences by species using an anova
dur_aov <- aov(dur ~ SPECIES, data = one_dur_condensed) 
summary(dur_aov)#yes
##              Df Sum Sq Mean Sq F value Pr(>F)   
## SPECIES       2   7797    3898   5.314 0.0058 **
## Residuals   165 121040     734                  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 16 observations deleted due to missingness
TukeyHSD(dur_aov) #ACTH7-BRTE only sig
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = dur ~ SPECIES, data = one_dur_condensed)
## 
## $SPECIES
##                  diff          lwr       upr     p adj
## ACTH7-BRTE  15.232961   3.20589109 27.260031 0.0088336
## PSSP6-BRTE  11.791385  -0.08016505 23.662935 0.0520005
## PSSP6-ACTH7 -3.441576 -16.65843909  9.775287 0.8116660
#tranform the fm into a continious variable for linear regression
one_dur_condensed$goal_moisture_percent_cont <- as.numeric(one_dur_condensed$goal_moisture_percent)

#then test for differences by fuel moisture 
dur_lm <-lm(dur~ goal_moisture_percent_cont,
        data = one_dur_condensed)
summary(dur_lm)
## 
## Call:
## lm(formula = dur ~ goal_moisture_percent_cont, data = one_dur_condensed)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -65.213 -16.414  -2.642  19.909  74.697 
## 
## Coefficients:
##                            Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                  91.776      5.972  15.368  < 2e-16 ***
## goal_moisture_percent_cont   -3.795      1.240  -3.061  0.00257 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 27.1 on 166 degrees of freedom
##   (16 observations deleted due to missingness)
## Multiple R-squared:  0.05342,    Adjusted R-squared:  0.04772 
## F-statistic: 9.369 on 1 and 166 DF,  p-value: 0.002575
#5 load
#first test for differences by species using an anova
load_aov <- aov(load ~ SPECIES, data = one_load_condensed) 
summary(load_aov)#yes
##              Df    Sum Sq   Mean Sq F value  Pr(>F)   
## SPECIES       2 6.209e+09 3.105e+09   6.888 0.00134 **
## Residuals   166 7.482e+10 4.507e+08                   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 15 observations deleted due to missingness
TukeyHSD(load_aov) #ACTH7-BRTE only sig, PSSP to BRTE is close
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = load ~ SPECIES, data = one_load_condensed)
## 
## $SPECIES
##                  diff         lwr       upr     p adj
## ACTH7-BRTE  14382.250   4955.1995 23809.301 0.0011819
## PSSP6-BRTE   8645.996   -601.3828 17893.375 0.0722345
## PSSP6-ACTH7 -5736.254 -16044.0272  4571.519 0.3882522
#tranform the fm into a continious variable for linear regression
one_load_condensed$goal_moisture_percent_cont <- as.numeric(one_load_condensed$goal_moisture_percent)

#then test for differences by fuel moisture 
load_lm <-lm(load~ goal_moisture_percent_cont,
        data = one_load_condensed)
summary(load_lm)
## 
## Call:
## lm(formula = load ~ goal_moisture_percent_cont, data = one_load_condensed)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -38140 -16134   -273  12955  67996 
## 
## Coefficients:
##                            Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                 60332.9     4558.6  13.235  < 2e-16 ***
## goal_moisture_percent_cont  -4334.0      943.3  -4.595 8.51e-06 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 20750 on 167 degrees of freedom
##   (15 observations deleted due to missingness)
## Multiple R-squared:  0.1122, Adjusted R-squared:  0.1069 
## F-statistic: 21.11 on 1 and 167 DF,  p-value: 8.506e-06
####################

# Merge ANOVA results
aov_results <- data.frame(
  Test = c("max", "flame height", "mass consumption", 
           "flaming duration", "load"),
  Species_P_Value = c(
    ifelse(is.na(summary(max_aov)$coefficients[2,4]), NA, summary(max_aov)$coefficients[2,4]),                                    ifelse(is.na(summary(fl_aov)$coefficients[2,4]), NA, summary(fl_aov)$coefficients[2,4]),                  ifelse(is.na(summary(mc_aov)$coefficients[2,4]), NA, summary(mc_aov)$coefficients[2,4]),                                ifelse(is.na(summary(dur_aov)$coefficients[2,4]), NA, summary(dur_aov)$coefficients[2,4]),                            ifelse(is.na(summary(load_aov)$coefficients[2,4]), NA, summary(load_aov)$coefficients[2,4])),
  Fuel_Moisture_P_Value = c(NA, NA,                                              ifelse(is.na(summary(mc_lm)$coefficients[2,4]), NA, summary(mc_lm)$coefficients[2,4]),                ifelse(is.na(summary(dur_lm)$coefficients[2,4]), NA, summary(dur_lm)$coefficients[2,4]),                   ifelse(is.na(summary(load_lm)$coefficients[2,4]), NA, summary(load_lm)$coefficients[2,4])))

aov_results
##               Test Species_P_Value Fuel_Moisture_P_Value
## 1              max    9.108966e-06                    NA
## 2     flame height    9.108966e-06                    NA
## 3 mass consumption    9.108966e-06          2.724898e-06
## 4 flaming duration    9.108966e-06          2.574630e-03
## 5             load    9.108966e-06          8.506381e-06
# Print tables
aov_results
##               Test Species_P_Value Fuel_Moisture_P_Value
## 1              max    9.108966e-06                    NA
## 2     flame height    9.108966e-06                    NA
## 3 mass consumption    9.108966e-06          2.724898e-06
## 4 flaming duration    9.108966e-06          2.574630e-03
## 5             load    9.108966e-06          8.506381e-06
# Merge linear regression results
lm_results <- data.frame(Test = c("max", "flame height", "mass consumption", "flaming duration", "load"),
                          Coefficient = c(summary(max_lm)$coefficients[2,1], summary(fl_aov)$coefficients[2,1], summary(mc_lm)$coefficients[2,1], summary(dur_lm)$coefficients[2,1], summary(load_lm)$coefficients[2,1]),
                          SE = c(summary(max_lm)$coefficients[2,2], summary(fl_aov)$coefficients[2,2], summary(mc_lm)$coefficients[2,2], summary(dur_lm)$coefficients[2,2], summary(load_lm)$coefficients[2,2]),
                          T_Value = c(summary(max_lm)$coefficients[2,3], summary(fl_aov)$coefficients[2,3], summary(mc_lm)$coefficients[2,3], summary(dur_lm)$coefficients[2,3], summary(load_lm)$coefficients[2,3]),
                          P_Value = c(summary(max_lm)$coefficients[2,4], summary(fl_aov)$coefficients[2,4], summary(mc_lm)$coefficients[2,4], summary(dur_lm)$coefficients[2,4], summary(load_lm)$coefficients[2,4]))

# Print tables
lm_results
##               Test  Coefficient          SE   T_Value      P_Value
## 1              max   -87.766555  14.6248190 -6.001206 1.036175e-08
## 2     flame height    -7.405183   1.5548150 -4.762742 9.108966e-06
## 3 mass consumption    -4.086139   0.8159741 -5.007682 2.724898e-06
## 4 flaming duration    -3.794770   1.2397692 -3.060868 2.574630e-03
## 5             load -4334.043956 943.2771985 -4.594666 8.506381e-06

Question 2: How does the additional of annual grasses impact perennial grass flammability?

import two species data with perennial grass from one species added in ACTH and PSSP 35 and 55% FM for 0 Cheatgrass added to mix dad

two_with_one<- read.csv("C:/Users/harr4718/OneDrive - University of Idaho/Research/Grass Combustion/copy of burn data/two_sp_to_Graph_plus0gBRTE.csv")

two_with_one$AG.GOAL.DRY.MASS <- as.factor(two_with_one$AG.GOAL.DRY.MASS)
two_with_one$AG.GOAL.MOISTURE. <- as.factor(two_with_one$AG.GOAL.MOISTURE.)

Ignition frequency

summarize the likelyhood that a sample would ignite

head(two)
##               Full_ID REP.. PG.SPECIES PG_Goal_moisture AG.dry.weight..g.
## 1  ACTH7_35_BRTE_5g_5     1      ACTH7               35              4.95
## 2  ACTH7_35_BRTE_5g_5     2      ACTH7               35              5.05
## 3  ACTH7_35_BRTE_5g_5     3      ACTH7               35              5.07
## 4  ACTH7_35_BRTE_5g_5     4      ACTH7               35              5.30
## 5 ACTH7_35_BRTE_5g_25     1      ACTH7               35              4.88
## 6 ACTH7_35_BRTE_5g_25     2      ACTH7               35              5.09
##   AG.GOAL.DRY.MASS AG.GOAL.MOISTURE. PG.WET.ACTUAL AG.WET.ACTUAL PG.MOISTURE
## 1                5                 5         26.07          5.39       33.28
## 2                5                 5         27.44          5.46       34.84
## 3                5                 5         27.18          5.46       34.35
## 4                5                 5         26.64          5.74       35.16
## 5                5                25         27.40          6.29       35.18
## 6                5                25         25.97          6.30       29.53
##   AG.MOISTURE PRE.BURN.COMBINED.WET.MASS POST.BURN.MASS
## 1        8.89                      31.46           6.66
## 2        8.12                      32.90           3.77
## 3        7.69                      32.64           6.06
## 4        8.30                      32.38           6.38
## 5       28.89                      33.69           8.72
## 6       23.77                      32.27           7.36
##   WET.MASS.CONSUMPTION.... DRY.CONSUMPTION.... FLAME.HEIGHT..CM. combust
## 1                    78.83               27.17               120       Y
## 2                    88.54               14.84               140       Y
## 3                    81.43               23.95               140       Y
## 4                    80.30               25.51               145       Y
## 5                    74.12               34.67               110       Y
## 6                    77.19               29.28               140       Y
##   dur_ch1 dur_ch2 dur_ch3 max_ch1 max_ch2 max_ch3 load_ch1 load_ch2  load_ch3
## 1    67.0     0.0   188.5  423.37   29.52  443.20 24236.58     0.00 109082.80
## 2    90.0   128.0    98.5  480.10  514.48 1103.34 38487.70 59435.43 108535.03
## 3    90.5   102.5    68.5 1144.22  869.35  901.54 75637.74 68582.54  65611.46
## 4    72.0    74.5    60.0  724.41  834.94 1035.42 44439.55 51573.08  53971.34
## 5   107.5    75.0    81.5 1092.74  868.40 1123.60 79589.02 42732.32  67388.23
## 6    81.0    99.0    83.5  780.12  850.71 1177.45 49924.46 55076.96  80711.22
two$combust <- as.factor(two$combust)
two_sp_ignition <- two %>%
  group_by(PG.SPECIES, PG_Goal_moisture, AG.GOAL.DRY.MASS, AG.GOAL.MOISTURE.) %>%
  summarise(count_no = sum(combust == "N"),
            count_yes = sum(combust == "Y"),
            ignition_freq = (count_yes/(count_yes+count_no)))
## `summarise()` has grouped output by 'PG.SPECIES', 'PG_Goal_moisture',
## 'AG.GOAL.DRY.MASS'. You can override using the `.groups` argument.
two_sp_ignition
## # A tibble: 35 x 7
## # Groups:   PG.SPECIES, PG_Goal_moisture, AG.GOAL.DRY.MASS [11]
##    PG.SPECIES PG_Goal_moisture AG.GOAL.DRY.MASS AG.GOAL.MOISTURE. count_no
##    <chr>                 <int> <fct>            <fct>                <int>
##  1 ACTH7                    35 2.5              5                        0
##  2 ACTH7                    35 2.5              25                       1
##  3 ACTH7                    35 5                5                        0
##  4 ACTH7                    35 5                25                       0
##  5 ACTH7                    55 2.5              5                        1
##  6 ACTH7                    55 2.5              15                       0
##  7 ACTH7                    55 2.5              25                       0
##  8 ACTH7                    55 2.5              35                       0
##  9 ACTH7                    55 5                5                        0
## 10 ACTH7                    55 5                15                       1
## # ... with 25 more rows, and 2 more variables: count_yes <int>,
## #   ignition_freq <dbl>
#write.csv(two_sp_ignition, "two_sp_ignition_freq.csv")

graph the ignition frequency

two_sp_ignition$AG.GOAL.DRY.MASS<- as.factor(two_sp_ignition$AG.GOAL.DRY.MASS)
two_sp_ignition$AG.GOAL.MOISTURE.<- as.factor(two_sp_ignition$AG.GOAL.MOISTURE.)

custom_colors = c("#EFF3FF", "#BDD7E7", "#6BAED6", "#2171B5", "#E6550D")


g1 <- ggplot(data= filter(two_sp_ignition, PG.SPECIES == "PSSP6", PG_Goal_moisture == "55"), aes(x = AG.GOAL.DRY.MASS, y= ignition_freq,fill = AG.GOAL.MOISTURE.))
g1 <- g1 +
  geom_bar(stat = "identity", position = "dodge") +
  scale_fill_manual(values = custom_colors) +  
  scale_y_continuous(limits = c(0, 1),  expand = c(0, 0))
g1 <- g1 + labs(title = "Ignitability", subtitle = "Bluebunch 55% FM", x = "Cheatgrass (g)", y = "Ignition frequency")+
  guides(fill=guide_legend(title="Cheatgrass FM (%)"))+
  theme(legend.position = "none")
g1

ggsave('figures/PSSP55_Ignition.png', g1, height = 4, width = 5, bg='transparent')



g2 <- ggplot(data= filter(two_sp_ignition, PG.SPECIES == "PSSP6", PG_Goal_moisture == "35"), aes(x = AG.GOAL.DRY.MASS, y= ignition_freq,fill = AG.GOAL.MOISTURE.))
g2 <- g2 +
  geom_bar(stat = "identity", position = "dodge") +
  scale_fill_manual(values = custom_colors) +  
  scale_y_continuous(limits = c(0, 1),  expand = c(0, 0))+
  labs(title = "Ignitability", subtitle = "Bluebunch 35% FM", 
       x = "Cheatgrass (g)", y = "Ignition frequency")+
  guides(fill=guide_legend(title="Cheatgrass FM (%)"))+
  theme(legend.position = "none")
g2

ggsave('figures/PSSP55_Ignition.png', g1, height = 4, width = 5, bg='transparent')



g1 <- ggplot(data= filter(two_sp_ignition, PG.SPECIES == "ACTH7", PG_Goal_moisture == "55"), aes(x = AG.GOAL.DRY.MASS, y= ignition_freq,fill = AG.GOAL.MOISTURE.))
g1 <- g1 +
  geom_bar(stat = "identity", position = "dodge") +
  scale_fill_manual(values = custom_colors) +   
  scale_y_continuous(limits = c(0, 1),  expand = c(0, 0))
g1 <- g1 + labs(title = "Ignitability", subtitle="Needlegrass 55% FM", x = "Cheatgrass (g)", y = "Ignition frequency")+
  guides(fill=guide_legend(title="Cheatgrass FM (%)")) +
  theme(legend.position = "none")
g1

ggsave('figures/ACTH55_Ignition.png', g1, height = 4, width = 5, bg='transparent')




g1 <- ggplot(data= filter(two_sp_ignition, PG.SPECIES == "ACTH7", PG_Goal_moisture == "35"), aes(x = AG.GOAL.DRY.MASS, y= ignition_freq,fill = AG.GOAL.MOISTURE.))
g1 <- g1 +
  geom_bar(stat = "identity", position = "dodge") +
  scale_fill_manual(values = custom_colors) +   
  scale_y_continuous(limits = c(0, 1),  expand = c(0, 0))
g1 <- g1 + labs(title = "Ignitability", subtitle="Needlegrass 55% FM", x = "Cheatgrass (g)", y = "Ignition frequency")+
  guides(fill=guide_legend(title="Cheatgrass FM (%)")) +
  theme(legend.position = "none")
g1

ggsave('figures/ACTH35_Ignition.png', g1, height = 4, width = 5, bg='transparent')

build two sets of custom colors

print(custom_colors)
## [1] "#EFF3FF" "#BDD7E7" "#6BAED6" "#2171B5" "#E6550D"
pssp_custom_colors = c('#636363', "#ece7f2", "#a6bddb", "#2b8cbe")
#ece7f2
#a6bddb
#2b8cbe

acth_custom_colors= c('#636363', "#ffffcc", "#c2e699", "#78c679", "#238443")
#ffffcc
#c2e699
#78c679
#238443
#confirm data format
summary(two_with_one)
##    Full_ID              REP..       PG.SPECIES        PG_Goal_moisture
##  Length:160         Min.   :1.00   Length:160         Min.   :35.00   
##  Class :character   1st Qu.:1.75   Class :character   1st Qu.:55.00   
##  Mode  :character   Median :2.50   Mode  :character   Median :55.00   
##                     Mean   :2.50                      Mean   :50.25   
##                     3rd Qu.:3.25                      3rd Qu.:55.00   
##                     Max.   :4.00                      Max.   :55.00   
##                     NA's   :20                                        
##  AG.dry.weight..g. AG.GOAL.DRY.MASS AG.GOAL.MOISTURE. PG.WET.ACTUAL  
##  Min.   : 2.370    0  :20           5   :44           Min.   :25.97  
##  1st Qu.: 2.595    2.5:48           15  :28           1st Qu.:30.07  
##  Median : 5.045    5  :44           25  :40           Median :30.87  
##  Mean   : 6.530    10 :32           35  :28           Mean   :30.03  
##  3rd Qu.:10.010    15 :16           NA's:20           3rd Qu.:30.96  
##  Max.   :15.450                                       Max.   :32.21  
##  NA's   :20                                           NA's   :20     
##  AG.WET.ACTUAL     PG.MOISTURE     AG.MOISTURE      PRE.BURN.COMBINED.WET.MASS
##  Min.   : 2.610   Min.   :29.53   Min.   :-16.250   Min.   :29.40             
##  1st Qu.: 3.275   1st Qu.:50.12   1st Qu.:  9.175   1st Qu.:33.69             
##  Median : 5.940   Median :54.21   Median : 16.650   Median :36.50             
##  Mean   : 7.798   Mean   :49.99   Mean   : 19.297   Mean   :37.83             
##  3rd Qu.:11.525   3rd Qu.:54.67   3rd Qu.: 27.742   3rd Qu.:42.50             
##  Max.   :20.800   Max.   :61.00   Max.   : 53.910   Max.   :51.67             
##  NA's   :20       NA's   :20      NA's   :20        NA's   :20                
##  POST.BURN.MASS   WET.MASS.CONSUMPTION.... DRY.CONSUMPTION....
##  Min.   : 3.770   Min.   :13.87            Min.   : 14.84     
##  1st Qu.: 6.912   1st Qu.:69.64            1st Qu.: 25.50     
##  Median : 8.695   Median :81.14            Median : 32.41     
##  Mean   :11.033   Mean   :75.79            Mean   : 41.97     
##  3rd Qu.:11.865   3rd Qu.:90.02            3rd Qu.: 46.36     
##  Max.   :40.290   Max.   :96.34            Max.   :122.82     
##  NA's   :20                                                   
##  FLAME.HEIGHT..CM.   combust             dur_ch1          dur_ch2      
##  Min.   : 10.0     Length:160         Min.   :  0.00   Min.   :  0.00  
##  1st Qu.:105.0     Class :character   1st Qu.: 56.75   1st Qu.: 60.50  
##  Median :120.0     Mode  :character   Median : 72.75   Median : 83.75  
##  Mean   :112.9                        Mean   : 71.16   Mean   : 82.41  
##  3rd Qu.:140.0                        3rd Qu.: 91.25   3rd Qu.:108.00  
##  Max.   :145.0                        Max.   :184.00   Max.   :189.50  
##  NA's   :25                           NA's   :2        NA's   :2       
##     dur_ch3          max_ch1          max_ch2           max_ch3       
##  Min.   :  0.00   Min.   :  39.9   Min.   :  29.52   Min.   :  32.23  
##  1st Qu.: 75.75   1st Qu.: 241.6   1st Qu.: 290.55   1st Qu.: 672.86  
##  Median : 94.75   Median : 529.9   Median : 553.35   Median : 904.34  
##  Mean   : 98.11   Mean   : 559.5   Mean   : 528.63   Mean   : 819.09  
##  3rd Qu.:118.88   3rd Qu.: 821.8   3rd Qu.: 733.59   3rd Qu.:1031.13  
##  Max.   :298.00   Max.   :1257.2   Max.   :1363.22   Max.   :1277.58  
##  NA's   :2                                                            
##     load_ch1         load_ch2         load_ch3     
##  Min.   :     0   Min.   :     0   Min.   :     0  
##  1st Qu.: 21107   1st Qu.: 28172   1st Qu.: 58957  
##  Median : 35696   Median : 43133   Median : 75272  
##  Mean   : 35055   Mean   : 43240   Mean   : 79958  
##  3rd Qu.: 48349   3rd Qu.: 58553   3rd Qu.:101053  
##  Max.   :112188   Max.   :165681   Max.   :317965  
##  NA's   :1        NA's   :2        NA's   :2
#transform AG goal moisture to continuous
two_with_one$AG.GOAL.MOISTURE._cont <- as.numeric(two_with_one$AG.GOAL.MOISTURE.)
#transform AG mass to continuous 
two_with_one$AG.GOAL.DRY.MASS_cont <- as.numeric(two_with_one$AG.GOAL.DRY.MASS)
#transformPG FM to continuous 
two_with_one$PG_Goal_moisture_cont <- as.numeric(two_with_one$PG_Goal_moisture)

1. Maximum temperature

two_max_condensed <- gather(two_with_one, channel, max, max_ch1:max_ch2)
two_max_condensed$max <- as.numeric(two_max_condensed$max)
# try linear models
max_combined_lm <- lm(max ~ AG.GOAL.DRY.MASS_cont+ AG.GOAL.MOISTURE._cont + 
                        PG.SPECIES +PG_Goal_moisture_cont,
                        data = two_max_condensed)
summary(max_combined_lm)
## 
## Call:
## lm(formula = max ~ AG.GOAL.DRY.MASS_cont + AG.GOAL.MOISTURE._cont + 
##     PG.SPECIES + PG_Goal_moisture_cont, data = two_max_condensed)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -712.30 -251.44    3.99  225.94  684.89 
## 
## Coefficients:
##                        Estimate Std. Error t value Pr(>|t|)    
## (Intercept)            1192.514    118.998  10.021  < 2e-16 ***
## AG.GOAL.DRY.MASS_cont    17.715     19.359   0.915    0.361    
## AG.GOAL.MOISTURE._cont    6.120     16.347   0.374    0.708    
## PG.SPECIESPSSP6          51.964     37.082   1.401    0.162    
## PG_Goal_moisture_cont   -14.570      2.444  -5.963  7.6e-09 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 298.9 on 275 degrees of freedom
##   (40 observations deleted due to missingness)
## Multiple R-squared:  0.1259, Adjusted R-squared:  0.1132 
## F-statistic: 9.903 on 4 and 275 DF,  p-value: 1.687e-07
#only pssp
max_lm_pssp <- lm(max ~ AG.GOAL.DRY.MASS_cont+ AG.GOAL.MOISTURE._cont +PG_Goal_moisture,
                        data = filter(two_max_condensed, 
                                      PG.SPECIES == "PSSP6"))
summary(max_lm_pssp)
## 
## Call:
## lm(formula = max ~ AG.GOAL.DRY.MASS_cont + AG.GOAL.MOISTURE._cont + 
##     PG_Goal_moisture, data = filter(two_max_condensed, PG.SPECIES == 
##     "PSSP6"))
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -527.94 -277.01  -34.85  275.66  719.12 
## 
## Coefficients:
##                        Estimate Std. Error t value Pr(>|t|)    
## (Intercept)            1284.763    190.914   6.730 6.81e-10 ***
## AG.GOAL.DRY.MASS_cont    61.833     37.888   1.632    0.105    
## AG.GOAL.MOISTURE._cont   34.640     26.537   1.305    0.194    
## PG_Goal_moisture        -19.145      3.986  -4.803 4.72e-06 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 315 on 116 degrees of freedom
##   (20 observations deleted due to missingness)
## Multiple R-squared:  0.1659, Adjusted R-squared:  0.1444 
## F-statistic: 7.693 on 3 and 116 DF,  p-value: 9.853e-05
#only acth
max_lm_acth <- lm(max ~ AG.GOAL.DRY.MASS_cont+ AG.GOAL.MOISTURE._cont +PG_Goal_moisture,
                        data = filter(two_max_condensed, 
                                      PG.SPECIES == "ACTH7"))
summary(max_lm_acth)
## 
## Call:
## lm(formula = max ~ AG.GOAL.DRY.MASS_cont + AG.GOAL.MOISTURE._cont + 
##     PG_Goal_moisture, data = filter(two_max_condensed, PG.SPECIES == 
##     "ACTH7"))
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -698.43 -215.25   15.63  175.99  679.55 
## 
## Coefficients:
##                        Estimate Std. Error t value Pr(>|t|)    
## (Intercept)            1154.114    148.022   7.797 8.44e-13 ***
## AG.GOAL.DRY.MASS_cont    -1.047     21.970  -0.048 0.962047    
## AG.GOAL.MOISTURE._cont  -12.372     20.551  -0.602 0.548043    
## PG_Goal_moisture        -11.733      3.064  -3.829 0.000186 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 284.8 on 156 degrees of freedom
##   (20 observations deleted due to missingness)
## Multiple R-squared:  0.1077, Adjusted R-squared:  0.09058 
## F-statistic: 6.279 on 3 and 156 DF,  p-value: 0.0004747
#only 35 fm 
max_lm_35 <- lm(max ~ AG.GOAL.DRY.MASS_cont+ AG.GOAL.MOISTURE._cont +
                    PG.SPECIES,
                        data = filter(two_max_condensed, 
                                      PG_Goal_moisture == "35"))
summary(max_lm_35)
## 
## Call:
## lm(formula = max ~ AG.GOAL.DRY.MASS_cont + AG.GOAL.MOISTURE._cont + 
##     PG.SPECIES, data = filter(two_max_condensed, PG_Goal_moisture == 
##     "35"))
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -724.89 -242.05   31.51  243.35  554.97 
## 
## Coefficients:
##                        Estimate Std. Error t value Pr(>|t|)  
## (Intercept)              441.11     262.82   1.678   0.0993 .
## AG.GOAL.DRY.MASS_cont    100.46      89.36   1.124   0.2661  
## AG.GOAL.MOISTURE._cont    11.92      44.68   0.267   0.7907  
## PG.SPECIESPSSP6          121.33      89.36   1.358   0.1804  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 319.7 on 52 degrees of freedom
##   (20 observations deleted due to missingness)
## Multiple R-squared:  0.04803,    Adjusted R-squared:  -0.006888 
## F-statistic: 0.8746 on 3 and 52 DF,  p-value: 0.4603
#only 55 fm 
max_lm_55 <- lm(max ~ AG.GOAL.DRY.MASS_cont+ AG.GOAL.MOISTURE._cont +
                    PG.SPECIES,
                        data = filter(two_max_condensed, 
                                      PG_Goal_moisture == "55"))
summary(max_lm_55)
## 
## Call:
## lm(formula = max ~ AG.GOAL.DRY.MASS_cont + AG.GOAL.MOISTURE._cont + 
##     PG.SPECIES, data = filter(two_max_condensed, PG_Goal_moisture == 
##     "55"))
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -466.07 -257.92   11.28  218.98  689.99 
## 
## Coefficients:
##                        Estimate Std. Error t value Pr(>|t|)    
## (Intercept)             414.124     85.841   4.824 2.62e-06 ***
## AG.GOAL.DRY.MASS_cont    11.833     19.693   0.601    0.549    
## AG.GOAL.MOISTURE._cont    7.467     17.614   0.424    0.672    
## PG.SPECIESPSSP6          35.614     40.995   0.869    0.386    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 294.7 on 220 degrees of freedom
##   (20 observations deleted due to missingness)
## Multiple R-squared:  0.004964,   Adjusted R-squared:  -0.008604 
## F-statistic: 0.3659 on 3 and 220 DF,  p-value: 0.7777

individual figures for each PG species and FM

pssp55 <- ggplot(filter(two_max_condensed, PG.SPECIES == "PSSP6", PG_Goal_moisture == "55"),
             aes(x = AG.GOAL.DRY.MASS, y= max,  fill = AG.GOAL.DRY.MASS))+
  geom_boxplot()+
  scale_fill_manual(values = pssp_custom_colors)+
  scale_y_continuous(limits = c(0, 1250),  expand = c(0, 0))+
  labs(x = "Cheatgrass (g)", y = "Maximum temperature (C)")+
  guides(fill=guide_legend(title="Cheatgrass FM (%)"))+ theme(legend.position = "none")
pssp55

pssp35 <- ggplot(filter(two_max_condensed, PG.SPECIES == "PSSP6", PG_Goal_moisture == "35"),
             aes(x = AG.GOAL.DRY.MASS, y= max,  fill = AG.GOAL.DRY.MASS))+
  geom_boxplot()+
  scale_fill_manual(values = pssp_custom_colors)+
  scale_y_continuous(limits = c(0, 1250),  expand = c(0, 0))+
  labs(x = "Cheatgrass (g)", y = "Maximum temperature (C)")+
  guides(fill=guide_legend(title="Cheatgrass FM (%)"))+ theme(legend.position = "none")
pssp35
## Warning: Removed 2 rows containing non-finite values (stat_boxplot).

acth55 <- ggplot(filter(two_max_condensed, PG.SPECIES == "ACTH7", PG_Goal_moisture == "55"),
             aes(x = AG.GOAL.DRY.MASS, y= max,  fill = AG.GOAL.DRY.MASS))+ 
  geom_boxplot()+
  scale_fill_manual(values = acth_custom_colors)+
  scale_y_continuous(limits = c(0, 1250),  expand = c(0, 0)) + 
  labs(x = "Cheatgrass (g)", y = "Maximum temperature (C)")+
  guides(fill=guide_legend(title="Cheatgrass FM (%)")) +  theme(legend.position = "none")
acth55

acth35 <- ggplot(filter(two_max_condensed, PG.SPECIES == "ACTH7", PG_Goal_moisture == "35"),
             aes(x = AG.GOAL.DRY.MASS, y= max,  fill = AG.GOAL.DRY.MASS))+ 
  geom_boxplot()+
  scale_fill_manual(values = acth_custom_colors)+
  scale_y_continuous(limits = c(0, 1250),  expand = c(0, 0)) + 
  labs(x = "Cheatgrass (g)", y = "Maximum temperature (C)")+
  guides(fill=guide_legend(title="Cheatgrass FM (%)")) +  theme(legend.position = "none")
acth35

combine

library(ggpubr)
## Warning: package 'ggpubr' was built under R version 4.0.5
max_55 <- 
  ggarrange(acth55, 
            pssp55+theme(axis.title.y = element_blank()),
            ncol = 2, nrow =1)
max_55

ggsave('figures/combine_twosp/maxtemp55.png', max_55, height = 3, width = 5,bg='transparent')

max_35 <- 
  ggarrange(acth35, 
            pssp35+theme(axis.title.y = element_blank()),
            ncol = 2, nrow =1)
## Warning: Removed 2 rows containing non-finite values (stat_boxplot).
max_35

ggsave('figures/combine_twosp/maxtemp35.png', max_35, height = 3, width = 5,bg='transparent')

2. Flame Length

# try linear models
combined_lm <- lm(FLAME.HEIGHT..CM. ~ AG.GOAL.DRY.MASS_cont+ AG.GOAL.MOISTURE._cont + 
                        PG.SPECIES +PG_Goal_moisture,
                        data = two_with_one)
summary(combined_lm)
## 
## Call:
## lm(formula = FLAME.HEIGHT..CM. ~ AG.GOAL.DRY.MASS_cont + AG.GOAL.MOISTURE._cont + 
##     PG.SPECIES + PG_Goal_moisture, data = two_with_one)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -106.08  -12.62   10.03   18.47   40.03 
## 
## Coefficients:
##                        Estimate Std. Error t value Pr(>|t|)    
## (Intercept)            126.1510    17.1563   7.353 3.41e-11 ***
## AG.GOAL.DRY.MASS_cont    9.4471     2.9838   3.166  0.00199 ** 
## AG.GOAL.MOISTURE._cont   1.0447     2.4555   0.425  0.67133    
## PG.SPECIESPSSP6          3.7102     5.5440   0.669  0.50473    
## PG_Goal_moisture        -0.8575     0.3539  -2.423  0.01699 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 29.38 on 112 degrees of freedom
##   (43 observations deleted due to missingness)
## Multiple R-squared:  0.09818,    Adjusted R-squared:  0.06597 
## F-statistic: 3.048 on 4 and 112 DF,  p-value: 0.01993
#only pssp
lm_pssp <- lm(FLAME.HEIGHT..CM. ~ AG.GOAL.DRY.MASS_cont+ AG.GOAL.MOISTURE._cont +PG_Goal_moisture,
                        data = filter(two_with_one, 
                                      PG.SPECIES == "PSSP6"))
summary(lm_pssp)
## 
## Call:
## lm(formula = FLAME.HEIGHT..CM. ~ AG.GOAL.DRY.MASS_cont + AG.GOAL.MOISTURE._cont + 
##     PG_Goal_moisture, data = filter(two_with_one, PG.SPECIES == 
##     "PSSP6"))
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -76.514 -16.551   5.104  18.458  42.531 
## 
## Coefficients:
##                        Estimate Std. Error t value Pr(>|t|)    
## (Intercept)            131.9996    21.6797   6.089 1.84e-07 ***
## AG.GOAL.DRY.MASS_cont   17.3349     4.3917   3.947 0.000258 ***
## AG.GOAL.MOISTURE._cont   5.4778     3.1365   1.746 0.087128 .  
## PG_Goal_moisture        -1.5570     0.4654  -3.345 0.001603 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 25.06 on 48 degrees of freedom
##   (18 observations deleted due to missingness)
## Multiple R-squared:  0.3034, Adjusted R-squared:  0.2599 
## F-statistic: 6.969 on 3 and 48 DF,  p-value: 0.00055
#only acth
max_lm_acth <- lm(FLAME.HEIGHT..CM. ~ AG.GOAL.DRY.MASS_cont+ AG.GOAL.MOISTURE._cont +PG_Goal_moisture,
                        data = filter(two_with_one, 
                                      PG.SPECIES == "ACTH7"))
summary(max_lm_acth)
## 
## Call:
## lm(formula = FLAME.HEIGHT..CM. ~ AG.GOAL.DRY.MASS_cont + AG.GOAL.MOISTURE._cont + 
##     PG_Goal_moisture, data = filter(two_with_one, PG.SPECIES == 
##     "ACTH7"))
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -108.859   -9.137   11.141   19.387   36.880 
## 
## Coefficients:
##                        Estimate Std. Error t value Pr(>|t|)    
## (Intercept)            125.6915    24.6007   5.109 3.43e-06 ***
## AG.GOAL.DRY.MASS_cont    5.1645     3.9512   1.307    0.196    
## AG.GOAL.MOISTURE._cont  -2.4431     3.5802  -0.682    0.498    
## PG_Goal_moisture        -0.4205     0.5032  -0.836    0.407    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 31.66 on 61 degrees of freedom
##   (25 observations deleted due to missingness)
## Multiple R-squared:  0.04284,    Adjusted R-squared:  -0.004237 
## F-statistic:  0.91 on 3 and 61 DF,  p-value: 0.4415
#only 35 fm 
max_lm_35 <- lm(FLAME.HEIGHT..CM. ~ AG.GOAL.DRY.MASS_cont+ AG.GOAL.MOISTURE._cont +
                    PG.SPECIES,
                        data = filter(two_with_one, 
                                      PG_Goal_moisture == "35"))
summary(max_lm_35)
## 
## Call:
## lm(formula = FLAME.HEIGHT..CM. ~ AG.GOAL.DRY.MASS_cont + AG.GOAL.MOISTURE._cont + 
##     PG.SPECIES, data = filter(two_with_one, PG_Goal_moisture == 
##     "35"))
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -101.652  -11.763    5.402   15.937   28.348 
## 
## Coefficients:
##                        Estimate Std. Error t value Pr(>|t|)  
## (Intercept)              85.692     32.497   2.637   0.0147 *
## AG.GOAL.DRY.MASS_cont    12.411     11.092   1.119   0.2747  
## AG.GOAL.MOISTURE._cont    1.138      5.546   0.205   0.8392  
## PG.SPECIESPSSP6          10.536     11.092   0.950   0.3521  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 27.67 on 23 degrees of freedom
##   (11 observations deleted due to missingness)
## Multiple R-squared:  0.07166,    Adjusted R-squared:  -0.04943 
## F-statistic: 0.5918 on 3 and 23 DF,  p-value: 0.6267
#only 55 fm 
max_lm_55 <- lm(FLAME.HEIGHT..CM. ~ AG.GOAL.DRY.MASS_cont+ AG.GOAL.MOISTURE._cont 
                + PG.SPECIES,
                        data = filter(two_with_one, 
                                      PG_Goal_moisture == "55"))
summary(max_lm_55)
## 
## Call:
## lm(formula = FLAME.HEIGHT..CM. ~ AG.GOAL.DRY.MASS_cont + AG.GOAL.MOISTURE._cont + 
##     PG.SPECIES, data = filter(two_with_one, PG_Goal_moisture == 
##     "55"))
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -104.453  -13.085    8.918   19.742   38.935 
## 
## Coefficients:
##                        Estimate Std. Error t value Pr(>|t|)    
## (Intercept)              80.223     13.711   5.851 8.64e-08 ***
## AG.GOAL.DRY.MASS_cont     9.194      3.176   2.895  0.00481 ** 
## AG.GOAL.MOISTURE._cont    1.227      2.798   0.438  0.66221    
## PG.SPECIESPSSP6           1.725      6.523   0.264  0.79214    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 30.24 on 86 degrees of freedom
##   (32 observations deleted due to missingness)
## Multiple R-squared:  0.08952,    Adjusted R-squared:  0.05776 
## F-statistic: 2.818 on 3 and 86 DF,  p-value: 0.04376

individual figures for each PG species and FM

pssp55 <- ggplot(filter(two_with_one, PG.SPECIES == "PSSP6", PG_Goal_moisture == "55"),
             aes(x = AG.GOAL.DRY.MASS, y= FLAME.HEIGHT..CM.,  fill = AG.GOAL.DRY.MASS))+
  geom_boxplot()+
  scale_fill_manual(values = pssp_custom_colors)+
  scale_y_continuous(limits = c(0, 150),  expand = c(0, 0))+
  labs(x = "Cheatgrass (g)", y = "Flame length (cm)")+
  guides(fill=guide_legend(title="Cheatgrass FM (%)"))+ theme(legend.position = "none")
pssp55
## Warning: Removed 9 rows containing non-finite values (stat_boxplot).

pssp35 <- ggplot(filter(two_with_one, PG.SPECIES == "PSSP6", PG_Goal_moisture == "35"),
             aes(x = AG.GOAL.DRY.MASS, y= FLAME.HEIGHT..CM.,  fill = AG.GOAL.DRY.MASS))+
  geom_boxplot()+
  scale_fill_manual(values = pssp_custom_colors)+
  scale_y_continuous(limits = c(0, 150),  expand = c(0, 0))+
  labs(x = "Cheatgrass (g)", y = "Flame length (cm)")+
  guides(fill=guide_legend(title="Cheatgrass FM (%)"))+ theme(legend.position = "none")
pssp35

acth55 <- ggplot(filter(two_with_one, PG.SPECIES == "ACTH7", PG_Goal_moisture == "55"),
             aes(x = AG.GOAL.DRY.MASS, y= FLAME.HEIGHT..CM.,  fill = AG.GOAL.DRY.MASS))+ 
  geom_boxplot()+
  scale_fill_manual(values = acth_custom_colors)+
  scale_y_continuous(limits = c(0, 150),  expand = c(0, 0)) + 
  labs(x = "Cheatgrass (g)", y = "Flame length (cm)")+
  guides(fill=guide_legend(title="Cheatgrass FM (%)")) +  theme(legend.position = "none")
acth55
## Warning: Removed 15 rows containing non-finite values (stat_boxplot).

acth35 <- ggplot(filter(two_with_one, PG.SPECIES == "ACTH7", PG_Goal_moisture == "35"),
             aes(x = AG.GOAL.DRY.MASS, y= FLAME.HEIGHT..CM.,  fill = AG.GOAL.DRY.MASS))+ 
  geom_boxplot()+
  scale_fill_manual(values = acth_custom_colors)+
  scale_y_continuous(limits = c(0, 150),  expand = c(0, 0)) + 
  labs(x = "Cheatgrass (g)", y = "Flame length (cm)")+
  guides(fill=guide_legend(title="Cheatgrass FM (%)")) +  theme(legend.position = "none")
acth35
## Warning: Removed 1 rows containing non-finite values (stat_boxplot).

combine

library(ggpubr)
fl_55 <- 
  ggarrange(acth55, 
            pssp55+theme(axis.title.y = element_blank()),
            ncol = 2, nrow =1)
## Warning: Removed 15 rows containing non-finite values (stat_boxplot).
## Warning: Removed 9 rows containing non-finite values (stat_boxplot).
fl_55

ggsave('figures/combine_twosp/fl_55.png', fl_55, height = 3, width = 5,bg='transparent')

fl_35 <- 
  ggarrange(acth35, 
            pssp35+theme(axis.title.y = element_blank()),
            ncol = 2, nrow =1)
## Warning: Removed 1 rows containing non-finite values (stat_boxplot).
fl_35

ggsave('figures/combine_twosp/FL_35.png', fl_35, height = 3, width = 5,bg='transparent')

3. Mass Consupmtion

# try linear models
combined_lm <- lm(WET.MASS.CONSUMPTION.... ~ AG.GOAL.DRY.MASS_cont+ AG.GOAL.MOISTURE._cont + 
                        PG.SPECIES +PG_Goal_moisture,
                        data = two_with_one)
summary(combined_lm)
## 
## Call:
## lm(formula = WET.MASS.CONSUMPTION.... ~ AG.GOAL.DRY.MASS_cont + 
##     AG.GOAL.MOISTURE._cont + PG.SPECIES + PG_Goal_moisture, data = two_with_one)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -57.616  -2.977   3.132  10.292  20.434 
## 
## Coefficients:
##                        Estimate Std. Error t value Pr(>|t|)    
## (Intercept)            61.53309    9.37419   6.564 1.03e-09 ***
## AG.GOAL.DRY.MASS_cont   8.10928    1.52504   5.317 4.25e-07 ***
## AG.GOAL.MOISTURE._cont  0.05292    1.28778   0.041   0.9673    
## PG.SPECIESPSSP6        -5.18533    2.92120  -1.775   0.0781 .  
## PG_Goal_moisture       -0.18054    0.19250  -0.938   0.3500    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 16.65 on 135 degrees of freedom
##   (20 observations deleted due to missingness)
## Multiple R-squared:  0.2222, Adjusted R-squared:  0.1992 
## F-statistic: 9.642 on 4 and 135 DF,  p-value: 6.879e-07
#only pssp
lm_pssp <- lm(WET.MASS.CONSUMPTION.... ~ AG.GOAL.DRY.MASS_cont+ 
                AG.GOAL.MOISTURE._cont +PG_Goal_moisture,
                        data = filter(two_with_one, 
                                      PG.SPECIES == "PSSP6"))
summary(lm_pssp)
## 
## Call:
## lm(formula = WET.MASS.CONSUMPTION.... ~ AG.GOAL.DRY.MASS_cont + 
##     AG.GOAL.MOISTURE._cont + PG_Goal_moisture, data = filter(two_with_one, 
##     PG.SPECIES == "PSSP6"))
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -50.359  -4.168   3.092   7.778  24.249 
## 
## Coefficients:
##                        Estimate Std. Error t value Pr(>|t|)    
## (Intercept)             96.1583    13.1659   7.304 1.09e-09 ***
## AG.GOAL.DRY.MASS_cont    8.3776     2.6129   3.206 0.002223 ** 
## AG.GOAL.MOISTURE._cont   2.6799     1.8301   1.464 0.148686    
## PG_Goal_moisture        -1.0964     0.2749  -3.988 0.000195 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 15.36 on 56 degrees of freedom
##   (10 observations deleted due to missingness)
## Multiple R-squared:  0.2637, Adjusted R-squared:  0.2242 
## F-statistic: 6.684 on 3 and 56 DF,  p-value: 0.0006166
#only acth
lm_acth <- lm(WET.MASS.CONSUMPTION.... ~ AG.GOAL.DRY.MASS_cont+ 
                AG.GOAL.MOISTURE._cont +PG_Goal_moisture,
                        data = filter(two_with_one, 
                                      PG.SPECIES == "ACTH7"))
summary(lm_acth)
## 
## Call:
## lm(formula = WET.MASS.CONSUMPTION.... ~ AG.GOAL.DRY.MASS_cont + 
##     AG.GOAL.MOISTURE._cont + PG_Goal_moisture, data = filter(two_with_one, 
##     PG.SPECIES == "ACTH7"))
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -49.758  -2.846   5.337   9.907  21.065 
## 
## Coefficients:
##                        Estimate Std. Error t value Pr(>|t|)    
## (Intercept)             33.0751    11.6945   2.828  0.00598 ** 
## AG.GOAL.DRY.MASS_cont    7.4743     1.7358   4.306  4.9e-05 ***
## AG.GOAL.MOISTURE._cont  -1.3417     1.6236  -0.826  0.41119    
## PG_Goal_moisture         0.4842     0.2421   2.000  0.04908 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 15.91 on 76 degrees of freedom
##   (10 observations deleted due to missingness)
## Multiple R-squared:  0.3026, Adjusted R-squared:  0.2751 
## F-statistic: 10.99 on 3 and 76 DF,  p-value: 4.488e-06
#only 35 fm 
lm_35 <- lm(WET.MASS.CONSUMPTION.... ~ AG.GOAL.DRY.MASS_cont+ 
              AG.GOAL.MOISTURE._cont +
                    PG.SPECIES,
                        data = filter(two_with_one, 
                                      PG_Goal_moisture == "35"))
summary(lm_35)
## 
## Call:
## lm(formula = WET.MASS.CONSUMPTION.... ~ AG.GOAL.DRY.MASS_cont + 
##     AG.GOAL.MOISTURE._cont + PG.SPECIES, data = filter(two_with_one, 
##     PG_Goal_moisture == "35"))
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -47.593  -5.077   3.873   9.302  26.052 
## 
## Coefficients:
##                        Estimate Std. Error t value Pr(>|t|)  
## (Intercept)              34.964     20.188   1.732   0.0961 .
## AG.GOAL.DRY.MASS_cont    14.626      6.864   2.131   0.0436 *
## AG.GOAL.MOISTURE._cont   -2.753      3.432  -0.802   0.4304  
## PG.SPECIESPSSP6          17.295      6.864   2.520   0.0188 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 17.36 on 24 degrees of freedom
##   (10 observations deleted due to missingness)
## Multiple R-squared:  0.3291, Adjusted R-squared:  0.2452 
## F-statistic: 3.923 on 3 and 24 DF,  p-value: 0.02065
#only 55 fm 
lm_55 <- lm(WET.MASS.CONSUMPTION.... ~ AG.GOAL.DRY.MASS_cont+ 
              AG.GOAL.MOISTURE._cont +
                    PG.SPECIES,
                        data = filter(two_with_one, 
                                      PG_Goal_moisture == "55"))
summary(lm_55)
## 
## Call:
## lm(formula = WET.MASS.CONSUMPTION.... ~ AG.GOAL.DRY.MASS_cont + 
##     AG.GOAL.MOISTURE._cont + PG.SPECIES, data = filter(two_with_one, 
##     PG_Goal_moisture == "55"))
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -51.161  -4.304   4.117   8.978  22.268 
## 
## Coefficients:
##                        Estimate Std. Error t value Pr(>|t|)    
## (Intercept)              54.625      6.278   8.701 4.10e-14 ***
## AG.GOAL.DRY.MASS_cont     7.199      1.440   4.999 2.24e-06 ***
## AG.GOAL.MOISTURE._cont    1.076      1.288   0.835 0.405392    
## PG.SPECIESPSSP6         -11.223      2.998  -3.743 0.000293 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 15.24 on 108 degrees of freedom
##   (10 observations deleted due to missingness)
## Multiple R-squared:  0.3234, Adjusted R-squared:  0.3046 
## F-statistic: 17.21 on 3 and 108 DF,  p-value: 3.329e-09

individual figures for each PG species and FM

pssp55 <- ggplot(filter(two_with_one, PG.SPECIES == "PSSP6", PG_Goal_moisture == "55"),
             aes(x = AG.GOAL.DRY.MASS, y= WET.MASS.CONSUMPTION....,  fill = AG.GOAL.DRY.MASS))+
  geom_boxplot()+
  scale_fill_manual(values = pssp_custom_colors)+
  scale_y_continuous(limits = c(0, 100),  expand = c(0, 0))+
  labs(x = "Cheatgrass (g)", y = "Mass consumption (%)")+
  guides(fill=guide_legend(title="Cheatgrass FM (%)"))+ theme(legend.position = "none")
pssp55

pssp35 <- ggplot(filter(two_with_one, PG.SPECIES == "PSSP6", PG_Goal_moisture == "35"),
             aes(x = AG.GOAL.DRY.MASS, y= WET.MASS.CONSUMPTION....,  fill = AG.GOAL.DRY.MASS))+
  geom_boxplot()+
  scale_fill_manual(values = pssp_custom_colors)+
  scale_y_continuous(limits = c(0, 100),  expand = c(0, 0))+
  labs(x = "Cheatgrass (g)", y = "Mass consumption (%)")+
  guides(fill=guide_legend(title="Cheatgrass FM (%)"))+ theme(legend.position = "none")
pssp35

acth55 <- ggplot(filter(two_with_one, PG.SPECIES == "ACTH7", PG_Goal_moisture == "55"),
             aes(x = AG.GOAL.DRY.MASS, y= WET.MASS.CONSUMPTION....,  fill = AG.GOAL.DRY.MASS))+ 
  geom_boxplot()+
  scale_fill_manual(values = acth_custom_colors)+
  scale_y_continuous(limits = c(0, 100),  expand = c(0, 0)) + 
  labs(x = "Cheatgrass (g)", y = "Mass consumption (%)")+
  guides(fill=guide_legend(title="Cheatgrass FM (%)")) +  theme(legend.position = "none")
acth55

acth35 <- ggplot(filter(two_with_one, PG.SPECIES == "ACTH7", PG_Goal_moisture == "35"),
             aes(x = AG.GOAL.DRY.MASS, y= WET.MASS.CONSUMPTION....,  fill = AG.GOAL.DRY.MASS))+ 
  geom_boxplot()+
  scale_fill_manual(values = acth_custom_colors)+
  scale_y_continuous(limits = c(0, 100),  expand = c(0, 0)) + 
  labs(x = "Cheatgrass (g)", y = "Mass consumption (%)")+
  guides(fill=guide_legend(title="Cheatgrass FM (%)")) +  theme(legend.position = "none")
acth35

combine

library(ggpubr)
mc_55 <- 
  ggarrange(acth55, 
            pssp55+theme(axis.title.y = element_blank()),
            ncol = 2, nrow =1)
mc_55

ggsave('figures/combine_twosp/mc_55.png', mc_55, height = 3, width = 5,bg='transparent')

mc_35 <- 
  ggarrange(acth35, 
            pssp35+theme(axis.title.y = element_blank()),
            ncol = 2, nrow =1)
mc_35

ggsave('figures/combine_twosp/mc_35.png', mc_35, height = 3, width = 5,bg='transparent')

4. Flaming duration

two_dur_condensed <- gather(two_with_one, channel, dur, dur_ch1:dur_ch2)
two_dur_condensed$dur <- as.numeric(two_dur_condensed$dur)
# try linear models
combined_lm <- lm(dur ~ AG.GOAL.DRY.MASS_cont+ AG.GOAL.MOISTURE._cont + 
                        PG.SPECIES +PG_Goal_moisture,
                        data = two_dur_condensed)
summary(combined_lm)
## 
## Call:
## lm(formula = dur ~ AG.GOAL.DRY.MASS_cont + AG.GOAL.MOISTURE._cont + 
##     PG.SPECIES + PG_Goal_moisture, data = two_dur_condensed)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -107.772  -13.824    2.588   18.628   90.067 
## 
## Coefficients:
##                        Estimate Std. Error t value Pr(>|t|)    
## (Intercept)             72.0683    13.0913   5.505 8.46e-08 ***
## AG.GOAL.DRY.MASS_cont   18.7974     2.1298   8.826  < 2e-16 ***
## AG.GOAL.MOISTURE._cont  -2.0412     1.7984  -1.135 0.257372    
## PG.SPECIESPSSP6         -2.0707     4.0795  -0.508 0.612147    
## PG_Goal_moisture        -0.9484     0.2688  -3.528 0.000491 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 32.89 on 275 degrees of freedom
##   (40 observations deleted due to missingness)
## Multiple R-squared:   0.24,  Adjusted R-squared:  0.229 
## F-statistic: 21.71 on 4 and 275 DF,  p-value: 1.383e-15
#only pssp
lm_pssp <- lm(dur ~ AG.GOAL.DRY.MASS_cont+ AG.GOAL.MOISTURE._cont +PG_Goal_moisture,
                        data = filter(two_dur_condensed, 
                                      PG.SPECIES == "PSSP6"))
summary(lm_pssp)
## 
## Call:
## lm(formula = dur ~ AG.GOAL.DRY.MASS_cont + AG.GOAL.MOISTURE._cont + 
##     PG_Goal_moisture, data = filter(two_dur_condensed, PG.SPECIES == 
##     "PSSP6"))
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -69.560 -14.290   4.371  14.980  54.976 
## 
## Coefficients:
##                        Estimate Std. Error t value Pr(>|t|)    
## (Intercept)             87.8683    16.2722   5.400 3.59e-07 ***
## AG.GOAL.DRY.MASS_cont   22.3609     3.2293   6.924 2.59e-10 ***
## AG.GOAL.MOISTURE._cont   4.5360     2.2618   2.005   0.0472 *  
## PG_Goal_moisture        -1.8000     0.3398  -5.298 5.65e-07 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 26.85 on 116 degrees of freedom
##   (20 observations deleted due to missingness)
## Multiple R-squared:  0.3356, Adjusted R-squared:  0.3184 
## F-statistic: 19.53 on 3 and 116 DF,  p-value: 2.552e-10
#only acth
max_lm_acth <- lm(dur ~ AG.GOAL.DRY.MASS_cont+ AG.GOAL.MOISTURE._cont +PG_Goal_moisture,
                        data = filter(two_dur_condensed, 
                                      PG.SPECIES == "ACTH7"))
summary(max_lm_acth)
## 
## Call:
## lm(formula = dur ~ AG.GOAL.DRY.MASS_cont + AG.GOAL.MOISTURE._cont + 
##     PG_Goal_moisture, data = filter(two_dur_condensed, PG.SPECIES == 
##     "ACTH7"))
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -104.513  -14.372    2.049   19.352   96.151 
## 
## Coefficients:
##                        Estimate Std. Error t value Pr(>|t|)    
## (Intercept)             60.7194    18.6111   3.263  0.00136 ** 
## AG.GOAL.DRY.MASS_cont   17.1860     2.7623   6.222 4.33e-09 ***
## AG.GOAL.MOISTURE._cont  -6.4779     2.5839  -2.507  0.01320 *  
## PG_Goal_moisture        -0.4128     0.3853  -1.071  0.28565    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 35.8 on 156 degrees of freedom
##   (20 observations deleted due to missingness)
## Multiple R-squared:  0.2263, Adjusted R-squared:  0.2115 
## F-statistic: 15.21 on 3 and 156 DF,  p-value: 9.862e-09
#only 35 fm 
max_lm_35 <- lm(dur ~ AG.GOAL.DRY.MASS_cont+ AG.GOAL.MOISTURE._cont +
                    PG.SPECIES,
                        data = filter(two_dur_condensed, 
                                      PG_Goal_moisture == "35"))
summary(max_lm_35)
## 
## Call:
## lm(formula = dur ~ AG.GOAL.DRY.MASS_cont + AG.GOAL.MOISTURE._cont + 
##     PG.SPECIES, data = filter(two_dur_condensed, PG_Goal_moisture == 
##     "35"))
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -79.734 -15.346  -0.461  16.633  48.266 
## 
## Coefficients:
##                        Estimate Std. Error t value Pr(>|t|)   
## (Intercept)              17.480     20.144   0.868  0.38950   
## AG.GOAL.DRY.MASS_cont    18.773      6.849   2.741  0.00838 **
## AG.GOAL.MOISTURE._cont    5.934      3.425   1.733  0.08908 . 
## PG.SPECIESPSSP6          13.430      6.849   1.961  0.05527 . 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 24.5 on 52 degrees of freedom
##   (20 observations deleted due to missingness)
## Multiple R-squared:  0.1688, Adjusted R-squared:  0.1208 
## F-statistic: 3.519 on 3 and 52 DF,  p-value: 0.02128
#only 55 fm 
max_lm_55 <- lm(dur ~ AG.GOAL.DRY.MASS_cont+ AG.GOAL.MOISTURE._cont +
                  PG.SPECIES,
                        data = filter(two_dur_condensed, 
                                      PG_Goal_moisture == "55"))
summary(max_lm_55)
## 
## Call:
## lm(formula = dur ~ AG.GOAL.DRY.MASS_cont + AG.GOAL.MOISTURE._cont + 
##     PG.SPECIES, data = filter(two_dur_condensed, PG_Goal_moisture == 
##     "55"))
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -108.387  -12.165    3.965   19.668   90.690 
## 
## Coefficients:
##                        Estimate Std. Error t value Pr(>|t|)    
## (Intercept)              24.807     10.002   2.480   0.0139 *  
## AG.GOAL.DRY.MASS_cont    18.727      2.295   8.161 2.55e-14 ***
## AG.GOAL.MOISTURE._cont   -3.351      2.052  -1.633   0.1040    
## PG.SPECIESPSSP6          -5.318      4.777  -1.113   0.2668    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 34.34 on 220 degrees of freedom
##   (20 observations deleted due to missingness)
## Multiple R-squared:  0.2649, Adjusted R-squared:  0.2549 
## F-statistic: 26.43 on 3 and 220 DF,  p-value: 1.223e-14

individual figures for each PG species and FM

pssp55 <- ggplot(filter(two_dur_condensed, PG.SPECIES == "PSSP6", PG_Goal_moisture == "55"),
             aes(x = AG.GOAL.DRY.MASS, y= dur,  fill = AG.GOAL.DRY.MASS))+
  geom_boxplot()+
  scale_fill_manual(values = pssp_custom_colors)+
  scale_y_continuous(limits = c(0, 150),  expand = c(0, 0))+
  labs(x = "Cheatgrass (g)", y = "Flaming duration >100 C (s)")+
  guides(fill=guide_legend(title="Cheatgrass FM (%)"))+ theme(legend.position = "none")
pssp55
## Warning: Removed 2 rows containing non-finite values (stat_boxplot).

pssp35 <- ggplot(filter(two_dur_condensed, PG.SPECIES == "PSSP6", PG_Goal_moisture == "35"),
             aes(x = AG.GOAL.DRY.MASS, y= dur,  fill = AG.GOAL.DRY.MASS))+
  geom_boxplot()+
  scale_fill_manual(values = pssp_custom_colors)+
  scale_y_continuous(limits = c(0, 150),  expand = c(0, 0))+
  labs(x = "Cheatgrass (g)", y = "Flaming duration >100 C (s)")+
  guides(fill=guide_legend(title="Cheatgrass FM (%)"))+ theme(legend.position = "none")
pssp35

acth55 <- ggplot(filter(two_dur_condensed, PG.SPECIES == "ACTH7", PG_Goal_moisture == "55"),
             aes(x = AG.GOAL.DRY.MASS, y= dur,  fill = AG.GOAL.DRY.MASS))+ 
  geom_boxplot()+
  scale_fill_manual(values = acth_custom_colors)+
  scale_y_continuous(limits = c(0, 150),  expand = c(0, 0)) + 
  labs(x = "Cheatgrass (g)", y = "Flaming duration >100 C (s)")+
  guides(fill=guide_legend(title="Cheatgrass FM (%)")) +  theme(legend.position = "none")
acth55
## Warning: Removed 9 rows containing non-finite values (stat_boxplot).

acth35 <- ggplot(filter(two_dur_condensed, PG.SPECIES == "ACTH7", PG_Goal_moisture == "35"),
             aes(x = AG.GOAL.DRY.MASS, y= dur,  fill = AG.GOAL.DRY.MASS))+ 
  geom_boxplot()+
  scale_fill_manual(values = acth_custom_colors)+
  scale_y_continuous(limits = c(0, 150),  expand = c(0, 0)) + 
  labs(x = "Cheatgrass (g)", y = "Flaming duration >100 C (s)")+
  guides(fill=guide_legend(title="Cheatgrass FM (%)")) +  theme(legend.position = "none")
acth35

combine

library(ggpubr)
dur_55 <- 
  ggarrange(acth55, 
            pssp55+theme(axis.title.y = element_blank()),
            ncol = 2, nrow =1)
## Warning: Removed 9 rows containing non-finite values (stat_boxplot).
## Warning: Removed 2 rows containing non-finite values (stat_boxplot).
dur_55

ggsave('figures/combine_twosp/dur_55.png', dur_55, height = 3, width = 5,bg='transparent')

dur_35 <- 
  ggarrange(acth35, 
            pssp35+theme(axis.title.y = element_blank()),
            ncol = 2, nrow =1)
dur_35

ggsave('figures/combine_twosp/dur_35.png', dur_35, height = 3, width = 5,bg='transparent')

5. Heat Load

two_load_condensed <- gather(two_with_one, channel, load, load_ch1:load_ch2)
two_load_condensed$load <- as.numeric(two_load_condensed$load)
# try linear models
combined_lm <- lm(load ~ AG.GOAL.DRY.MASS_cont+ AG.GOAL.MOISTURE._cont + 
                        PG.SPECIES +PG_Goal_moisture,
                        data = two_load_condensed)
summary(combined_lm)
## 
## Call:
## lm(formula = load ~ AG.GOAL.DRY.MASS_cont + AG.GOAL.MOISTURE._cont + 
##     PG.SPECIES + PG_Goal_moisture, data = two_load_condensed)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -54485 -14314    -72  12027 111564 
## 
## Coefficients:
##                        Estimate Std. Error t value Pr(>|t|)    
## (Intercept)             60715.9     8802.1   6.898 3.63e-11 ***
## AG.GOAL.DRY.MASS_cont    8598.3     1432.0   6.005 6.05e-09 ***
## AG.GOAL.MOISTURE._cont  -1287.3     1209.2  -1.065    0.288    
## PG.SPECIESPSSP6         -1495.4     2742.9  -0.545    0.586    
## PG_Goal_moisture         -878.2      180.7  -4.859 1.99e-06 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 22110 on 275 degrees of freedom
##   (40 observations deleted due to missingness)
## Multiple R-squared:  0.1599, Adjusted R-squared:  0.1477 
## F-statistic: 13.08 on 4 and 275 DF,  p-value: 9.079e-10
#only pssp
lm_pssp <- lm(load ~ AG.GOAL.DRY.MASS_cont+ AG.GOAL.MOISTURE._cont +PG_Goal_moisture,
                        data = filter(two_load_condensed, 
                                      PG.SPECIES == "PSSP6"))
summary(lm_pssp)
## 
## Call:
## lm(formula = load ~ AG.GOAL.DRY.MASS_cont + AG.GOAL.MOISTURE._cont + 
##     PG_Goal_moisture, data = filter(two_load_condensed, PG.SPECIES == 
##     "PSSP6"))
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -34288 -10381   -224  11118  44222 
## 
## Coefficients:
##                        Estimate Std. Error t value Pr(>|t|)    
## (Intercept)             64587.3    10261.8   6.294 5.69e-09 ***
## AG.GOAL.DRY.MASS_cont   10479.4     2036.5   5.146 1.10e-06 ***
## AG.GOAL.MOISTURE._cont   2910.8     1426.4   2.041   0.0436 *  
## PG_Goal_moisture        -1281.3      214.3  -5.980 2.53e-08 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 16930 on 116 degrees of freedom
##   (20 observations deleted due to missingness)
## Multiple R-squared:  0.2892, Adjusted R-squared:  0.2708 
## F-statistic: 15.73 on 3 and 116 DF,  p-value: 1.194e-08
#only acth
max_lm_acth <- lm(load ~ AG.GOAL.DRY.MASS_cont+ AG.GOAL.MOISTURE._cont +PG_Goal_moisture,
                        data = filter(two_load_condensed, 
                                      PG.SPECIES == "ACTH7"))
summary(max_lm_acth)
## 
## Call:
## lm(formula = load ~ AG.GOAL.DRY.MASS_cont + AG.GOAL.MOISTURE._cont + 
##     PG_Goal_moisture, data = filter(two_load_condensed, PG.SPECIES == 
##     "ACTH7"))
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -55043 -15169  -2235  14457 107830 
## 
## Coefficients:
##                        Estimate Std. Error t value Pr(>|t|)    
## (Intercept)             58259.4    12923.1   4.508 1.28e-05 ***
## AG.GOAL.DRY.MASS_cont    7829.2     1918.1   4.082 7.12e-05 ***
## AG.GOAL.MOISTURE._cont  -4215.0     1794.2  -2.349   0.0201 *  
## PG_Goal_moisture         -642.5      267.5  -2.402   0.0175 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 24860 on 156 degrees of freedom
##   (20 observations deleted due to missingness)
## Multiple R-squared:  0.1347, Adjusted R-squared:  0.1181 
## F-statistic: 8.095 on 3 and 156 DF,  p-value: 4.797e-05
#only 35 fm 
max_lm_35 <- lm(load ~ AG.GOAL.DRY.MASS_cont+ AG.GOAL.MOISTURE._cont +
                    PG.SPECIES,
                        data = filter(two_load_condensed, 
                                      PG_Goal_moisture == "35"))
summary(max_lm_35)
## 
## Call:
## lm(formula = load ~ AG.GOAL.DRY.MASS_cont + AG.GOAL.MOISTURE._cont + 
##     PG.SPECIES, data = filter(two_load_condensed, PG_Goal_moisture == 
##     "35"))
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -49662 -11654  -2490  10860  41475 
## 
## Coefficients:
##                        Estimate Std. Error t value Pr(>|t|)  
## (Intercept)               16847      16845   1.000   0.3219  
## AG.GOAL.DRY.MASS_cont     10161       5728   1.774   0.0819 .
## AG.GOAL.MOISTURE._cont     2332       2864   0.814   0.4191  
## PG.SPECIESPSSP6            4603       5728   0.804   0.4252  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 20490 on 52 degrees of freedom
##   (20 observations deleted due to missingness)
## Multiple R-squared:  0.06333,    Adjusted R-squared:  0.00929 
## F-statistic: 1.172 on 3 and 52 DF,  p-value: 0.3294
#only 55 fm 
max_lm_55 <- lm(load ~ AG.GOAL.DRY.MASS_cont+ AG.GOAL.MOISTURE._cont +
                  PG.SPECIES,
                        data = filter(two_load_condensed, 
                                      PG_Goal_moisture == "55"))
summary(max_lm_55)
## 
## Call:
## lm(formula = load ~ AG.GOAL.DRY.MASS_cont + AG.GOAL.MOISTURE._cont + 
##     PG.SPECIES, data = filter(two_load_condensed, PG_Goal_moisture == 
##     "55"))
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -51595 -14438   -646  11921 110343 
## 
## Coefficients:
##                        Estimate Std. Error t value Pr(>|t|)    
## (Intercept)               14724       6556   2.246   0.0257 *  
## AG.GOAL.DRY.MASS_cont      8497       1504   5.649 4.95e-08 ***
## AG.GOAL.MOISTURE._cont    -1871       1345  -1.391   0.1656    
## PG.SPECIESPSSP6           -2704       3131  -0.864   0.3887    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 22510 on 220 degrees of freedom
##   (20 observations deleted due to missingness)
## Multiple R-squared:  0.1509, Adjusted R-squared:  0.1393 
## F-statistic: 13.03 on 3 and 220 DF,  p-value: 7.286e-08

individual figures for each PG species and FM

pssp55 <- ggplot(filter(two_load_condensed, PG.SPECIES == "PSSP6", PG_Goal_moisture == "55"),
             aes(x = AG.GOAL.DRY.MASS, y= load/1000,  fill = AG.GOAL.DRY.MASS))+
  geom_boxplot()+
  scale_fill_manual(values = pssp_custom_colors)+
  scale_y_continuous(limits = c(0, 100),  expand = c(0, 0))+
  labs(x = "Cheatgrass (g)", y = "Thermal dose (C) x 1,000")+
  guides(fill=guide_legend(title="Cheatgrass FM (%)"))+ theme(legend.position = "none")
pssp55
## Warning: Removed 1 rows containing non-finite values (stat_boxplot).

pssp35 <- ggplot(filter(two_load_condensed, PG.SPECIES == "PSSP6", PG_Goal_moisture == "35"),
             aes(x = AG.GOAL.DRY.MASS, y= load/1000,  fill = AG.GOAL.DRY.MASS))+
  geom_boxplot()+
  scale_fill_manual(values = pssp_custom_colors)+
  scale_y_continuous(limits = c(0, 100),  expand = c(0, 0))+
  labs(x = "Cheatgrass (g)", y = "Thermal dose (C) x 1,000")+
  guides(fill=guide_legend(title="Cheatgrass FM (%)"))+ theme(legend.position = "none")
pssp35

acth55 <- ggplot(filter(two_load_condensed, PG.SPECIES == "ACTH7", PG_Goal_moisture == "55"),
             aes(x = AG.GOAL.DRY.MASS, y= load/1000,  fill = AG.GOAL.DRY.MASS))+ 
  geom_boxplot()+
  scale_fill_manual(values = acth_custom_colors)+
  scale_y_continuous(limits = c(0, 100),  expand = c(0, 0)) + 
  labs(x = "Cheatgrass (g)", y = "Thermal dose (C) x 1,000")+
  guides(fill=guide_legend(title="Cheatgrass FM (%)")) +  theme(legend.position = "none")
acth55
## Warning: Removed 5 rows containing non-finite values (stat_boxplot).

acth35 <- ggplot(filter(two_load_condensed, PG.SPECIES == "ACTH7", PG_Goal_moisture == "35"),
             aes(x = AG.GOAL.DRY.MASS, y= load/1000,  fill = AG.GOAL.DRY.MASS))+ 
  geom_boxplot()+
  scale_fill_manual(values = acth_custom_colors)+
  scale_y_continuous(limits = c(0, 100),  expand = c(0, 0)) + 
  labs(x = "Cheatgrass (g)", y = "Thermal dose (C) x 1,000")+
  guides(fill=guide_legend(title="Cheatgrass FM (%)")) +  theme(legend.position = "none")
acth35

combine

library(ggpubr)
load_55 <- 
  ggarrange(acth55, 
            pssp55+theme(axis.title.y = element_blank()),
            ncol = 2, nrow =1)
## Warning: Removed 5 rows containing non-finite values (stat_boxplot).
## Warning: Removed 1 rows containing non-finite values (stat_boxplot).
load_55

ggsave('figures/combine_twosp/load_55.png', load_55, height = 3, width = 5,bg='transparent')

load_35 <- 
  ggarrange(acth35, 
            pssp35+theme(axis.title.y = element_blank()),
            ncol = 2, nrow =1)
load_35

ggsave('figures/combine_twosp/load_35.png', load_35, height = 3, width = 5,bg='transparent')

Combine all the 55 % fm into one

combine_55 <- 
    ggarrange(mc_55 + theme(axis.title.x = element_blank()), 
              dur_55 + theme(axis.title.x = element_blank()),
              fl_55 + theme(axis.title.x = element_blank()),
              max_55 + theme(axis.title.x = element_blank()), 
              load_55,
            ncol = 1, nrow =5)
combine_55

ggsave('figures/combine_twosp/all_55.png', combine_55, height = 15, width = 5,bg='transparent')

combine_noFL_55 <- 
    ggarrange(mc_55 + theme(axis.title.x = element_blank()), 
              dur_55 + theme(axis.title.x = element_blank()),
              max_55 + theme(axis.title.x = element_blank()), 
              load_55,
            ncol = 1, nrow =4)
ggsave('figures/combine_twosp/all_noFL_55.png', combine_noFL_55, height = 15, width = 5,bg='transparent')



combine_35 <- 
    ggarrange(mc_35 + theme(axis.title.x = element_blank()), 
              dur_35 + theme(axis.title.x = element_blank()),
              fl_35 + theme(axis.title.x = element_blank()),
              max_35 + theme(axis.title.x = element_blank()), 
              load_35,
            ncol = 1, nrow =5)
combine_35

ggsave('figures/combine_twosp/all_35.png', combine_35, height = 15, width = 5,bg='transparent')


combine_noFL_35 <- 
    ggarrange(mc_35 + theme(axis.title.x = element_blank()), 
              dur_35 + theme(axis.title.x = element_blank()),
              max_35 + theme(axis.title.x = element_blank()), 
              load_35,
            ncol = 1, nrow =4)
ggsave('figures/combine_twosp/all_noFL_35.png', combine_noFL_35, height = 15, width = 5,bg='transparent')

summarize one species info for additive vs non additive stuff

write.csv(one, "additive_data/one_sp_raw.csv", row.names = F)
write.csv(two, "additive_data/two_sp_raw.csv", row.names = F)


#for the data using multiple TC, we want the combined TC 1 and 2 dataset
one_load_condensed
##     SPECIES      REP DRY.WEIGHT weight_goal goal_moisture_percent WET....bag.G.
## 1     PSSP6        5      19.29          20                    25         36.32
## 2     PSSP6        4      19.38          20                    15         34.59
## 3      BRTE        1      19.66          20                    15         34.48
## 4     ACTH7        4      19.69          20                    45         40.13
## 5     ACTH7        4      19.70          20                    15         34.79
## 6     PSSP6        4      19.79          20                    45         40.45
## 7      BRTE        1      19.80          20                    35         38.50
## 8      BRTE        3      19.81          20                    15         34.71
## 9     PSSP6 3 (REDO)      19.87          20                    25         36.61
## 10     BRTE        5      19.91          20                    35         38.65
## 11    ACTH7 5 (REDO)      19.94          20                    15         34.66
## 12     BRTE 2 (REDO)      19.94          20                    10         34.07
## 13     BRTE        5      19.96          20                    10         33.91
## 14     BRTE       10      19.97          20                    35         38.68
## 15     BRTE        8      19.97          20                    35         39.34
## 16     BRTE        4      19.98          20                     5         32.88
## 17     BRTE        6      19.98          20                    15         34.86
## 18    PSSP6 1 (REDO)      19.98          20                    15         34.83
## 19     BRTE        2      19.99          20                    45         40.76
## 20     BRTE       11      19.99          20                    15         35.06
## 21     BRTE        4      19.99          20                    15         35.03
## 22     BRTE 3 (REDO)      19.99          20                    45         39.80
## 23     BRTE        5      20.01          20                    15         34.88
## 24     BRTE       12      20.01          20                    15         35.03
## 25     BRTE        4      20.01          20                    25         37.17
## 26     BRTE       12      20.01          20                    35         39.03
## 27     BRTE        7      20.01          20                    35         38.92
## 28     BRTE 1 (REDO)      20.01          20                    45         41.04
## 29     BRTE        4      20.02          20                    10         33.96
## 30     BRTE        9      20.02          20                    35         39.14
## 31     BRTE       13      20.02          20                    35         39.17
## 32     BRTE       11      20.04          20                    35         39.01
## 33    ACTH7 5 (REDO)      20.05          20                    45         40.60
## 34    PSSP6        5      20.06          20                    15         35.27
## 35     BRTE        9      20.07          20                    35         39.23
## 36    ACTH7 5 (REDO)      20.08          20                    35         38.92
## 37     BRTE        4      20.09          20                    35         39.12
## 38    ACTH7        4      20.11          20                    55         43.30
## 39    ACTH7 2 (REDO)      20.11          20                    55         42.60
## 40    ACTH7 1 (REDO)      20.12          20                    55         43.45
## 41     BRTE        2      20.20          20                    15         35.18
## 42     BRTE        5      20.21          20                    45         41.32
## 43    PSSP6        5      20.22          20                    55         43.63
## 44     BRTE        1      20.24          20                    25         37.13
## 45     BRTE        4      20.24          20                    45         41.26
## 46    ACTH7 3 (REDO)      20.36          20                    55         43.22
## 47    ACTH7        4      20.39          20                    35         39.60
## 48    ACTH7        5      20.41          20                    25         38.36
## 49     BRTE        2      20.43          20                    25         37.66
## 50     BRTE        1      20.45          20                    10         34.54
## 51     BRTE        5      20.45          20                    25         37.43
## 52     BRTE        2      20.46          20                    55         43.79
## 53     BRTE        2      20.50          20                     5         34.05
## 54    PSSP6        5      20.52          20                    45         41.55
## 55     BRTE        3      20.56          20                     5         33.59
## 56     BRTE        4      20.56          20                    55         43.88
## 57    PSSP6        4      20.60          20                    55         44.08
## 58     BRTE        2      20.61          20                    35         39.81
## 59    ACTH7        5      20.62          20                    55         43.80
## 60    PSSP6        5      20.62          20                    35         40.50
## 61    ACTH7        4      20.64          20                    25         38.16
## 62     BRTE        1      20.74          20                     5         33.99
## 63     BRTE        3      20.76          20                    10         34.88
## 64     BRTE        1      20.78          20                    55         44.02
## 65     BRTE        5      20.79          20                    55         44.24
## 66     BRTE        3      20.80          20                    55         44.47
## 67    PSSP6        4      20.82          20                    35         40.25
## 68    PSSP6        4      20.94          20                    25         38.38
## 69    PSSP6        1      29.11          30                    35         50.25
## 70    PSSP6        3      29.23          30                    55         58.06
## 71    ACTH7        2      29.32          30                    25         47.61
## 72    ACTH7        2      29.48          30                    45         54.78
## 73    PSSP6        1      29.59          30                    55         58.00
## 74    ACTH7        1      29.60          30                    45         54.98
## 75    PSSP6        3      29.63          30                    15         48.16
## 76    PSSP6        1      29.63          30                    25         48.32
## 77    PSSP6        2      30.12          30                    55         58.64
## 78    PSSP6        3      30.13          30                    45         55.91
## 79    PSSP6        2      30.19          30                    45         55.27
## 80    PSSP6        2      30.23          30                    35         53.45
## 81    ACTH7        1      30.36          30                    15         47.02
## 82    ACTH7        3      30.41          30                    15         46.76
## 83    ACTH7        3      30.41          30                    15         46.76
## 84    ACTH7        1      30.48          30                    25         50.46
## 85    PSSP6        3      30.50          30                    35         53.22
## 86    ACTH7        2      30.54          30                    35         53.13
## 87    ACTH7        3      30.60          30                    35         53.27
## 88    ACTH7        1      30.62          30                    35         53.45
## 89    PSSP6        2      30.68          30                    25         49.60
## 90    PSSP6        2      30.90          30                    15         47.61
## 91    PSSP6        1      30.91          30                    45         57.11
## 92    ACTH7        3      31.01          30                    25         50.86
## 93    PSSP6        5      19.29          20                    25         36.32
## 94    PSSP6        4      19.38          20                    15         34.59
## 95     BRTE        1      19.66          20                    15         34.48
## 96    ACTH7        4      19.69          20                    45         40.13
## 97    ACTH7        4      19.70          20                    15         34.79
## 98    PSSP6        4      19.79          20                    45         40.45
## 99     BRTE        1      19.80          20                    35         38.50
## 100    BRTE        3      19.81          20                    15         34.71
## 101   PSSP6 3 (REDO)      19.87          20                    25         36.61
## 102    BRTE        5      19.91          20                    35         38.65
## 103   ACTH7 5 (REDO)      19.94          20                    15         34.66
## 104    BRTE 2 (REDO)      19.94          20                    10         34.07
## 105    BRTE        5      19.96          20                    10         33.91
## 106    BRTE       10      19.97          20                    35         38.68
## 107    BRTE        8      19.97          20                    35         39.34
## 108    BRTE        4      19.98          20                     5         32.88
## 109    BRTE        6      19.98          20                    15         34.86
## 110   PSSP6 1 (REDO)      19.98          20                    15         34.83
## 111    BRTE        2      19.99          20                    45         40.76
## 112    BRTE       11      19.99          20                    15         35.06
## 113    BRTE        4      19.99          20                    15         35.03
## 114    BRTE 3 (REDO)      19.99          20                    45         39.80
## 115    BRTE        5      20.01          20                    15         34.88
## 116    BRTE       12      20.01          20                    15         35.03
## 117    BRTE        4      20.01          20                    25         37.17
## 118    BRTE       12      20.01          20                    35         39.03
## 119    BRTE        7      20.01          20                    35         38.92
## 120    BRTE 1 (REDO)      20.01          20                    45         41.04
## 121    BRTE        4      20.02          20                    10         33.96
## 122    BRTE        9      20.02          20                    35         39.14
## 123    BRTE       13      20.02          20                    35         39.17
## 124    BRTE       11      20.04          20                    35         39.01
## 125   ACTH7 5 (REDO)      20.05          20                    45         40.60
## 126   PSSP6        5      20.06          20                    15         35.27
## 127    BRTE        9      20.07          20                    35         39.23
## 128   ACTH7 5 (REDO)      20.08          20                    35         38.92
## 129    BRTE        4      20.09          20                    35         39.12
## 130   ACTH7        4      20.11          20                    55         43.30
## 131   ACTH7 2 (REDO)      20.11          20                    55         42.60
## 132   ACTH7 1 (REDO)      20.12          20                    55         43.45
## 133    BRTE        2      20.20          20                    15         35.18
## 134    BRTE        5      20.21          20                    45         41.32
## 135   PSSP6        5      20.22          20                    55         43.63
## 136    BRTE        1      20.24          20                    25         37.13
## 137    BRTE        4      20.24          20                    45         41.26
## 138   ACTH7 3 (REDO)      20.36          20                    55         43.22
## 139   ACTH7        4      20.39          20                    35         39.60
## 140   ACTH7        5      20.41          20                    25         38.36
## 141    BRTE        2      20.43          20                    25         37.66
## 142    BRTE        1      20.45          20                    10         34.54
## 143    BRTE        5      20.45          20                    25         37.43
## 144    BRTE        2      20.46          20                    55         43.79
## 145    BRTE        2      20.50          20                     5         34.05
## 146   PSSP6        5      20.52          20                    45         41.55
## 147    BRTE        3      20.56          20                     5         33.59
## 148    BRTE        4      20.56          20                    55         43.88
## 149   PSSP6        4      20.60          20                    55         44.08
## 150    BRTE        2      20.61          20                    35         39.81
## 151   ACTH7        5      20.62          20                    55         43.80
## 152   PSSP6        5      20.62          20                    35         40.50
## 153   ACTH7        4      20.64          20                    25         38.16
## 154    BRTE        1      20.74          20                     5         33.99
## 155    BRTE        3      20.76          20                    10         34.88
## 156    BRTE        1      20.78          20                    55         44.02
## 157    BRTE        5      20.79          20                    55         44.24
## 158    BRTE        3      20.80          20                    55         44.47
## 159   PSSP6        4      20.82          20                    35         40.25
## 160   PSSP6        4      20.94          20                    25         38.38
## 161   PSSP6        1      29.11          30                    35         50.25
## 162   PSSP6        3      29.23          30                    55         58.06
## 163   ACTH7        2      29.32          30                    25         47.61
## 164   ACTH7        2      29.48          30                    45         54.78
## 165   PSSP6        1      29.59          30                    55         58.00
## 166   ACTH7        1      29.60          30                    45         54.98
## 167   PSSP6        3      29.63          30                    15         48.16
## 168   PSSP6        1      29.63          30                    25         48.32
## 169   PSSP6        2      30.12          30                    55         58.64
## 170   PSSP6        3      30.13          30                    45         55.91
## 171   PSSP6        2      30.19          30                    45         55.27
## 172   PSSP6        2      30.23          30                    35         53.45
## 173   ACTH7        1      30.36          30                    15         47.02
## 174   ACTH7        3      30.41          30                    15         46.76
## 175   ACTH7        3      30.41          30                    15         46.76
## 176   ACTH7        1      30.48          30                    25         50.46
## 177   PSSP6        3      30.50          30                    35         53.22
## 178   ACTH7        2      30.54          30                    35         53.13
## 179   ACTH7        3      30.60          30                    35         53.27
## 180   ACTH7        1      30.62          30                    35         53.45
## 181   PSSP6        2      30.68          30                    25         49.60
## 182   PSSP6        2      30.90          30                    15         47.61
## 183   PSSP6        1      30.91          30                    45         57.11
## 184   ACTH7        3      31.01          30                    25         50.86
##     ACTUAL.MOISTURE.percent POST.BURN.MASS.ACTUAL MASS.CONSUMPTION
## 1                     25.04                  5.64         94.36000
## 2                     15.89                  3.14         96.86000
## 3                     14.65                  2.50         97.50000
## 4                     43.12                 20.12         79.88000
## 5                     15.08                  5.58         94.42000
## 6                     44.42                 13.52         86.48000
## 7                     34.14                  3.09         96.91000
## 8                     15.04                  3.65         96.35000
## 9                     24.11                  2.96         87.99676
## 10                    34.10                  3.17         96.83000
## 11                    13.74                  4.19         81.52557
## 12                     9.68                  3.93         82.03018
## 13                     9.87                  5.83         94.17000
## 14                    34.25                  7.98         92.02000
## 15                    35.70                  8.27         91.73000
## 16                     4.80                  3.50         96.50000
## 17                    14.66                  7.95         92.05000
## 18                    14.66                  3.72         83.76255
## 19                    44.17                  5.65         94.35000
## 20                    14.46                  4.22         95.78000
## 21                    14.66                  2.90         97.10000
## 22                    38.42                  5.53         80.01446
## 23                    14.74                  2.86         97.14000
## 24                    15.54                  4.01         95.99000
## 25                    24.64                 22.22         77.78000
## 26                    35.08                  4.10         95.90000
## 27                    34.68                 21.17         78.83000
## 28                    44.18                  4.35         84.92201
## 29                    10.14                  3.59         96.41000
## 30                    34.72                  4.21         95.79000
## 31                    35.21                 23.61         76.39000
## 32                    34.93                 18.20         81.80000
## 33                    43.29                 15.30         46.74556
## 34                    15.05                  4.23         95.77000
## 35                    34.68                 24.29         75.71000
## 36                    34.36                 18.08         32.98740
## 37                    34.40                  6.00         94.00000
## 38                    54.30                 11.15         88.85000
## 39                    52.71                 20.05         34.71182
## 40                    55.57                 16.93         45.91054
## 41                    15.15                  2.97         97.03000
## 42                    43.99                 10.56         89.44000
## 43                    55.69                  5.96         94.04000
## 44                    24.56                  3.44         96.56000
## 45                    45.21                 18.63         81.37000
## 46                    52.01                 18.73         39.48304
## 47                    34.58                 10.98         89.02000
## 48                    28.42                  4.93         95.07000
## 49                    26.14                  3.20         96.80000
## 50                    10.46                  2.99         97.01000
## 51                    24.65                  4.20         95.80000
## 52                    55.52                 26.24         73.76000
## 53                     5.95                  4.07         95.93000
## 54                    44.54                  5.72         94.28000
## 55                     5.11                  2.06         97.94000
## 56                    54.13                  3.96         96.04000
## 57                    55.10                  9.99         90.01000
## 58                    35.23                  4.04         95.96000
## 59                    53.10                 21.62         78.38000
## 60                    38.51                 14.65         85.35000
## 61                    25.82                  4.54         95.46000
## 62                     5.11                  2.50         97.50000
## 63                    10.65                  2.06         97.94000
## 64                    54.48                  4.74         95.26000
## 65                    54.02                 17.44         82.56000
## 66                    55.34                  3.26         96.74000
## 67                    34.97                  5.01         94.99000
## 68                    24.40                  7.14         92.86000
## 69                    34.59                  3.66         96.34000
## 70                    57.17                 37.41         62.59000
## 71                    20.94                  3.87         96.13000
## 72                    44.30                 13.29         86.71000
## 73                    54.78                 39.99         60.01000
## 74                    44.46                 15.27         84.73000
## 75                    21.70                  4.09         95.91000
## 76                    23.76                  5.52         94.48000
## 77                    53.95                  6.17         93.83000
## 78                    45.10                  3.95         96.05000
## 79                    42.56                 39.45         60.55000
## 80                    36.59                  3.91         96.09000
## 81                    15.51                  2.40         97.60000
## 82                    14.40                  4.55         95.45000
## 83                    14.40                  4.55         95.45000
## 84                    25.59                  2.86         97.14000
## 85                    34.59                  8.80         91.20000
## 86                    34.18                  6.43         93.57000
## 87                    33.89                  3.78         96.22000
## 88                    34.75                  5.13         94.87000
## 89                    25.62                  3.65         96.35000
## 90                    14.89                  4.04         95.96000
## 91                    45.16                 41.88         58.12000
## 92                    24.77                  2.44         97.56000
## 93                    25.04                  5.64         94.36000
## 94                    15.89                  3.14         96.86000
## 95                    14.65                  2.50         97.50000
## 96                    43.12                 20.12         79.88000
## 97                    15.08                  5.58         94.42000
## 98                    44.42                 13.52         86.48000
## 99                    34.14                  3.09         96.91000
## 100                   15.04                  3.65         96.35000
## 101                   24.11                  2.96         87.99676
## 102                   34.10                  3.17         96.83000
## 103                   13.74                  4.19         81.52557
## 104                    9.68                  3.93         82.03018
## 105                    9.87                  5.83         94.17000
## 106                   34.25                  7.98         92.02000
## 107                   35.70                  8.27         91.73000
## 108                    4.80                  3.50         96.50000
## 109                   14.66                  7.95         92.05000
## 110                   14.66                  3.72         83.76255
## 111                   44.17                  5.65         94.35000
## 112                   14.46                  4.22         95.78000
## 113                   14.66                  2.90         97.10000
## 114                   38.42                  5.53         80.01446
## 115                   14.74                  2.86         97.14000
## 116                   15.54                  4.01         95.99000
## 117                   24.64                 22.22         77.78000
## 118                   35.08                  4.10         95.90000
## 119                   34.68                 21.17         78.83000
## 120                   44.18                  4.35         84.92201
## 121                   10.14                  3.59         96.41000
## 122                   34.72                  4.21         95.79000
## 123                   35.21                 23.61         76.39000
## 124                   34.93                 18.20         81.80000
## 125                   43.29                 15.30         46.74556
## 126                   15.05                  4.23         95.77000
## 127                   34.68                 24.29         75.71000
## 128                   34.36                 18.08         32.98740
## 129                   34.40                  6.00         94.00000
## 130                   54.30                 11.15         88.85000
## 131                   52.71                 20.05         34.71182
## 132                   55.57                 16.93         45.91054
## 133                   15.15                  2.97         97.03000
## 134                   43.99                 10.56         89.44000
## 135                   55.69                  5.96         94.04000
## 136                   24.56                  3.44         96.56000
## 137                   45.21                 18.63         81.37000
## 138                   52.01                 18.73         39.48304
## 139                   34.58                 10.98         89.02000
## 140                   28.42                  4.93         95.07000
## 141                   26.14                  3.20         96.80000
## 142                   10.46                  2.99         97.01000
## 143                   24.65                  4.20         95.80000
## 144                   55.52                 26.24         73.76000
## 145                    5.95                  4.07         95.93000
## 146                   44.54                  5.72         94.28000
## 147                    5.11                  2.06         97.94000
## 148                   54.13                  3.96         96.04000
## 149                   55.10                  9.99         90.01000
## 150                   35.23                  4.04         95.96000
## 151                   53.10                 21.62         78.38000
## 152                   38.51                 14.65         85.35000
## 153                   25.82                  4.54         95.46000
## 154                    5.11                  2.50         97.50000
## 155                   10.65                  2.06         97.94000
## 156                   54.48                  4.74         95.26000
## 157                   54.02                 17.44         82.56000
## 158                   55.34                  3.26         96.74000
## 159                   34.97                  5.01         94.99000
## 160                   24.40                  7.14         92.86000
## 161                   34.59                  3.66         96.34000
## 162                   57.17                 37.41         62.59000
## 163                   20.94                  3.87         96.13000
## 164                   44.30                 13.29         86.71000
## 165                   54.78                 39.99         60.01000
## 166                   44.46                 15.27         84.73000
## 167                   21.70                  4.09         95.91000
## 168                   23.76                  5.52         94.48000
## 169                   53.95                  6.17         93.83000
## 170                   45.10                  3.95         96.05000
## 171                   42.56                 39.45         60.55000
## 172                   36.59                  3.91         96.09000
## 173                   15.51                  2.40         97.60000
## 174                   14.40                  4.55         95.45000
## 175                   14.40                  4.55         95.45000
## 176                   25.59                  2.86         97.14000
## 177                   34.59                  8.80         91.20000
## 178                   34.18                  6.43         93.57000
## 179                   33.89                  3.78         96.22000
## 180                   34.75                  5.13         94.87000
## 181                   25.62                  3.65         96.35000
## 182                   14.89                  4.04         95.96000
## 183                   45.16                 41.88         58.12000
## 184                   24.77                  2.44         97.56000
##     DRY.MASS.CONSUMED COMBUSTION. FLAME.HEIGHT.CM dur_ch1 dur_ch2 dur_ch3
## 1            18.58000           Y             115    87.5    86.5   112.0
## 2            18.54000           Y             140    73.0    65.5    64.5
## 3            18.79000           Y             110    70.5    72.0   112.0
## 4            19.71000           Y              40    36.0    28.0    23.5
## 5            18.98000           Y             140    67.0    88.5    63.5
## 6            19.47000           Y             100    71.0    65.5    77.5
## 7            18.96000           Y             105    67.0   107.5   107.5
## 8            18.99000           Y             110    69.0    72.0   108.5
## 9            14.89683           Y             140    73.5    69.0    91.5
## 10           19.07000           Y             140    68.0    83.0   129.5
## 11           21.01304           Y             135    83.0   105.0   118.0
## 12           19.70913           Y             140    69.5    73.0   142.0
## 13           19.25000           Y             120    78.0    87.0   102.5
## 14           19.37000           N              NA    46.5    49.0   110.5
## 15           19.38000           Y             140    55.0    54.0    79.0
## 16           19.16000           Y             140    60.5    70.0    94.0
## 17           19.38000           Y             135    65.5    76.5    82.0
## 18           18.61862           Y             140    91.0    79.5   102.5
## 19           19.27000           Y             110    34.5    47.0    79.5
## 20           19.20000           Y             110    64.0    73.5    93.0
## 21           19.14000           Y             140    70.5    82.5   125.0
## 22           27.66383           Y             115    65.0    77.0   122.5
## 23           19.15000           Y             140    60.5    70.0    82.0
## 24           19.21000           Y             140    74.0    77.0   114.5
## 25           20.12000           N              NA      NA      NA      NA
## 26           19.21000           N              NA    62.0    76.0   142.0
## 27           20.07000           N              NA      NA      NA      NA
## 28           21.73913           Y             140    68.0    75.0   118.5
## 29           19.20000           Y             115   106.5   104.0   110.5
## 30           19.23000           Y             135    60.0    74.0   113.5
## 31           20.20000           N              NA      NA      NA      NA
## 32           19.95000           N              NA      NA      NA    69.5
## 33           76.30923           Y             110    40.0    43.0    61.0
## 34           19.27000           Y             115    78.0    77.5    77.5
## 35           20.28000           N              NA      NA      NA      NA
## 36           90.03984           Y             130    24.5    48.0    46.0
## 37           19.39000           Y             110    86.5    89.5   135.5
## 38           19.66000           Y             120    51.5    80.0    63.0
## 39           99.70164           N              NA      NA      NA      NA
## 40           84.14513           Y              90    46.0   108.0   117.0
## 41           19.35000           Y             110    66.0    66.0    94.0
## 42           19.73000           Y              90    54.5    59.5   107.0
## 43           19.51000           N              35    70.0    97.0   116.5
## 44           19.41000           Y             110    64.5    78.0   117.0
## 45           20.16000           N              NA      NA      NA      NA
## 46           91.99411           Y              75    47.5    59.0    64.5
## 47           19.93000           Y             120    72.0    98.5    55.0
## 48           19.65000           Y             125    89.5    89.5    75.5
## 49           19.59000           Y             110    89.5   111.0   114.5
## 50           19.60000           Y             110    78.5    77.5   101.0
## 51           19.66000           Y             125    53.0    83.0    92.0
## 52           20.74000           Y              20    10.0     0.0    36.0
## 53           19.70000          Y              110    55.0    76.5   105.5
## 54           19.80000           Y             140    84.5    62.0    55.0
## 55           19.66000           Y             110    71.5    73.5   101.0
## 56           19.75000           N              NA    69.5    74.0    92.5
## 57           20.08000           Y             115    76.0    88.5    85.5
## 58           19.81000           Y             110    59.5    55.0    82.5
## 59           20.67000           Y              35    39.0    46.5    48.0
## 60           20.33000           N              80    21.5     8.0   295.0
## 61           19.86000           Y             100    80.5    76.0    63.5
## 62           19.86000           Y             105    65.0    72.0    90.0
## 63           19.86000           Y             110    48.0    47.5    86.5
## 64           20.01000           Y              90    52.0    43.5    68.5
## 65           20.63000           N              NA    42.0    25.0    62.5
## 66           19.96000           Y              90    72.0    83.5   125.5
## 67           20.06000           Y             135    87.0    99.0   102.5
## 68           20.28000           N              NA    55.0    52.5   117.5
## 69           28.24000           Y             105    99.0   110.0    99.0
## 70           29.51000           N              NA    32.5    40.0    41.0
## 71           28.45000           Y             110   106.5   107.5    96.0
## 72           28.93000           Y              95    67.5   121.5    63.5
## 73           29.94000           Y              20      NA      NA      NA
## 74           29.12000           Y             110   113.0   118.5   147.0
## 75           28.77000           Y             110   105.0   112.5    94.5
## 76           28.82000           Y             110   110.0   101.0   118.5
## 77           29.32000           Y             110   111.0   115.0   121.0
## 78           29.26000           Y             110    98.5   120.5   112.0
## 79           30.50000           N              NA     7.5     6.0     0.0
## 80           29.36000           Y             110   114.0   105.0   125.0
## 81           29.44000           Y             110    95.0    94.5    98.5
## 82           29.56000           Y             110    87.5    79.5    97.0
## 83           29.56000           Y             110   112.5   116.0    79.5
## 84           29.57000           Y             110    98.5   101.5    90.0
## 85           29.79000           Y             105   102.5   118.0   117.0
## 86           29.75000           Y             110    93.0   109.0    81.0
## 87           29.72000           Y             110   128.0   147.5   143.0
## 88           29.79000           Y             110    40.0   108.0   119.5
## 89           29.80000           Y             110   123.5   128.5   128.5
## 90           30.03000           Y             110   102.0    94.5    77.5
## 91           31.26000           N              NA     6.0     6.5     0.0
## 92           30.09000           Y             110    98.5    98.0    84.0
## 93           18.58000           Y             115    87.5    86.5   112.0
## 94           18.54000           Y             140    73.0    65.5    64.5
## 95           18.79000           Y             110    70.5    72.0   112.0
## 96           19.71000           Y              40    36.0    28.0    23.5
## 97           18.98000           Y             140    67.0    88.5    63.5
## 98           19.47000           Y             100    71.0    65.5    77.5
## 99           18.96000           Y             105    67.0   107.5   107.5
## 100          18.99000           Y             110    69.0    72.0   108.5
## 101          14.89683           Y             140    73.5    69.0    91.5
## 102          19.07000           Y             140    68.0    83.0   129.5
## 103          21.01304           Y             135    83.0   105.0   118.0
## 104          19.70913           Y             140    69.5    73.0   142.0
## 105          19.25000           Y             120    78.0    87.0   102.5
## 106          19.37000           N              NA    46.5    49.0   110.5
## 107          19.38000           Y             140    55.0    54.0    79.0
## 108          19.16000           Y             140    60.5    70.0    94.0
## 109          19.38000           Y             135    65.5    76.5    82.0
## 110          18.61862           Y             140    91.0    79.5   102.5
## 111          19.27000           Y             110    34.5    47.0    79.5
## 112          19.20000           Y             110    64.0    73.5    93.0
## 113          19.14000           Y             140    70.5    82.5   125.0
## 114          27.66383           Y             115    65.0    77.0   122.5
## 115          19.15000           Y             140    60.5    70.0    82.0
## 116          19.21000           Y             140    74.0    77.0   114.5
## 117          20.12000           N              NA      NA      NA      NA
## 118          19.21000           N              NA    62.0    76.0   142.0
## 119          20.07000           N              NA      NA      NA      NA
## 120          21.73913           Y             140    68.0    75.0   118.5
## 121          19.20000           Y             115   106.5   104.0   110.5
## 122          19.23000           Y             135    60.0    74.0   113.5
## 123          20.20000           N              NA      NA      NA      NA
## 124          19.95000           N              NA      NA      NA    69.5
## 125          76.30923           Y             110    40.0    43.0    61.0
## 126          19.27000           Y             115    78.0    77.5    77.5
## 127          20.28000           N              NA      NA      NA      NA
## 128          90.03984           Y             130    24.5    48.0    46.0
## 129          19.39000           Y             110    86.5    89.5   135.5
## 130          19.66000           Y             120    51.5    80.0    63.0
## 131          99.70164           N              NA      NA      NA      NA
## 132          84.14513           Y              90    46.0   108.0   117.0
## 133          19.35000           Y             110    66.0    66.0    94.0
## 134          19.73000           Y              90    54.5    59.5   107.0
## 135          19.51000           N              35    70.0    97.0   116.5
## 136          19.41000           Y             110    64.5    78.0   117.0
## 137          20.16000           N              NA      NA      NA      NA
## 138          91.99411           Y              75    47.5    59.0    64.5
## 139          19.93000           Y             120    72.0    98.5    55.0
## 140          19.65000           Y             125    89.5    89.5    75.5
## 141          19.59000           Y             110    89.5   111.0   114.5
## 142          19.60000           Y             110    78.5    77.5   101.0
## 143          19.66000           Y             125    53.0    83.0    92.0
## 144          20.74000           Y              20    10.0     0.0    36.0
## 145          19.70000          Y              110    55.0    76.5   105.5
## 146          19.80000           Y             140    84.5    62.0    55.0
## 147          19.66000           Y             110    71.5    73.5   101.0
## 148          19.75000           N              NA    69.5    74.0    92.5
## 149          20.08000           Y             115    76.0    88.5    85.5
## 150          19.81000           Y             110    59.5    55.0    82.5
## 151          20.67000           Y              35    39.0    46.5    48.0
## 152          20.33000           N              80    21.5     8.0   295.0
## 153          19.86000           Y             100    80.5    76.0    63.5
## 154          19.86000           Y             105    65.0    72.0    90.0
## 155          19.86000           Y             110    48.0    47.5    86.5
## 156          20.01000           Y              90    52.0    43.5    68.5
## 157          20.63000           N              NA    42.0    25.0    62.5
## 158          19.96000           Y              90    72.0    83.5   125.5
## 159          20.06000           Y             135    87.0    99.0   102.5
## 160          20.28000           N              NA    55.0    52.5   117.5
## 161          28.24000           Y             105    99.0   110.0    99.0
## 162          29.51000           N              NA    32.5    40.0    41.0
## 163          28.45000           Y             110   106.5   107.5    96.0
## 164          28.93000           Y              95    67.5   121.5    63.5
## 165          29.94000           Y              20      NA      NA      NA
## 166          29.12000           Y             110   113.0   118.5   147.0
## 167          28.77000           Y             110   105.0   112.5    94.5
## 168          28.82000           Y             110   110.0   101.0   118.5
## 169          29.32000           Y             110   111.0   115.0   121.0
## 170          29.26000           Y             110    98.5   120.5   112.0
## 171          30.50000           N              NA     7.5     6.0     0.0
## 172          29.36000           Y             110   114.0   105.0   125.0
## 173          29.44000           Y             110    95.0    94.5    98.5
## 174          29.56000           Y             110    87.5    79.5    97.0
## 175          29.56000           Y             110   112.5   116.0    79.5
## 176          29.57000           Y             110    98.5   101.5    90.0
## 177          29.79000           Y             105   102.5   118.0   117.0
## 178          29.75000           Y             110    93.0   109.0    81.0
## 179          29.72000           Y             110   128.0   147.5   143.0
## 180          29.79000           Y             110    40.0   108.0   119.5
## 181          29.80000           Y             110   123.5   128.5   128.5
## 182          30.03000           Y             110   102.0    94.5    77.5
## 183          31.26000           N              NA     6.0     6.5     0.0
## 184          30.09000           Y             110    98.5    98.0    84.0
##     max_ch1 max_ch2 max_ch3  load_ch3 goal_weight goal_moisture_percent_cont
## 1   1191.82 1200.90  750.11  91275.52          20                          4
## 2   1127.21  644.91 1124.74  60260.71          20                          3
## 3   1129.76  510.94  944.73  93122.91          20                          3
## 4    531.77  155.97  125.17   5479.93          20                          6
## 5    750.82  821.46 1010.50  53782.18          20                          3
## 6   1043.17  873.63  929.19  67764.44          20                          6
## 7    796.92  624.04  430.26  45930.35          20                          5
## 8    575.37  328.21  721.88  73293.10          20                          3
## 9   1086.83  639.24  759.97  67671.65          20                          4
## 10  1104.43 1065.73  881.77 116235.28          20                          5
## 11   646.92  343.24  873.19  98959.15          20                          3
## 12   969.71  846.11  948.46 128904.45          20                          2
## 13   713.14  666.75  782.23  87583.23          20                          2
## 14   132.37  182.85  973.69 101774.82          20                          5
## 15   621.67  721.95  559.33  47952.07          20                          5
## 16   808.98  635.76  892.46  68891.96          20                          1
## 17   969.85  676.07 1061.20  69648.74          20                          3
## 18  1482.78  760.04  678.30  78461.91          20                          3
## 19   428.47  597.44  682.58  45685.23          20                          6
## 20   325.22  361.67  718.95  56370.83          20                          3
## 21  1114.94  703.95  898.29 112993.41          20                          3
## 22   401.81  337.40 1364.77 114346.43          20                          6
## 23   891.82  813.94  792.50  55338.45          20                          3
## 24  1013.31  982.98  693.30  66903.87          20                          3
## 25    37.02   36.76   37.26        NA          20                          4
## 26   162.78  237.60  722.61 110943.65          20                          5
## 27    35.67   33.93   29.69        NA          20                          5
## 28   267.98  344.36 1399.75 117521.66          20                          6
## 29  1283.66 1116.18 1026.00  81247.29          20                          2
## 30   918.33  732.24  838.85  72468.70          20                          5
## 31    43.25   38.50   28.80        NA          20                          5
## 32    46.31   37.72  210.51  23125.98          20                          5
## 33   406.99  216.81  265.97  23209.97          20                          6
## 34  1190.79 1075.88  894.44  77282.65          20                          3
## 35    34.23   33.54   32.60        NA          20                          5
## 36   165.26  263.36  977.80  42320.75          20                          5
## 37   845.24  829.63  875.51 103533.47          20                          5
## 38   121.57  947.21 1180.34  60735.76          20                          7
## 39    55.44   66.37   65.12        NA          20                          7
## 40   565.99  667.22  889.77  99165.55          20                          7
## 41   513.54  436.58  779.91  61021.02          20                          3
## 42   630.03  137.55  333.60  47165.76          20                          6
## 43   271.34  311.81  533.67  70390.19          20                          7
## 44  1015.29  826.56 1006.52 105821.33          20                          4
## 45    54.33   51.21   73.16        NA          20                          6
## 46   376.60  583.45  667.19  48651.29          20                          7
## 47   921.59 1114.65  874.30  39377.79          20                          5
## 48   986.83  879.02  906.05  58364.92          20                          4
## 49   410.66  541.64 1254.28 139031.69          20                          4
## 50  1238.78 1126.08  572.03  56389.12          20                          2
## 51   118.15  947.63  971.13  63434.19          20                          4
## 52   101.82   93.52  394.18  14519.48          20                          7
## 53   227.94  370.78  598.12  54974.49          20                          1
## 54   777.72  790.02 1015.68  45070.62          20                          6
## 55  1213.26  865.57  675.41  75742.97          20                          1
## 56   399.51  502.27  900.66  64572.33          20                          7
## 57   961.17  874.73  901.18  74467.78          20                          7
## 58   520.64  218.60  201.83  24758.37          20                          5
## 59   350.08  759.02 1204.28  47044.34          20                          7
## 60   179.73  116.32  293.86 101834.72          20                          5
## 61  1207.44 1037.25  918.72  53429.13          20                          4
## 62   511.88  719.36  371.24  39792.57          20                          1
## 63   757.89  479.72  534.62  37691.26          20                          2
## 64   238.42  267.11  453.48  19730.11          20                          7
## 65   186.15  108.60  359.53  29195.46          20                          7
## 66   422.97  422.16  581.77  80466.03          20                          7
## 67  1067.28 1109.41  893.80  94851.95          20                          5
## 68   213.10  251.51  805.96  65241.06          20                          4
## 69  1056.48  825.28  718.91  91291.85          30                          5
## 70   172.65  570.34  549.23  27303.30          30                          7
## 71  1072.49  608.97  947.84  96815.15          30                          4
## 72   156.09  815.32 1202.49  70701.49          30                          6
## 73    95.16   57.73   55.66        NA          30                          7
## 74   343.40  446.77  724.15  89440.46          30                          6
## 75   826.13  729.02 1162.92  92456.09          30                          3
## 76  1213.85  506.84  884.76  84506.48          30                          4
## 77   602.51  486.58  492.12  59598.31          30                          7
## 78   908.59  775.70 1013.80 111516.65          30                          6
## 79   116.87  111.81   73.15      0.00          30                          6
## 80   497.75  555.26  329.62  53147.01          30                          5
## 81   588.30  601.66  697.02  68236.77          30                          3
## 82   652.67  717.86  968.63  69013.38          30                          3
## 83   431.68  745.96 1025.93  87354.42          30                          3
## 84  1159.68  844.68  813.05  72874.62          30                          4
## 85   625.77  890.62  854.11  83032.57          30                          5
## 86  1021.57  834.93 1140.78  92148.49          30                          5
## 87   690.68  689.15 1000.97 101891.05          30                          5
## 88   119.14  863.51  959.62 101707.53          30                          5
## 89   278.85  404.44  891.28  73417.31          30                          4
## 90   814.42  935.56 1323.93  68387.66          30                          3
## 91   132.58  138.30   83.57      0.00          30                          6
## 92   909.92  796.24 1115.20  88252.82          30                          4
## 93  1191.82 1200.90  750.11  91275.52          20                          4
## 94  1127.21  644.91 1124.74  60260.71          20                          3
## 95  1129.76  510.94  944.73  93122.91          20                          3
## 96   531.77  155.97  125.17   5479.93          20                          6
## 97   750.82  821.46 1010.50  53782.18          20                          3
## 98  1043.17  873.63  929.19  67764.44          20                          6
## 99   796.92  624.04  430.26  45930.35          20                          5
## 100  575.37  328.21  721.88  73293.10          20                          3
## 101 1086.83  639.24  759.97  67671.65          20                          4
## 102 1104.43 1065.73  881.77 116235.28          20                          5
## 103  646.92  343.24  873.19  98959.15          20                          3
## 104  969.71  846.11  948.46 128904.45          20                          2
## 105  713.14  666.75  782.23  87583.23          20                          2
## 106  132.37  182.85  973.69 101774.82          20                          5
## 107  621.67  721.95  559.33  47952.07          20                          5
## 108  808.98  635.76  892.46  68891.96          20                          1
## 109  969.85  676.07 1061.20  69648.74          20                          3
## 110 1482.78  760.04  678.30  78461.91          20                          3
## 111  428.47  597.44  682.58  45685.23          20                          6
## 112  325.22  361.67  718.95  56370.83          20                          3
## 113 1114.94  703.95  898.29 112993.41          20                          3
## 114  401.81  337.40 1364.77 114346.43          20                          6
## 115  891.82  813.94  792.50  55338.45          20                          3
## 116 1013.31  982.98  693.30  66903.87          20                          3
## 117   37.02   36.76   37.26        NA          20                          4
## 118  162.78  237.60  722.61 110943.65          20                          5
## 119   35.67   33.93   29.69        NA          20                          5
## 120  267.98  344.36 1399.75 117521.66          20                          6
## 121 1283.66 1116.18 1026.00  81247.29          20                          2
## 122  918.33  732.24  838.85  72468.70          20                          5
## 123   43.25   38.50   28.80        NA          20                          5
## 124   46.31   37.72  210.51  23125.98          20                          5
## 125  406.99  216.81  265.97  23209.97          20                          6
## 126 1190.79 1075.88  894.44  77282.65          20                          3
## 127   34.23   33.54   32.60        NA          20                          5
## 128  165.26  263.36  977.80  42320.75          20                          5
## 129  845.24  829.63  875.51 103533.47          20                          5
## 130  121.57  947.21 1180.34  60735.76          20                          7
## 131   55.44   66.37   65.12        NA          20                          7
## 132  565.99  667.22  889.77  99165.55          20                          7
## 133  513.54  436.58  779.91  61021.02          20                          3
## 134  630.03  137.55  333.60  47165.76          20                          6
## 135  271.34  311.81  533.67  70390.19          20                          7
## 136 1015.29  826.56 1006.52 105821.33          20                          4
## 137   54.33   51.21   73.16        NA          20                          6
## 138  376.60  583.45  667.19  48651.29          20                          7
## 139  921.59 1114.65  874.30  39377.79          20                          5
## 140  986.83  879.02  906.05  58364.92          20                          4
## 141  410.66  541.64 1254.28 139031.69          20                          4
## 142 1238.78 1126.08  572.03  56389.12          20                          2
## 143  118.15  947.63  971.13  63434.19          20                          4
## 144  101.82   93.52  394.18  14519.48          20                          7
## 145  227.94  370.78  598.12  54974.49          20                          1
## 146  777.72  790.02 1015.68  45070.62          20                          6
## 147 1213.26  865.57  675.41  75742.97          20                          1
## 148  399.51  502.27  900.66  64572.33          20                          7
## 149  961.17  874.73  901.18  74467.78          20                          7
## 150  520.64  218.60  201.83  24758.37          20                          5
## 151  350.08  759.02 1204.28  47044.34          20                          7
## 152  179.73  116.32  293.86 101834.72          20                          5
## 153 1207.44 1037.25  918.72  53429.13          20                          4
## 154  511.88  719.36  371.24  39792.57          20                          1
## 155  757.89  479.72  534.62  37691.26          20                          2
## 156  238.42  267.11  453.48  19730.11          20                          7
## 157  186.15  108.60  359.53  29195.46          20                          7
## 158  422.97  422.16  581.77  80466.03          20                          7
## 159 1067.28 1109.41  893.80  94851.95          20                          5
## 160  213.10  251.51  805.96  65241.06          20                          4
## 161 1056.48  825.28  718.91  91291.85          30                          5
## 162  172.65  570.34  549.23  27303.30          30                          7
## 163 1072.49  608.97  947.84  96815.15          30                          4
## 164  156.09  815.32 1202.49  70701.49          30                          6
## 165   95.16   57.73   55.66        NA          30                          7
## 166  343.40  446.77  724.15  89440.46          30                          6
## 167  826.13  729.02 1162.92  92456.09          30                          3
## 168 1213.85  506.84  884.76  84506.48          30                          4
## 169  602.51  486.58  492.12  59598.31          30                          7
## 170  908.59  775.70 1013.80 111516.65          30                          6
## 171  116.87  111.81   73.15      0.00          30                          6
## 172  497.75  555.26  329.62  53147.01          30                          5
## 173  588.30  601.66  697.02  68236.77          30                          3
## 174  652.67  717.86  968.63  69013.38          30                          3
## 175  431.68  745.96 1025.93  87354.42          30                          3
## 176 1159.68  844.68  813.05  72874.62          30                          4
## 177  625.77  890.62  854.11  83032.57          30                          5
## 178 1021.57  834.93 1140.78  92148.49          30                          5
## 179  690.68  689.15 1000.97 101891.05          30                          5
## 180  119.14  863.51  959.62 101707.53          30                          5
## 181  278.85  404.44  891.28  73417.31          30                          4
## 182  814.42  935.56 1323.93  68387.66          30                          3
## 183  132.58  138.30   83.57      0.00          30                          6
## 184  909.92  796.24 1115.20  88252.82          30                          4
##      channel      load       dur
## 1   load_ch1  63500.05  63500.05
## 2   load_ch1  54010.14  54010.14
## 3   load_ch1  47058.15  47058.15
## 4   load_ch1  17135.67  17135.67
## 5   load_ch1  44065.50  44065.50
## 6   load_ch1  63542.88  63542.88
## 7   load_ch1  34568.82  34568.82
## 8   load_ch1  32824.50  32824.50
## 9   load_ch1  50137.03  50137.03
## 10  load_ch1  45710.07  45710.07
## 11  load_ch1  43406.99  43406.99
## 12  load_ch1  42528.20  42528.20
## 13  load_ch1  38652.30  38652.30
## 14  load_ch1  10795.13  10795.13
## 15  load_ch1  25745.45  25745.45
## 16  load_ch1  32733.36  32733.36
## 17  load_ch1  42461.87  42461.87
## 18  load_ch1  65292.57  65292.57
## 19  load_ch1  13029.17  13029.17
## 20  load_ch1  21202.22  21202.22
## 21  load_ch1  53793.88  53793.88
## 22  load_ch1  25219.60  25219.60
## 23  load_ch1  36113.73  36113.73
## 24  load_ch1  44788.19  44788.19
## 25  load_ch1        NA        NA
## 26  load_ch1  16824.58  16824.58
## 27  load_ch1        NA        NA
## 28  load_ch1  25878.56  25878.56
## 29  load_ch1 100261.23 100261.23
## 30  load_ch1  38046.09  38046.09
## 31  load_ch1        NA        NA
## 32  load_ch1        NA        NA
## 33  load_ch1  16475.96  16475.96
## 34  load_ch1  68893.65  68893.65
## 35  load_ch1        NA        NA
## 36  load_ch1   6635.73   6635.73
## 37  load_ch1  41750.58  41750.58
## 38  load_ch1  11606.96  11606.96
## 39  load_ch1        NA        NA
## 40  load_ch1  25814.38  25814.38
## 41  load_ch1  31468.23  31468.23
## 42  load_ch1  23229.58  23229.58
## 43  load_ch1  23412.62  23412.62
## 44  load_ch1  45301.23  45301.23
## 45  load_ch1        NA        NA
## 46  load_ch1  21225.06  21225.06
## 47  load_ch1  49545.35  49545.35
## 48  load_ch1  55460.64  55460.64
## 49  load_ch1  39851.35  39851.35
## 50  load_ch1  59971.40  59971.40
## 51  load_ch1  11614.71  11614.71
## 52  load_ch1   2026.31   2026.31
## 53  load_ch1  17859.34  17859.34
## 54  load_ch1  49777.26  49777.26
## 55  load_ch1  56208.44  56208.44
## 56  load_ch1  26233.83  26233.83
## 57  load_ch1  47223.31  47223.31
## 58  load_ch1  22528.57  22528.57
## 59  load_ch1  15418.84  15418.84
## 60  load_ch1   5517.72   5517.72
## 61  load_ch1  75929.14  75929.14
## 62  load_ch1  26340.12  26340.12
## 63  load_ch1  25404.77  25404.77
## 64  load_ch1  14830.33  14830.33
## 65  load_ch1  12073.72  12073.72
## 66  load_ch1  26703.04  26703.04
## 67  load_ch1  53474.81  53474.81
## 68  load_ch1  14733.57  14733.57
## 69  load_ch1  56704.48  56704.48
## 70  load_ch1   8539.53   8539.53
## 71  load_ch1  70190.42  70190.42
## 72  load_ch1  17560.30  17560.30
## 73  load_ch1      0.00      0.00
## 74  load_ch1  43422.90  43422.90
## 75  load_ch1  58794.90  58794.90
## 76  load_ch1  86440.66  86440.66
## 77  load_ch1  62327.91  62327.91
## 78  load_ch1  46197.34  46197.34
## 79  load_ch1   1645.45   1645.45
## 80  load_ch1  45318.24  45318.24
## 81  load_ch1  48637.77  48637.77
## 82  load_ch1  45532.64  45532.64
## 83  load_ch1  61409.91  61409.91
## 84  load_ch1  75863.08  75863.08
## 85  load_ch1  40415.76  40415.76
## 86  load_ch1  62837.33  62837.33
## 87  load_ch1  50866.20  50866.20
## 88  load_ch1   9028.10   9028.10
## 89  load_ch1  40841.40  40841.40
## 90  load_ch1  52927.75  52927.75
## 91  load_ch1   1398.74   1398.74
## 92  load_ch1  75621.94  75621.94
## 93  load_ch2  62385.88  62385.88
## 94  load_ch2  42059.95  42059.95
## 95  load_ch2  38326.84  38326.84
## 96  load_ch2   7286.98   7286.98
## 97  load_ch2  55604.26  55604.26
## 98  load_ch2  52775.81  52775.81
## 99  load_ch2  43225.46  43225.46
## 100 load_ch2  32774.70  32774.70
## 101 load_ch2  37795.01  37795.01
## 102 load_ch2  56898.25  56898.25
## 103 load_ch2  42802.81  42802.81
## 104 load_ch2  45252.22  45252.22
## 105 load_ch2  40155.59  40155.59
## 106 load_ch2  14407.13  14407.13
## 107 load_ch2  26857.91  26857.91
## 108 load_ch2  36264.98  36264.98
## 109 load_ch2  40200.60  40200.60
## 110 load_ch2  48155.11  48155.11
## 111 load_ch2  19925.76  19925.76
## 112 load_ch2  26000.14  26000.14
## 113 load_ch2  50813.98  50813.98
## 114 load_ch2  28610.22  28610.22
## 115 load_ch2  39674.85  39674.85
## 116 load_ch2  47880.71  47880.71
## 117 load_ch2        NA        NA
## 118 load_ch2  26821.75  26821.75
## 119 load_ch2        NA        NA
## 120 load_ch2  33114.51  33114.51
## 121 load_ch2  97300.02  97300.02
## 122 load_ch2  39167.01  39167.01
## 123 load_ch2        NA        NA
## 124 load_ch2        NA        NA
## 125 load_ch2  12526.59  12526.59
## 126 load_ch2  55106.91  55106.91
## 127 load_ch2        NA        NA
## 128 load_ch2  17371.53  17371.53
## 129 load_ch2  48323.63  48323.63
## 130 load_ch2  63351.34  63351.34
## 131 load_ch2        NA        NA
## 132 load_ch2  49631.02  49631.02
## 133 load_ch2  29560.02  29560.02
## 134 load_ch2  14159.36  14159.36
## 135 load_ch2  30990.75  30990.75
## 136 load_ch2  49407.69  49407.69
## 137 load_ch2        NA        NA
## 138 load_ch2  35739.26  35739.26
## 139 load_ch2  87760.78  87760.78
## 140 load_ch2  57427.75  57427.75
## 141 load_ch2  55951.83  55951.83
## 142 load_ch2  57652.57  57652.57
## 143 load_ch2  52061.46  52061.46
## 144 load_ch2      0.00      0.00
## 145 load_ch2  31574.19  31574.19
## 146 load_ch2  42706.88  42706.88
## 147 load_ch2  45629.64  45629.64
## 148 load_ch2  32460.61  32460.61
## 149 load_ch2  47910.58  47910.58
## 150 load_ch2  17648.39  17648.39
## 151 load_ch2  32440.59  32440.59
## 152 load_ch2   1697.93   1697.93
## 153 load_ch2  70532.80  70532.80
## 154 load_ch2  37461.14  37461.14
## 155 load_ch2  19188.00  19188.00
## 156 load_ch2  13058.86  13058.86
## 157 load_ch2   5264.34   5264.34
## 158 load_ch2  32961.17  32961.17
## 159 load_ch2  61581.90  61581.90
## 160 load_ch2  14847.84  14847.84
## 161 load_ch2  61044.32  61044.32
## 162 load_ch2  24827.91  24827.91
## 163 load_ch2  57336.75  57336.75
## 164 load_ch2 102324.49 102324.49
## 165 load_ch2        NA        NA
## 166 load_ch2  43893.20  43893.20
## 167 load_ch2  63718.45  63718.45
## 168 load_ch2  52999.08  52999.08
## 169 load_ch2  57832.53  57832.53
## 170 load_ch2  65899.98  65899.98
## 171 load_ch2   1284.30   1284.30
## 172 load_ch2  41331.31  41331.31
## 173 load_ch2  57845.41  57845.41
## 174 load_ch2  48113.95  48113.95
## 175 load_ch2  85351.05  85351.05
## 176 load_ch2  83842.88  83842.88
## 177 load_ch2  58422.77  58422.77
## 178 load_ch2  78429.00  78429.00
## 179 load_ch2  70360.52  70360.52
## 180 load_ch2  66373.06  66373.06
## 181 load_ch2  56077.78  56077.78
## 182 load_ch2  59933.88  59933.88
## 183 load_ch2   1545.71   1545.71
## 184 load_ch2  69014.85  69014.85
load_cols <- select(one_load_condensed,SPECIES:DRY.MASS.CONSUMED, load)
head(load_cols)
##   SPECIES REP DRY.WEIGHT weight_goal goal_moisture_percent WET....bag.G.
## 1   PSSP6   5      19.29          20                    25         36.32
## 2   PSSP6   4      19.38          20                    15         34.59
## 3    BRTE   1      19.66          20                    15         34.48
## 4   ACTH7   4      19.69          20                    45         40.13
## 5   ACTH7   4      19.70          20                    15         34.79
## 6   PSSP6   4      19.79          20                    45         40.45
##   ACTUAL.MOISTURE.percent POST.BURN.MASS.ACTUAL MASS.CONSUMPTION
## 1                   25.04                  5.64            94.36
## 2                   15.89                  3.14            96.86
## 3                   14.65                  2.50            97.50
## 4                   43.12                 20.12            79.88
## 5                   15.08                  5.58            94.42
## 6                   44.42                 13.52            86.48
##   DRY.MASS.CONSUMED     load
## 1             18.58 63500.05
## 2             18.54 54010.14
## 3             18.79 47058.15
## 4             19.71 17135.67
## 5             18.98 44065.50
## 6             19.47 63542.88
one_dur_condensed
##     SPECIES      REP DRY.WEIGHT weight_goal goal_moisture_percent WET....bag.G.
## 1     PSSP6        5      19.29          20                    25         36.32
## 2     PSSP6        4      19.38          20                    15         34.59
## 3      BRTE        1      19.66          20                    15         34.48
## 4     ACTH7        4      19.69          20                    45         40.13
## 5     ACTH7        4      19.70          20                    15         34.79
## 6     PSSP6        4      19.79          20                    45         40.45
## 7      BRTE        1      19.80          20                    35         38.50
## 8      BRTE        3      19.81          20                    15         34.71
## 9     PSSP6 3 (REDO)      19.87          20                    25         36.61
## 10     BRTE        5      19.91          20                    35         38.65
## 11    ACTH7 5 (REDO)      19.94          20                    15         34.66
## 12     BRTE 2 (REDO)      19.94          20                    10         34.07
## 13     BRTE        5      19.96          20                    10         33.91
## 14     BRTE       10      19.97          20                    35         38.68
## 15     BRTE        8      19.97          20                    35         39.34
## 16     BRTE        4      19.98          20                     5         32.88
## 17     BRTE        6      19.98          20                    15         34.86
## 18    PSSP6 1 (REDO)      19.98          20                    15         34.83
## 19     BRTE        2      19.99          20                    45         40.76
## 20     BRTE       11      19.99          20                    15         35.06
## 21     BRTE        4      19.99          20                    15         35.03
## 22     BRTE 3 (REDO)      19.99          20                    45         39.80
## 23     BRTE        5      20.01          20                    15         34.88
## 24     BRTE       12      20.01          20                    15         35.03
## 25     BRTE        4      20.01          20                    25         37.17
## 26     BRTE       12      20.01          20                    35         39.03
## 27     BRTE        7      20.01          20                    35         38.92
## 28     BRTE 1 (REDO)      20.01          20                    45         41.04
## 29     BRTE        4      20.02          20                    10         33.96
## 30     BRTE        9      20.02          20                    35         39.14
## 31     BRTE       13      20.02          20                    35         39.17
## 32     BRTE       11      20.04          20                    35         39.01
## 33    ACTH7 5 (REDO)      20.05          20                    45         40.60
## 34    PSSP6        5      20.06          20                    15         35.27
## 35     BRTE        9      20.07          20                    35         39.23
## 36    ACTH7 5 (REDO)      20.08          20                    35         38.92
## 37     BRTE        4      20.09          20                    35         39.12
## 38    ACTH7        4      20.11          20                    55         43.30
## 39    ACTH7 2 (REDO)      20.11          20                    55         42.60
## 40    ACTH7 1 (REDO)      20.12          20                    55         43.45
## 41     BRTE        2      20.20          20                    15         35.18
## 42     BRTE        5      20.21          20                    45         41.32
## 43    PSSP6        5      20.22          20                    55         43.63
## 44     BRTE        1      20.24          20                    25         37.13
## 45     BRTE        4      20.24          20                    45         41.26
## 46    ACTH7 3 (REDO)      20.36          20                    55         43.22
## 47    ACTH7        4      20.39          20                    35         39.60
## 48    ACTH7        5      20.41          20                    25         38.36
## 49     BRTE        2      20.43          20                    25         37.66
## 50     BRTE        1      20.45          20                    10         34.54
## 51     BRTE        5      20.45          20                    25         37.43
## 52     BRTE        2      20.46          20                    55         43.79
## 53     BRTE        2      20.50          20                     5         34.05
## 54    PSSP6        5      20.52          20                    45         41.55
## 55     BRTE        3      20.56          20                     5         33.59
## 56     BRTE        4      20.56          20                    55         43.88
## 57    PSSP6        4      20.60          20                    55         44.08
## 58     BRTE        2      20.61          20                    35         39.81
## 59    ACTH7        5      20.62          20                    55         43.80
## 60    PSSP6        5      20.62          20                    35         40.50
## 61    ACTH7        4      20.64          20                    25         38.16
## 62     BRTE        1      20.74          20                     5         33.99
## 63     BRTE        3      20.76          20                    10         34.88
## 64     BRTE        1      20.78          20                    55         44.02
## 65     BRTE        5      20.79          20                    55         44.24
## 66     BRTE        3      20.80          20                    55         44.47
## 67    PSSP6        4      20.82          20                    35         40.25
## 68    PSSP6        4      20.94          20                    25         38.38
## 69    PSSP6        1      29.11          30                    35         50.25
## 70    PSSP6        3      29.23          30                    55         58.06
## 71    ACTH7        2      29.32          30                    25         47.61
## 72    ACTH7        2      29.48          30                    45         54.78
## 73    PSSP6        1      29.59          30                    55         58.00
## 74    ACTH7        1      29.60          30                    45         54.98
## 75    PSSP6        3      29.63          30                    15         48.16
## 76    PSSP6        1      29.63          30                    25         48.32
## 77    PSSP6        2      30.12          30                    55         58.64
## 78    PSSP6        3      30.13          30                    45         55.91
## 79    PSSP6        2      30.19          30                    45         55.27
## 80    PSSP6        2      30.23          30                    35         53.45
## 81    ACTH7        1      30.36          30                    15         47.02
## 82    ACTH7        3      30.41          30                    15         46.76
## 83    ACTH7        3      30.41          30                    15         46.76
## 84    ACTH7        1      30.48          30                    25         50.46
## 85    PSSP6        3      30.50          30                    35         53.22
## 86    ACTH7        2      30.54          30                    35         53.13
## 87    ACTH7        3      30.60          30                    35         53.27
## 88    ACTH7        1      30.62          30                    35         53.45
## 89    PSSP6        2      30.68          30                    25         49.60
## 90    PSSP6        2      30.90          30                    15         47.61
## 91    PSSP6        1      30.91          30                    45         57.11
## 92    ACTH7        3      31.01          30                    25         50.86
## 93    PSSP6        5      19.29          20                    25         36.32
## 94    PSSP6        4      19.38          20                    15         34.59
## 95     BRTE        1      19.66          20                    15         34.48
## 96    ACTH7        4      19.69          20                    45         40.13
## 97    ACTH7        4      19.70          20                    15         34.79
## 98    PSSP6        4      19.79          20                    45         40.45
## 99     BRTE        1      19.80          20                    35         38.50
## 100    BRTE        3      19.81          20                    15         34.71
## 101   PSSP6 3 (REDO)      19.87          20                    25         36.61
## 102    BRTE        5      19.91          20                    35         38.65
## 103   ACTH7 5 (REDO)      19.94          20                    15         34.66
## 104    BRTE 2 (REDO)      19.94          20                    10         34.07
## 105    BRTE        5      19.96          20                    10         33.91
## 106    BRTE       10      19.97          20                    35         38.68
## 107    BRTE        8      19.97          20                    35         39.34
## 108    BRTE        4      19.98          20                     5         32.88
## 109    BRTE        6      19.98          20                    15         34.86
## 110   PSSP6 1 (REDO)      19.98          20                    15         34.83
## 111    BRTE        2      19.99          20                    45         40.76
## 112    BRTE       11      19.99          20                    15         35.06
## 113    BRTE        4      19.99          20                    15         35.03
## 114    BRTE 3 (REDO)      19.99          20                    45         39.80
## 115    BRTE        5      20.01          20                    15         34.88
## 116    BRTE       12      20.01          20                    15         35.03
## 117    BRTE        4      20.01          20                    25         37.17
## 118    BRTE       12      20.01          20                    35         39.03
## 119    BRTE        7      20.01          20                    35         38.92
## 120    BRTE 1 (REDO)      20.01          20                    45         41.04
## 121    BRTE        4      20.02          20                    10         33.96
## 122    BRTE        9      20.02          20                    35         39.14
## 123    BRTE       13      20.02          20                    35         39.17
## 124    BRTE       11      20.04          20                    35         39.01
## 125   ACTH7 5 (REDO)      20.05          20                    45         40.60
## 126   PSSP6        5      20.06          20                    15         35.27
## 127    BRTE        9      20.07          20                    35         39.23
## 128   ACTH7 5 (REDO)      20.08          20                    35         38.92
## 129    BRTE        4      20.09          20                    35         39.12
## 130   ACTH7        4      20.11          20                    55         43.30
## 131   ACTH7 2 (REDO)      20.11          20                    55         42.60
## 132   ACTH7 1 (REDO)      20.12          20                    55         43.45
## 133    BRTE        2      20.20          20                    15         35.18
## 134    BRTE        5      20.21          20                    45         41.32
## 135   PSSP6        5      20.22          20                    55         43.63
## 136    BRTE        1      20.24          20                    25         37.13
## 137    BRTE        4      20.24          20                    45         41.26
## 138   ACTH7 3 (REDO)      20.36          20                    55         43.22
## 139   ACTH7        4      20.39          20                    35         39.60
## 140   ACTH7        5      20.41          20                    25         38.36
## 141    BRTE        2      20.43          20                    25         37.66
## 142    BRTE        1      20.45          20                    10         34.54
## 143    BRTE        5      20.45          20                    25         37.43
## 144    BRTE        2      20.46          20                    55         43.79
## 145    BRTE        2      20.50          20                     5         34.05
## 146   PSSP6        5      20.52          20                    45         41.55
## 147    BRTE        3      20.56          20                     5         33.59
## 148    BRTE        4      20.56          20                    55         43.88
## 149   PSSP6        4      20.60          20                    55         44.08
## 150    BRTE        2      20.61          20                    35         39.81
## 151   ACTH7        5      20.62          20                    55         43.80
## 152   PSSP6        5      20.62          20                    35         40.50
## 153   ACTH7        4      20.64          20                    25         38.16
## 154    BRTE        1      20.74          20                     5         33.99
## 155    BRTE        3      20.76          20                    10         34.88
## 156    BRTE        1      20.78          20                    55         44.02
## 157    BRTE        5      20.79          20                    55         44.24
## 158    BRTE        3      20.80          20                    55         44.47
## 159   PSSP6        4      20.82          20                    35         40.25
## 160   PSSP6        4      20.94          20                    25         38.38
## 161   PSSP6        1      29.11          30                    35         50.25
## 162   PSSP6        3      29.23          30                    55         58.06
## 163   ACTH7        2      29.32          30                    25         47.61
## 164   ACTH7        2      29.48          30                    45         54.78
## 165   PSSP6        1      29.59          30                    55         58.00
## 166   ACTH7        1      29.60          30                    45         54.98
## 167   PSSP6        3      29.63          30                    15         48.16
## 168   PSSP6        1      29.63          30                    25         48.32
## 169   PSSP6        2      30.12          30                    55         58.64
## 170   PSSP6        3      30.13          30                    45         55.91
## 171   PSSP6        2      30.19          30                    45         55.27
## 172   PSSP6        2      30.23          30                    35         53.45
## 173   ACTH7        1      30.36          30                    15         47.02
## 174   ACTH7        3      30.41          30                    15         46.76
## 175   ACTH7        3      30.41          30                    15         46.76
## 176   ACTH7        1      30.48          30                    25         50.46
## 177   PSSP6        3      30.50          30                    35         53.22
## 178   ACTH7        2      30.54          30                    35         53.13
## 179   ACTH7        3      30.60          30                    35         53.27
## 180   ACTH7        1      30.62          30                    35         53.45
## 181   PSSP6        2      30.68          30                    25         49.60
## 182   PSSP6        2      30.90          30                    15         47.61
## 183   PSSP6        1      30.91          30                    45         57.11
## 184   ACTH7        3      31.01          30                    25         50.86
##     ACTUAL.MOISTURE.percent POST.BURN.MASS.ACTUAL MASS.CONSUMPTION
## 1                     25.04                  5.64         94.36000
## 2                     15.89                  3.14         96.86000
## 3                     14.65                  2.50         97.50000
## 4                     43.12                 20.12         79.88000
## 5                     15.08                  5.58         94.42000
## 6                     44.42                 13.52         86.48000
## 7                     34.14                  3.09         96.91000
## 8                     15.04                  3.65         96.35000
## 9                     24.11                  2.96         87.99676
## 10                    34.10                  3.17         96.83000
## 11                    13.74                  4.19         81.52557
## 12                     9.68                  3.93         82.03018
## 13                     9.87                  5.83         94.17000
## 14                    34.25                  7.98         92.02000
## 15                    35.70                  8.27         91.73000
## 16                     4.80                  3.50         96.50000
## 17                    14.66                  7.95         92.05000
## 18                    14.66                  3.72         83.76255
## 19                    44.17                  5.65         94.35000
## 20                    14.46                  4.22         95.78000
## 21                    14.66                  2.90         97.10000
## 22                    38.42                  5.53         80.01446
## 23                    14.74                  2.86         97.14000
## 24                    15.54                  4.01         95.99000
## 25                    24.64                 22.22         77.78000
## 26                    35.08                  4.10         95.90000
## 27                    34.68                 21.17         78.83000
## 28                    44.18                  4.35         84.92201
## 29                    10.14                  3.59         96.41000
## 30                    34.72                  4.21         95.79000
## 31                    35.21                 23.61         76.39000
## 32                    34.93                 18.20         81.80000
## 33                    43.29                 15.30         46.74556
## 34                    15.05                  4.23         95.77000
## 35                    34.68                 24.29         75.71000
## 36                    34.36                 18.08         32.98740
## 37                    34.40                  6.00         94.00000
## 38                    54.30                 11.15         88.85000
## 39                    52.71                 20.05         34.71182
## 40                    55.57                 16.93         45.91054
## 41                    15.15                  2.97         97.03000
## 42                    43.99                 10.56         89.44000
## 43                    55.69                  5.96         94.04000
## 44                    24.56                  3.44         96.56000
## 45                    45.21                 18.63         81.37000
## 46                    52.01                 18.73         39.48304
## 47                    34.58                 10.98         89.02000
## 48                    28.42                  4.93         95.07000
## 49                    26.14                  3.20         96.80000
## 50                    10.46                  2.99         97.01000
## 51                    24.65                  4.20         95.80000
## 52                    55.52                 26.24         73.76000
## 53                     5.95                  4.07         95.93000
## 54                    44.54                  5.72         94.28000
## 55                     5.11                  2.06         97.94000
## 56                    54.13                  3.96         96.04000
## 57                    55.10                  9.99         90.01000
## 58                    35.23                  4.04         95.96000
## 59                    53.10                 21.62         78.38000
## 60                    38.51                 14.65         85.35000
## 61                    25.82                  4.54         95.46000
## 62                     5.11                  2.50         97.50000
## 63                    10.65                  2.06         97.94000
## 64                    54.48                  4.74         95.26000
## 65                    54.02                 17.44         82.56000
## 66                    55.34                  3.26         96.74000
## 67                    34.97                  5.01         94.99000
## 68                    24.40                  7.14         92.86000
## 69                    34.59                  3.66         96.34000
## 70                    57.17                 37.41         62.59000
## 71                    20.94                  3.87         96.13000
## 72                    44.30                 13.29         86.71000
## 73                    54.78                 39.99         60.01000
## 74                    44.46                 15.27         84.73000
## 75                    21.70                  4.09         95.91000
## 76                    23.76                  5.52         94.48000
## 77                    53.95                  6.17         93.83000
## 78                    45.10                  3.95         96.05000
## 79                    42.56                 39.45         60.55000
## 80                    36.59                  3.91         96.09000
## 81                    15.51                  2.40         97.60000
## 82                    14.40                  4.55         95.45000
## 83                    14.40                  4.55         95.45000
## 84                    25.59                  2.86         97.14000
## 85                    34.59                  8.80         91.20000
## 86                    34.18                  6.43         93.57000
## 87                    33.89                  3.78         96.22000
## 88                    34.75                  5.13         94.87000
## 89                    25.62                  3.65         96.35000
## 90                    14.89                  4.04         95.96000
## 91                    45.16                 41.88         58.12000
## 92                    24.77                  2.44         97.56000
## 93                    25.04                  5.64         94.36000
## 94                    15.89                  3.14         96.86000
## 95                    14.65                  2.50         97.50000
## 96                    43.12                 20.12         79.88000
## 97                    15.08                  5.58         94.42000
## 98                    44.42                 13.52         86.48000
## 99                    34.14                  3.09         96.91000
## 100                   15.04                  3.65         96.35000
## 101                   24.11                  2.96         87.99676
## 102                   34.10                  3.17         96.83000
## 103                   13.74                  4.19         81.52557
## 104                    9.68                  3.93         82.03018
## 105                    9.87                  5.83         94.17000
## 106                   34.25                  7.98         92.02000
## 107                   35.70                  8.27         91.73000
## 108                    4.80                  3.50         96.50000
## 109                   14.66                  7.95         92.05000
## 110                   14.66                  3.72         83.76255
## 111                   44.17                  5.65         94.35000
## 112                   14.46                  4.22         95.78000
## 113                   14.66                  2.90         97.10000
## 114                   38.42                  5.53         80.01446
## 115                   14.74                  2.86         97.14000
## 116                   15.54                  4.01         95.99000
## 117                   24.64                 22.22         77.78000
## 118                   35.08                  4.10         95.90000
## 119                   34.68                 21.17         78.83000
## 120                   44.18                  4.35         84.92201
## 121                   10.14                  3.59         96.41000
## 122                   34.72                  4.21         95.79000
## 123                   35.21                 23.61         76.39000
## 124                   34.93                 18.20         81.80000
## 125                   43.29                 15.30         46.74556
## 126                   15.05                  4.23         95.77000
## 127                   34.68                 24.29         75.71000
## 128                   34.36                 18.08         32.98740
## 129                   34.40                  6.00         94.00000
## 130                   54.30                 11.15         88.85000
## 131                   52.71                 20.05         34.71182
## 132                   55.57                 16.93         45.91054
## 133                   15.15                  2.97         97.03000
## 134                   43.99                 10.56         89.44000
## 135                   55.69                  5.96         94.04000
## 136                   24.56                  3.44         96.56000
## 137                   45.21                 18.63         81.37000
## 138                   52.01                 18.73         39.48304
## 139                   34.58                 10.98         89.02000
## 140                   28.42                  4.93         95.07000
## 141                   26.14                  3.20         96.80000
## 142                   10.46                  2.99         97.01000
## 143                   24.65                  4.20         95.80000
## 144                   55.52                 26.24         73.76000
## 145                    5.95                  4.07         95.93000
## 146                   44.54                  5.72         94.28000
## 147                    5.11                  2.06         97.94000
## 148                   54.13                  3.96         96.04000
## 149                   55.10                  9.99         90.01000
## 150                   35.23                  4.04         95.96000
## 151                   53.10                 21.62         78.38000
## 152                   38.51                 14.65         85.35000
## 153                   25.82                  4.54         95.46000
## 154                    5.11                  2.50         97.50000
## 155                   10.65                  2.06         97.94000
## 156                   54.48                  4.74         95.26000
## 157                   54.02                 17.44         82.56000
## 158                   55.34                  3.26         96.74000
## 159                   34.97                  5.01         94.99000
## 160                   24.40                  7.14         92.86000
## 161                   34.59                  3.66         96.34000
## 162                   57.17                 37.41         62.59000
## 163                   20.94                  3.87         96.13000
## 164                   44.30                 13.29         86.71000
## 165                   54.78                 39.99         60.01000
## 166                   44.46                 15.27         84.73000
## 167                   21.70                  4.09         95.91000
## 168                   23.76                  5.52         94.48000
## 169                   53.95                  6.17         93.83000
## 170                   45.10                  3.95         96.05000
## 171                   42.56                 39.45         60.55000
## 172                   36.59                  3.91         96.09000
## 173                   15.51                  2.40         97.60000
## 174                   14.40                  4.55         95.45000
## 175                   14.40                  4.55         95.45000
## 176                   25.59                  2.86         97.14000
## 177                   34.59                  8.80         91.20000
## 178                   34.18                  6.43         93.57000
## 179                   33.89                  3.78         96.22000
## 180                   34.75                  5.13         94.87000
## 181                   25.62                  3.65         96.35000
## 182                   14.89                  4.04         95.96000
## 183                   45.16                 41.88         58.12000
## 184                   24.77                  2.44         97.56000
##     DRY.MASS.CONSUMED COMBUSTION. FLAME.HEIGHT.CM dur_ch3 max_ch1 max_ch2
## 1            18.58000           Y             115   112.0 1191.82 1200.90
## 2            18.54000           Y             140    64.5 1127.21  644.91
## 3            18.79000           Y             110   112.0 1129.76  510.94
## 4            19.71000           Y              40    23.5  531.77  155.97
## 5            18.98000           Y             140    63.5  750.82  821.46
## 6            19.47000           Y             100    77.5 1043.17  873.63
## 7            18.96000           Y             105   107.5  796.92  624.04
## 8            18.99000           Y             110   108.5  575.37  328.21
## 9            14.89683           Y             140    91.5 1086.83  639.24
## 10           19.07000           Y             140   129.5 1104.43 1065.73
## 11           21.01304           Y             135   118.0  646.92  343.24
## 12           19.70913           Y             140   142.0  969.71  846.11
## 13           19.25000           Y             120   102.5  713.14  666.75
## 14           19.37000           N              NA   110.5  132.37  182.85
## 15           19.38000           Y             140    79.0  621.67  721.95
## 16           19.16000           Y             140    94.0  808.98  635.76
## 17           19.38000           Y             135    82.0  969.85  676.07
## 18           18.61862           Y             140   102.5 1482.78  760.04
## 19           19.27000           Y             110    79.5  428.47  597.44
## 20           19.20000           Y             110    93.0  325.22  361.67
## 21           19.14000           Y             140   125.0 1114.94  703.95
## 22           27.66383           Y             115   122.5  401.81  337.40
## 23           19.15000           Y             140    82.0  891.82  813.94
## 24           19.21000           Y             140   114.5 1013.31  982.98
## 25           20.12000           N              NA      NA   37.02   36.76
## 26           19.21000           N              NA   142.0  162.78  237.60
## 27           20.07000           N              NA      NA   35.67   33.93
## 28           21.73913           Y             140   118.5  267.98  344.36
## 29           19.20000           Y             115   110.5 1283.66 1116.18
## 30           19.23000           Y             135   113.5  918.33  732.24
## 31           20.20000           N              NA      NA   43.25   38.50
## 32           19.95000           N              NA    69.5   46.31   37.72
## 33           76.30923           Y             110    61.0  406.99  216.81
## 34           19.27000           Y             115    77.5 1190.79 1075.88
## 35           20.28000           N              NA      NA   34.23   33.54
## 36           90.03984           Y             130    46.0  165.26  263.36
## 37           19.39000           Y             110   135.5  845.24  829.63
## 38           19.66000           Y             120    63.0  121.57  947.21
## 39           99.70164           N              NA      NA   55.44   66.37
## 40           84.14513           Y              90   117.0  565.99  667.22
## 41           19.35000           Y             110    94.0  513.54  436.58
## 42           19.73000           Y              90   107.0  630.03  137.55
## 43           19.51000           N              35   116.5  271.34  311.81
## 44           19.41000           Y             110   117.0 1015.29  826.56
## 45           20.16000           N              NA      NA   54.33   51.21
## 46           91.99411           Y              75    64.5  376.60  583.45
## 47           19.93000           Y             120    55.0  921.59 1114.65
## 48           19.65000           Y             125    75.5  986.83  879.02
## 49           19.59000           Y             110   114.5  410.66  541.64
## 50           19.60000           Y             110   101.0 1238.78 1126.08
## 51           19.66000           Y             125    92.0  118.15  947.63
## 52           20.74000           Y              20    36.0  101.82   93.52
## 53           19.70000          Y              110   105.5  227.94  370.78
## 54           19.80000           Y             140    55.0  777.72  790.02
## 55           19.66000           Y             110   101.0 1213.26  865.57
## 56           19.75000           N              NA    92.5  399.51  502.27
## 57           20.08000           Y             115    85.5  961.17  874.73
## 58           19.81000           Y             110    82.5  520.64  218.60
## 59           20.67000           Y              35    48.0  350.08  759.02
## 60           20.33000           N              80   295.0  179.73  116.32
## 61           19.86000           Y             100    63.5 1207.44 1037.25
## 62           19.86000           Y             105    90.0  511.88  719.36
## 63           19.86000           Y             110    86.5  757.89  479.72
## 64           20.01000           Y              90    68.5  238.42  267.11
## 65           20.63000           N              NA    62.5  186.15  108.60
## 66           19.96000           Y              90   125.5  422.97  422.16
## 67           20.06000           Y             135   102.5 1067.28 1109.41
## 68           20.28000           N              NA   117.5  213.10  251.51
## 69           28.24000           Y             105    99.0 1056.48  825.28
## 70           29.51000           N              NA    41.0  172.65  570.34
## 71           28.45000           Y             110    96.0 1072.49  608.97
## 72           28.93000           Y              95    63.5  156.09  815.32
## 73           29.94000           Y              20      NA   95.16   57.73
## 74           29.12000           Y             110   147.0  343.40  446.77
## 75           28.77000           Y             110    94.5  826.13  729.02
## 76           28.82000           Y             110   118.5 1213.85  506.84
## 77           29.32000           Y             110   121.0  602.51  486.58
## 78           29.26000           Y             110   112.0  908.59  775.70
## 79           30.50000           N              NA     0.0  116.87  111.81
## 80           29.36000           Y             110   125.0  497.75  555.26
## 81           29.44000           Y             110    98.5  588.30  601.66
## 82           29.56000           Y             110    97.0  652.67  717.86
## 83           29.56000           Y             110    79.5  431.68  745.96
## 84           29.57000           Y             110    90.0 1159.68  844.68
## 85           29.79000           Y             105   117.0  625.77  890.62
## 86           29.75000           Y             110    81.0 1021.57  834.93
## 87           29.72000           Y             110   143.0  690.68  689.15
## 88           29.79000           Y             110   119.5  119.14  863.51
## 89           29.80000           Y             110   128.5  278.85  404.44
## 90           30.03000           Y             110    77.5  814.42  935.56
## 91           31.26000           N              NA     0.0  132.58  138.30
## 92           30.09000           Y             110    84.0  909.92  796.24
## 93           18.58000           Y             115   112.0 1191.82 1200.90
## 94           18.54000           Y             140    64.5 1127.21  644.91
## 95           18.79000           Y             110   112.0 1129.76  510.94
## 96           19.71000           Y              40    23.5  531.77  155.97
## 97           18.98000           Y             140    63.5  750.82  821.46
## 98           19.47000           Y             100    77.5 1043.17  873.63
## 99           18.96000           Y             105   107.5  796.92  624.04
## 100          18.99000           Y             110   108.5  575.37  328.21
## 101          14.89683           Y             140    91.5 1086.83  639.24
## 102          19.07000           Y             140   129.5 1104.43 1065.73
## 103          21.01304           Y             135   118.0  646.92  343.24
## 104          19.70913           Y             140   142.0  969.71  846.11
## 105          19.25000           Y             120   102.5  713.14  666.75
## 106          19.37000           N              NA   110.5  132.37  182.85
## 107          19.38000           Y             140    79.0  621.67  721.95
## 108          19.16000           Y             140    94.0  808.98  635.76
## 109          19.38000           Y             135    82.0  969.85  676.07
## 110          18.61862           Y             140   102.5 1482.78  760.04
## 111          19.27000           Y             110    79.5  428.47  597.44
## 112          19.20000           Y             110    93.0  325.22  361.67
## 113          19.14000           Y             140   125.0 1114.94  703.95
## 114          27.66383           Y             115   122.5  401.81  337.40
## 115          19.15000           Y             140    82.0  891.82  813.94
## 116          19.21000           Y             140   114.5 1013.31  982.98
## 117          20.12000           N              NA      NA   37.02   36.76
## 118          19.21000           N              NA   142.0  162.78  237.60
## 119          20.07000           N              NA      NA   35.67   33.93
## 120          21.73913           Y             140   118.5  267.98  344.36
## 121          19.20000           Y             115   110.5 1283.66 1116.18
## 122          19.23000           Y             135   113.5  918.33  732.24
## 123          20.20000           N              NA      NA   43.25   38.50
## 124          19.95000           N              NA    69.5   46.31   37.72
## 125          76.30923           Y             110    61.0  406.99  216.81
## 126          19.27000           Y             115    77.5 1190.79 1075.88
## 127          20.28000           N              NA      NA   34.23   33.54
## 128          90.03984           Y             130    46.0  165.26  263.36
## 129          19.39000           Y             110   135.5  845.24  829.63
## 130          19.66000           Y             120    63.0  121.57  947.21
## 131          99.70164           N              NA      NA   55.44   66.37
## 132          84.14513           Y              90   117.0  565.99  667.22
## 133          19.35000           Y             110    94.0  513.54  436.58
## 134          19.73000           Y              90   107.0  630.03  137.55
## 135          19.51000           N              35   116.5  271.34  311.81
## 136          19.41000           Y             110   117.0 1015.29  826.56
## 137          20.16000           N              NA      NA   54.33   51.21
## 138          91.99411           Y              75    64.5  376.60  583.45
## 139          19.93000           Y             120    55.0  921.59 1114.65
## 140          19.65000           Y             125    75.5  986.83  879.02
## 141          19.59000           Y             110   114.5  410.66  541.64
## 142          19.60000           Y             110   101.0 1238.78 1126.08
## 143          19.66000           Y             125    92.0  118.15  947.63
## 144          20.74000           Y              20    36.0  101.82   93.52
## 145          19.70000          Y              110   105.5  227.94  370.78
## 146          19.80000           Y             140    55.0  777.72  790.02
## 147          19.66000           Y             110   101.0 1213.26  865.57
## 148          19.75000           N              NA    92.5  399.51  502.27
## 149          20.08000           Y             115    85.5  961.17  874.73
## 150          19.81000           Y             110    82.5  520.64  218.60
## 151          20.67000           Y              35    48.0  350.08  759.02
## 152          20.33000           N              80   295.0  179.73  116.32
## 153          19.86000           Y             100    63.5 1207.44 1037.25
## 154          19.86000           Y             105    90.0  511.88  719.36
## 155          19.86000           Y             110    86.5  757.89  479.72
## 156          20.01000           Y              90    68.5  238.42  267.11
## 157          20.63000           N              NA    62.5  186.15  108.60
## 158          19.96000           Y              90   125.5  422.97  422.16
## 159          20.06000           Y             135   102.5 1067.28 1109.41
## 160          20.28000           N              NA   117.5  213.10  251.51
## 161          28.24000           Y             105    99.0 1056.48  825.28
## 162          29.51000           N              NA    41.0  172.65  570.34
## 163          28.45000           Y             110    96.0 1072.49  608.97
## 164          28.93000           Y              95    63.5  156.09  815.32
## 165          29.94000           Y              20      NA   95.16   57.73
## 166          29.12000           Y             110   147.0  343.40  446.77
## 167          28.77000           Y             110    94.5  826.13  729.02
## 168          28.82000           Y             110   118.5 1213.85  506.84
## 169          29.32000           Y             110   121.0  602.51  486.58
## 170          29.26000           Y             110   112.0  908.59  775.70
## 171          30.50000           N              NA     0.0  116.87  111.81
## 172          29.36000           Y             110   125.0  497.75  555.26
## 173          29.44000           Y             110    98.5  588.30  601.66
## 174          29.56000           Y             110    97.0  652.67  717.86
## 175          29.56000           Y             110    79.5  431.68  745.96
## 176          29.57000           Y             110    90.0 1159.68  844.68
## 177          29.79000           Y             105   117.0  625.77  890.62
## 178          29.75000           Y             110    81.0 1021.57  834.93
## 179          29.72000           Y             110   143.0  690.68  689.15
## 180          29.79000           Y             110   119.5  119.14  863.51
## 181          29.80000           Y             110   128.5  278.85  404.44
## 182          30.03000           Y             110    77.5  814.42  935.56
## 183          31.26000           N              NA     0.0  132.58  138.30
## 184          30.09000           Y             110    84.0  909.92  796.24
##     max_ch3  load_ch1  load_ch2  load_ch3 goal_weight
## 1    750.11  63500.05  62385.88  91275.52          20
## 2   1124.74  54010.14  42059.95  60260.71          20
## 3    944.73  47058.15  38326.84  93122.91          20
## 4    125.17  17135.67   7286.98   5479.93          20
## 5   1010.50  44065.50  55604.26  53782.18          20
## 6    929.19  63542.88  52775.81  67764.44          20
## 7    430.26  34568.82  43225.46  45930.35          20
## 8    721.88  32824.50  32774.70  73293.10          20
## 9    759.97  50137.03  37795.01  67671.65          20
## 10   881.77  45710.07  56898.25 116235.28          20
## 11   873.19  43406.99  42802.81  98959.15          20
## 12   948.46  42528.20  45252.22 128904.45          20
## 13   782.23  38652.30  40155.59  87583.23          20
## 14   973.69  10795.13  14407.13 101774.82          20
## 15   559.33  25745.45  26857.91  47952.07          20
## 16   892.46  32733.36  36264.98  68891.96          20
## 17  1061.20  42461.87  40200.60  69648.74          20
## 18   678.30  65292.57  48155.11  78461.91          20
## 19   682.58  13029.17  19925.76  45685.23          20
## 20   718.95  21202.22  26000.14  56370.83          20
## 21   898.29  53793.88  50813.98 112993.41          20
## 22  1364.77  25219.60  28610.22 114346.43          20
## 23   792.50  36113.73  39674.85  55338.45          20
## 24   693.30  44788.19  47880.71  66903.87          20
## 25    37.26        NA        NA        NA          20
## 26   722.61  16824.58  26821.75 110943.65          20
## 27    29.69        NA        NA        NA          20
## 28  1399.75  25878.56  33114.51 117521.66          20
## 29  1026.00 100261.23  97300.02  81247.29          20
## 30   838.85  38046.09  39167.01  72468.70          20
## 31    28.80        NA        NA        NA          20
## 32   210.51        NA        NA  23125.98          20
## 33   265.97  16475.96  12526.59  23209.97          20
## 34   894.44  68893.65  55106.91  77282.65          20
## 35    32.60        NA        NA        NA          20
## 36   977.80   6635.73  17371.53  42320.75          20
## 37   875.51  41750.58  48323.63 103533.47          20
## 38  1180.34  11606.96  63351.34  60735.76          20
## 39    65.12        NA        NA        NA          20
## 40   889.77  25814.38  49631.02  99165.55          20
## 41   779.91  31468.23  29560.02  61021.02          20
## 42   333.60  23229.58  14159.36  47165.76          20
## 43   533.67  23412.62  30990.75  70390.19          20
## 44  1006.52  45301.23  49407.69 105821.33          20
## 45    73.16        NA        NA        NA          20
## 46   667.19  21225.06  35739.26  48651.29          20
## 47   874.30  49545.35  87760.78  39377.79          20
## 48   906.05  55460.64  57427.75  58364.92          20
## 49  1254.28  39851.35  55951.83 139031.69          20
## 50   572.03  59971.40  57652.57  56389.12          20
## 51   971.13  11614.71  52061.46  63434.19          20
## 52   394.18   2026.31      0.00  14519.48          20
## 53   598.12  17859.34  31574.19  54974.49          20
## 54  1015.68  49777.26  42706.88  45070.62          20
## 55   675.41  56208.44  45629.64  75742.97          20
## 56   900.66  26233.83  32460.61  64572.33          20
## 57   901.18  47223.31  47910.58  74467.78          20
## 58   201.83  22528.57  17648.39  24758.37          20
## 59  1204.28  15418.84  32440.59  47044.34          20
## 60   293.86   5517.72   1697.93 101834.72          20
## 61   918.72  75929.14  70532.80  53429.13          20
## 62   371.24  26340.12  37461.14  39792.57          20
## 63   534.62  25404.77  19188.00  37691.26          20
## 64   453.48  14830.33  13058.86  19730.11          20
## 65   359.53  12073.72   5264.34  29195.46          20
## 66   581.77  26703.04  32961.17  80466.03          20
## 67   893.80  53474.81  61581.90  94851.95          20
## 68   805.96  14733.57  14847.84  65241.06          20
## 69   718.91  56704.48  61044.32  91291.85          30
## 70   549.23   8539.53  24827.91  27303.30          30
## 71   947.84  70190.42  57336.75  96815.15          30
## 72  1202.49  17560.30 102324.49  70701.49          30
## 73    55.66      0.00        NA        NA          30
## 74   724.15  43422.90  43893.20  89440.46          30
## 75  1162.92  58794.90  63718.45  92456.09          30
## 76   884.76  86440.66  52999.08  84506.48          30
## 77   492.12  62327.91  57832.53  59598.31          30
## 78  1013.80  46197.34  65899.98 111516.65          30
## 79    73.15   1645.45   1284.30      0.00          30
## 80   329.62  45318.24  41331.31  53147.01          30
## 81   697.02  48637.77  57845.41  68236.77          30
## 82   968.63  45532.64  48113.95  69013.38          30
## 83  1025.93  61409.91  85351.05  87354.42          30
## 84   813.05  75863.08  83842.88  72874.62          30
## 85   854.11  40415.76  58422.77  83032.57          30
## 86  1140.78  62837.33  78429.00  92148.49          30
## 87  1000.97  50866.20  70360.52 101891.05          30
## 88   959.62   9028.10  66373.06 101707.53          30
## 89   891.28  40841.40  56077.78  73417.31          30
## 90  1323.93  52927.75  59933.88  68387.66          30
## 91    83.57   1398.74   1545.71      0.00          30
## 92  1115.20  75621.94  69014.85  88252.82          30
## 93   750.11  63500.05  62385.88  91275.52          20
## 94  1124.74  54010.14  42059.95  60260.71          20
## 95   944.73  47058.15  38326.84  93122.91          20
## 96   125.17  17135.67   7286.98   5479.93          20
## 97  1010.50  44065.50  55604.26  53782.18          20
## 98   929.19  63542.88  52775.81  67764.44          20
## 99   430.26  34568.82  43225.46  45930.35          20
## 100  721.88  32824.50  32774.70  73293.10          20
## 101  759.97  50137.03  37795.01  67671.65          20
## 102  881.77  45710.07  56898.25 116235.28          20
## 103  873.19  43406.99  42802.81  98959.15          20
## 104  948.46  42528.20  45252.22 128904.45          20
## 105  782.23  38652.30  40155.59  87583.23          20
## 106  973.69  10795.13  14407.13 101774.82          20
## 107  559.33  25745.45  26857.91  47952.07          20
## 108  892.46  32733.36  36264.98  68891.96          20
## 109 1061.20  42461.87  40200.60  69648.74          20
## 110  678.30  65292.57  48155.11  78461.91          20
## 111  682.58  13029.17  19925.76  45685.23          20
## 112  718.95  21202.22  26000.14  56370.83          20
## 113  898.29  53793.88  50813.98 112993.41          20
## 114 1364.77  25219.60  28610.22 114346.43          20
## 115  792.50  36113.73  39674.85  55338.45          20
## 116  693.30  44788.19  47880.71  66903.87          20
## 117   37.26        NA        NA        NA          20
## 118  722.61  16824.58  26821.75 110943.65          20
## 119   29.69        NA        NA        NA          20
## 120 1399.75  25878.56  33114.51 117521.66          20
## 121 1026.00 100261.23  97300.02  81247.29          20
## 122  838.85  38046.09  39167.01  72468.70          20
## 123   28.80        NA        NA        NA          20
## 124  210.51        NA        NA  23125.98          20
## 125  265.97  16475.96  12526.59  23209.97          20
## 126  894.44  68893.65  55106.91  77282.65          20
## 127   32.60        NA        NA        NA          20
## 128  977.80   6635.73  17371.53  42320.75          20
## 129  875.51  41750.58  48323.63 103533.47          20
## 130 1180.34  11606.96  63351.34  60735.76          20
## 131   65.12        NA        NA        NA          20
## 132  889.77  25814.38  49631.02  99165.55          20
## 133  779.91  31468.23  29560.02  61021.02          20
## 134  333.60  23229.58  14159.36  47165.76          20
## 135  533.67  23412.62  30990.75  70390.19          20
## 136 1006.52  45301.23  49407.69 105821.33          20
## 137   73.16        NA        NA        NA          20
## 138  667.19  21225.06  35739.26  48651.29          20
## 139  874.30  49545.35  87760.78  39377.79          20
## 140  906.05  55460.64  57427.75  58364.92          20
## 141 1254.28  39851.35  55951.83 139031.69          20
## 142  572.03  59971.40  57652.57  56389.12          20
## 143  971.13  11614.71  52061.46  63434.19          20
## 144  394.18   2026.31      0.00  14519.48          20
## 145  598.12  17859.34  31574.19  54974.49          20
## 146 1015.68  49777.26  42706.88  45070.62          20
## 147  675.41  56208.44  45629.64  75742.97          20
## 148  900.66  26233.83  32460.61  64572.33          20
## 149  901.18  47223.31  47910.58  74467.78          20
## 150  201.83  22528.57  17648.39  24758.37          20
## 151 1204.28  15418.84  32440.59  47044.34          20
## 152  293.86   5517.72   1697.93 101834.72          20
## 153  918.72  75929.14  70532.80  53429.13          20
## 154  371.24  26340.12  37461.14  39792.57          20
## 155  534.62  25404.77  19188.00  37691.26          20
## 156  453.48  14830.33  13058.86  19730.11          20
## 157  359.53  12073.72   5264.34  29195.46          20
## 158  581.77  26703.04  32961.17  80466.03          20
## 159  893.80  53474.81  61581.90  94851.95          20
## 160  805.96  14733.57  14847.84  65241.06          20
## 161  718.91  56704.48  61044.32  91291.85          30
## 162  549.23   8539.53  24827.91  27303.30          30
## 163  947.84  70190.42  57336.75  96815.15          30
## 164 1202.49  17560.30 102324.49  70701.49          30
## 165   55.66      0.00        NA        NA          30
## 166  724.15  43422.90  43893.20  89440.46          30
## 167 1162.92  58794.90  63718.45  92456.09          30
## 168  884.76  86440.66  52999.08  84506.48          30
## 169  492.12  62327.91  57832.53  59598.31          30
## 170 1013.80  46197.34  65899.98 111516.65          30
## 171   73.15   1645.45   1284.30      0.00          30
## 172  329.62  45318.24  41331.31  53147.01          30
## 173  697.02  48637.77  57845.41  68236.77          30
## 174  968.63  45532.64  48113.95  69013.38          30
## 175 1025.93  61409.91  85351.05  87354.42          30
## 176  813.05  75863.08  83842.88  72874.62          30
## 177  854.11  40415.76  58422.77  83032.57          30
## 178 1140.78  62837.33  78429.00  92148.49          30
## 179 1000.97  50866.20  70360.52 101891.05          30
## 180  959.62   9028.10  66373.06 101707.53          30
## 181  891.28  40841.40  56077.78  73417.31          30
## 182 1323.93  52927.75  59933.88  68387.66          30
## 183   83.57   1398.74   1545.71      0.00          30
## 184 1115.20  75621.94  69014.85  88252.82          30
##     goal_moisture_percent_cont channel   dur
## 1                            4 dur_ch1  87.5
## 2                            3 dur_ch1  73.0
## 3                            3 dur_ch1  70.5
## 4                            6 dur_ch1  36.0
## 5                            3 dur_ch1  67.0
## 6                            6 dur_ch1  71.0
## 7                            5 dur_ch1  67.0
## 8                            3 dur_ch1  69.0
## 9                            4 dur_ch1  73.5
## 10                           5 dur_ch1  68.0
## 11                           3 dur_ch1  83.0
## 12                           2 dur_ch1  69.5
## 13                           2 dur_ch1  78.0
## 14                           5 dur_ch1  46.5
## 15                           5 dur_ch1  55.0
## 16                           1 dur_ch1  60.5
## 17                           3 dur_ch1  65.5
## 18                           3 dur_ch1  91.0
## 19                           6 dur_ch1  34.5
## 20                           3 dur_ch1  64.0
## 21                           3 dur_ch1  70.5
## 22                           6 dur_ch1  65.0
## 23                           3 dur_ch1  60.5
## 24                           3 dur_ch1  74.0
## 25                           4 dur_ch1    NA
## 26                           5 dur_ch1  62.0
## 27                           5 dur_ch1    NA
## 28                           6 dur_ch1  68.0
## 29                           2 dur_ch1 106.5
## 30                           5 dur_ch1  60.0
## 31                           5 dur_ch1    NA
## 32                           5 dur_ch1    NA
## 33                           6 dur_ch1  40.0
## 34                           3 dur_ch1  78.0
## 35                           5 dur_ch1    NA
## 36                           5 dur_ch1  24.5
## 37                           5 dur_ch1  86.5
## 38                           7 dur_ch1  51.5
## 39                           7 dur_ch1    NA
## 40                           7 dur_ch1  46.0
## 41                           3 dur_ch1  66.0
## 42                           6 dur_ch1  54.5
## 43                           7 dur_ch1  70.0
## 44                           4 dur_ch1  64.5
## 45                           6 dur_ch1    NA
## 46                           7 dur_ch1  47.5
## 47                           5 dur_ch1  72.0
## 48                           4 dur_ch1  89.5
## 49                           4 dur_ch1  89.5
## 50                           2 dur_ch1  78.5
## 51                           4 dur_ch1  53.0
## 52                           7 dur_ch1  10.0
## 53                           1 dur_ch1  55.0
## 54                           6 dur_ch1  84.5
## 55                           1 dur_ch1  71.5
## 56                           7 dur_ch1  69.5
## 57                           7 dur_ch1  76.0
## 58                           5 dur_ch1  59.5
## 59                           7 dur_ch1  39.0
## 60                           5 dur_ch1  21.5
## 61                           4 dur_ch1  80.5
## 62                           1 dur_ch1  65.0
## 63                           2 dur_ch1  48.0
## 64                           7 dur_ch1  52.0
## 65                           7 dur_ch1  42.0
## 66                           7 dur_ch1  72.0
## 67                           5 dur_ch1  87.0
## 68                           4 dur_ch1  55.0
## 69                           5 dur_ch1  99.0
## 70                           7 dur_ch1  32.5
## 71                           4 dur_ch1 106.5
## 72                           6 dur_ch1  67.5
## 73                           7 dur_ch1    NA
## 74                           6 dur_ch1 113.0
## 75                           3 dur_ch1 105.0
## 76                           4 dur_ch1 110.0
## 77                           7 dur_ch1 111.0
## 78                           6 dur_ch1  98.5
## 79                           6 dur_ch1   7.5
## 80                           5 dur_ch1 114.0
## 81                           3 dur_ch1  95.0
## 82                           3 dur_ch1  87.5
## 83                           3 dur_ch1 112.5
## 84                           4 dur_ch1  98.5
## 85                           5 dur_ch1 102.5
## 86                           5 dur_ch1  93.0
## 87                           5 dur_ch1 128.0
## 88                           5 dur_ch1  40.0
## 89                           4 dur_ch1 123.5
## 90                           3 dur_ch1 102.0
## 91                           6 dur_ch1   6.0
## 92                           4 dur_ch1  98.5
## 93                           4 dur_ch2  86.5
## 94                           3 dur_ch2  65.5
## 95                           3 dur_ch2  72.0
## 96                           6 dur_ch2  28.0
## 97                           3 dur_ch2  88.5
## 98                           6 dur_ch2  65.5
## 99                           5 dur_ch2 107.5
## 100                          3 dur_ch2  72.0
## 101                          4 dur_ch2  69.0
## 102                          5 dur_ch2  83.0
## 103                          3 dur_ch2 105.0
## 104                          2 dur_ch2  73.0
## 105                          2 dur_ch2  87.0
## 106                          5 dur_ch2  49.0
## 107                          5 dur_ch2  54.0
## 108                          1 dur_ch2  70.0
## 109                          3 dur_ch2  76.5
## 110                          3 dur_ch2  79.5
## 111                          6 dur_ch2  47.0
## 112                          3 dur_ch2  73.5
## 113                          3 dur_ch2  82.5
## 114                          6 dur_ch2  77.0
## 115                          3 dur_ch2  70.0
## 116                          3 dur_ch2  77.0
## 117                          4 dur_ch2    NA
## 118                          5 dur_ch2  76.0
## 119                          5 dur_ch2    NA
## 120                          6 dur_ch2  75.0
## 121                          2 dur_ch2 104.0
## 122                          5 dur_ch2  74.0
## 123                          5 dur_ch2    NA
## 124                          5 dur_ch2    NA
## 125                          6 dur_ch2  43.0
## 126                          3 dur_ch2  77.5
## 127                          5 dur_ch2    NA
## 128                          5 dur_ch2  48.0
## 129                          5 dur_ch2  89.5
## 130                          7 dur_ch2  80.0
## 131                          7 dur_ch2    NA
## 132                          7 dur_ch2 108.0
## 133                          3 dur_ch2  66.0
## 134                          6 dur_ch2  59.5
## 135                          7 dur_ch2  97.0
## 136                          4 dur_ch2  78.0
## 137                          6 dur_ch2    NA
## 138                          7 dur_ch2  59.0
## 139                          5 dur_ch2  98.5
## 140                          4 dur_ch2  89.5
## 141                          4 dur_ch2 111.0
## 142                          2 dur_ch2  77.5
## 143                          4 dur_ch2  83.0
## 144                          7 dur_ch2   0.0
## 145                          1 dur_ch2  76.5
## 146                          6 dur_ch2  62.0
## 147                          1 dur_ch2  73.5
## 148                          7 dur_ch2  74.0
## 149                          7 dur_ch2  88.5
## 150                          5 dur_ch2  55.0
## 151                          7 dur_ch2  46.5
## 152                          5 dur_ch2   8.0
## 153                          4 dur_ch2  76.0
## 154                          1 dur_ch2  72.0
## 155                          2 dur_ch2  47.5
## 156                          7 dur_ch2  43.5
## 157                          7 dur_ch2  25.0
## 158                          7 dur_ch2  83.5
## 159                          5 dur_ch2  99.0
## 160                          4 dur_ch2  52.5
## 161                          5 dur_ch2 110.0
## 162                          7 dur_ch2  40.0
## 163                          4 dur_ch2 107.5
## 164                          6 dur_ch2 121.5
## 165                          7 dur_ch2    NA
## 166                          6 dur_ch2 118.5
## 167                          3 dur_ch2 112.5
## 168                          4 dur_ch2 101.0
## 169                          7 dur_ch2 115.0
## 170                          6 dur_ch2 120.5
## 171                          6 dur_ch2   6.0
## 172                          5 dur_ch2 105.0
## 173                          3 dur_ch2  94.5
## 174                          3 dur_ch2  79.5
## 175                          3 dur_ch2 116.0
## 176                          4 dur_ch2 101.5
## 177                          5 dur_ch2 118.0
## 178                          5 dur_ch2 109.0
## 179                          5 dur_ch2 147.5
## 180                          5 dur_ch2 108.0
## 181                          4 dur_ch2 128.5
## 182                          3 dur_ch2  94.5
## 183                          6 dur_ch2   6.5
## 184                          4 dur_ch2  98.0
dur_cols <- select(one_dur_condensed,SPECIES:DRY.MASS.CONSUMED, dur)

head(one_max_condensed)
##   SPECIES REP DRY.WEIGHT weight_goal goal_moisture_percent WET....bag.G.
## 1   PSSP6   5      19.29          20                    25         36.32
## 2   PSSP6   4      19.38          20                    15         34.59
## 3    BRTE   1      19.66          20                    15         34.48
## 4   ACTH7   4      19.69          20                    45         40.13
## 5   ACTH7   4      19.70          20                    15         34.79
## 6   PSSP6   4      19.79          20                    45         40.45
##   ACTUAL.MOISTURE.percent POST.BURN.MASS.ACTUAL MASS.CONSUMPTION
## 1                   25.04                  5.64            94.36
## 2                   15.89                  3.14            96.86
## 3                   14.65                  2.50            97.50
## 4                   43.12                 20.12            79.88
## 5                   15.08                  5.58            94.42
## 6                   44.42                 13.52            86.48
##   DRY.MASS.CONSUMED COMBUSTION. FLAME.HEIGHT.CM dur_ch1 dur_ch2 dur_ch3 max_ch3
## 1             18.58           Y             115    87.5    86.5   112.0  750.11
## 2             18.54           Y             140    73.0    65.5    64.5 1124.74
## 3             18.79           Y             110    70.5    72.0   112.0  944.73
## 4             19.71           Y              40    36.0    28.0    23.5  125.17
## 5             18.98           Y             140    67.0    88.5    63.5 1010.50
## 6             19.47           Y             100    71.0    65.5    77.5  929.19
##   load_ch1 load_ch2 load_ch3 goal_weight channel     max
## 1 63500.05 62385.88 91275.52          20 max_ch1 1191.82
## 2 54010.14 42059.95 60260.71          20 max_ch1 1127.21
## 3 47058.15 38326.84 93122.91          20 max_ch1 1129.76
## 4 17135.67  7286.98  5479.93          20 max_ch1  531.77
## 5 44065.50 55604.26 53782.18          20 max_ch1  750.82
## 6 63542.88 52775.81 67764.44          20 max_ch1 1043.17
##   goal_moisture_percent_cont
## 1                          4
## 2                          3
## 3                          3
## 4                          6
## 5                          3
## 6                          6
max_cols <- select(one_max_condensed,SPECIES:DRY.MASS.CONSUMED, max)

head(max_cols)
##   SPECIES REP DRY.WEIGHT weight_goal goal_moisture_percent WET....bag.G.
## 1   PSSP6   5      19.29          20                    25         36.32
## 2   PSSP6   4      19.38          20                    15         34.59
## 3    BRTE   1      19.66          20                    15         34.48
## 4   ACTH7   4      19.69          20                    45         40.13
## 5   ACTH7   4      19.70          20                    15         34.79
## 6   PSSP6   4      19.79          20                    45         40.45
##   ACTUAL.MOISTURE.percent POST.BURN.MASS.ACTUAL MASS.CONSUMPTION
## 1                   25.04                  5.64            94.36
## 2                   15.89                  3.14            96.86
## 3                   14.65                  2.50            97.50
## 4                   43.12                 20.12            79.88
## 5                   15.08                  5.58            94.42
## 6                   44.42                 13.52            86.48
##   DRY.MASS.CONSUMED     max
## 1             18.58 1191.82
## 2             18.54 1127.21
## 3             18.79 1129.76
## 4             19.71  531.77
## 5             18.98  750.82
## 6             19.47 1043.17
merging_cols = c("SPECIES", "REP", "DRY.WEIGHT", "weight_goal", "goal_moisture_percent",
                 "WET....bag.G.", "ACTUAL.MOISTURE.percent", "POST.BURN.MASS.ACTUAL",
                 "MASS.CONSUMPTION", "DRY.MASS.CONSUMED")

one_cols = inner_join(load_cols, dur_cols, by = merging_cols) %>%
  inner_join(., max_cols, by = merging_cols)


#remove NAs
one_cols<- one_cols %>% na.omit()
summary(one_cols$load)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##       0   25863   43658   42233   56753  102324
head(one_cols)
##   SPECIES REP DRY.WEIGHT weight_goal goal_moisture_percent WET....bag.G.
## 1   PSSP6   5      19.29          20                    25         36.32
## 2   PSSP6   5      19.29          20                    25         36.32
## 3   PSSP6   5      19.29          20                    25         36.32
## 4   PSSP6   5      19.29          20                    25         36.32
## 5   PSSP6   4      19.38          20                    15         34.59
## 6   PSSP6   4      19.38          20                    15         34.59
##   ACTUAL.MOISTURE.percent POST.BURN.MASS.ACTUAL MASS.CONSUMPTION
## 1                   25.04                  5.64            94.36
## 2                   25.04                  5.64            94.36
## 3                   25.04                  5.64            94.36
## 4                   25.04                  5.64            94.36
## 5                   15.89                  3.14            96.86
## 6                   15.89                  3.14            96.86
##   DRY.MASS.CONSUMED     load  dur     max
## 1             18.58 63500.05 87.5 1191.82
## 2             18.58 63500.05 87.5 1200.90
## 3             18.58 63500.05 86.5 1191.82
## 4             18.58 63500.05 86.5 1200.90
## 5             18.54 54010.14 73.0 1127.21
## 6             18.54 54010.14 73.0  644.91
one_output_additive = one_cols %>%
  group_by(SPECIES, weight_goal, goal_moisture_percent) %>%
  summarize(n=n(),
            load = mean(load),
            max= mean(max),
            dur= mean(dur), 
            cons_percent = mean(MASS.CONSUMPTION))
## `summarise()` has grouped output by 'SPECIES', 'weight_goal'. You can override
## using the `.groups` argument.
one_output_additive
## # A tibble: 26 x 8
## # Groups:   SPECIES, weight_goal [5]
##    SPECIES weight_goal goal_moisture_perc~     n   load   max   dur cons_percent
##    <fct>         <int> <fct>               <int>  <dbl> <dbl> <dbl>        <dbl>
##  1 BRTE             20 5                      32 35509.  669.  68           97.0
##  2 BRTE             20 10                     40 52637.  920.  77.0         93.5
##  3 BRTE             20 15                     64 38434.  709.  70.6         96.1
##  4 BRTE             20 25                     24 42365.  643.  79.8         96.4
##  5 BRTE             20 35                     64 31832.  607.  68.3         94.9
##  6 BRTE             20 45                     32 22896.  393.  60.1         87.2
##  7 BRTE             20 55                     40 16561.  274.  47.2         88.9
##  8 ACTH7            20 15                     16 46470.  641.  85.9         88.0
##  9 ACTH7            20 25                     16 64838. 1028.  83.9         95.3
## 10 ACTH7            20 35                     16 40328.  616.  60.8         61.0
## # ... with 16 more rows
write.csv(one_output_additive, "additive_data/one_sp_add.csv", row.names = F)

summarize one species info for additive vs non additive stuff

#for the data using multiple TC, we want the combined TC 1 and 2 dataset
load_cols <- select(two_load_condensed,Full_ID:WET.MASS.CONSUMPTION...., load)
dur_cols <- select(two_dur_condensed,Full_ID:WET.MASS.CONSUMPTION...., dur)
max_cols <- select(two_max_condensed,Full_ID:WET.MASS.CONSUMPTION...., max)

two_cols = left_join(load_cols, dur_cols)
## Joining, by = c("Full_ID", "REP..", "PG.SPECIES", "PG_Goal_moisture",
## "AG.dry.weight..g.", "AG.GOAL.DRY.MASS", "AG.GOAL.MOISTURE.", "PG.WET.ACTUAL",
## "AG.WET.ACTUAL", "PG.MOISTURE", "AG.MOISTURE", "PRE.BURN.COMBINED.WET.MASS",
## "POST.BURN.MASS", "WET.MASS.CONSUMPTION....")
two_cols = left_join(two_cols, max_cols)
## Joining, by = c("Full_ID", "REP..", "PG.SPECIES", "PG_Goal_moisture",
## "AG.dry.weight..g.", "AG.GOAL.DRY.MASS", "AG.GOAL.MOISTURE.", "PG.WET.ACTUAL",
## "AG.WET.ACTUAL", "PG.MOISTURE", "AG.MOISTURE", "PRE.BURN.COMBINED.WET.MASS",
## "POST.BURN.MASS", "WET.MASS.CONSUMPTION....")
#remove NAs
two_cols<- two_cols %>% na.omit()
summary(two_cols$load)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##       0   24210   38530   39010   52045  165681
head(two_cols)
##              Full_ID REP.. PG.SPECIES PG_Goal_moisture AG.dry.weight..g.
## 1 ACTH7_35_BRTE_5g_5     1      ACTH7               35              4.95
## 2 ACTH7_35_BRTE_5g_5     1      ACTH7               35              4.95
## 3 ACTH7_35_BRTE_5g_5     1      ACTH7               35              4.95
## 4 ACTH7_35_BRTE_5g_5     1      ACTH7               35              4.95
## 5 ACTH7_35_BRTE_5g_5     2      ACTH7               35              5.05
## 6 ACTH7_35_BRTE_5g_5     2      ACTH7               35              5.05
##   AG.GOAL.DRY.MASS AG.GOAL.MOISTURE. PG.WET.ACTUAL AG.WET.ACTUAL PG.MOISTURE
## 1                5                 5         26.07          5.39       33.28
## 2                5                 5         26.07          5.39       33.28
## 3                5                 5         26.07          5.39       33.28
## 4                5                 5         26.07          5.39       33.28
## 5                5                 5         27.44          5.46       34.84
## 6                5                 5         27.44          5.46       34.84
##   AG.MOISTURE PRE.BURN.COMBINED.WET.MASS POST.BURN.MASS
## 1        8.89                      31.46           6.66
## 2        8.89                      31.46           6.66
## 3        8.89                      31.46           6.66
## 4        8.89                      31.46           6.66
## 5        8.12                      32.90           3.77
## 6        8.12                      32.90           3.77
##   WET.MASS.CONSUMPTION....     load dur    max
## 1                    78.83 24236.58  67 423.37
## 2                    78.83 24236.58  67  29.52
## 3                    78.83 24236.58   0 423.37
## 4                    78.83 24236.58   0  29.52
## 5                    88.54 38487.70  90 480.10
## 6                    88.54 38487.70  90 514.48
two_output_additive = two_cols %>%
  group_by(PG.SPECIES, PG_Goal_moisture, AG.GOAL.DRY.MASS, AG.GOAL.MOISTURE.) %>%
  summarize(n=n(),
            load = mean(load),
            max= mean(max),
            dur= mean(dur), 
            cons_percent = mean(WET.MASS.CONSUMPTION....))
## `summarise()` has grouped output by 'PG.SPECIES', 'PG_Goal_moisture',
## 'AG.GOAL.DRY.MASS'. You can override using the `.groups` argument.
two_output_additive
## # A tibble: 35 x 9
## # Groups:   PG.SPECIES, PG_Goal_moisture, AG.GOAL.DRY.MASS [11]
##    PG.SPECIES PG_Goal_moisture AG.GOAL.DRY.MASS AG.GOAL.MOISTURE.     n   load
##    <chr>                 <int> <fct>            <fct>             <int>  <dbl>
##  1 ACTH7                    35 2.5              5                    32 45812.
##  2 ACTH7                    35 2.5              25                   32 38440.
##  3 ACTH7                    35 5                5                    32 45299.
##  4 ACTH7                    35 5                25                   32 58104.
##  5 ACTH7                    55 2.5              5                    32 21773.
##  6 ACTH7                    55 2.5              15                   32 27181.
##  7 ACTH7                    55 2.5              25                   32 30917.
##  8 ACTH7                    55 2.5              35                   32 30126.
##  9 ACTH7                    55 5                5                    32 48529.
## 10 ACTH7                    55 5                15                   32 41295.
## # ... with 25 more rows, and 3 more variables: max <dbl>, dur <dbl>,
## #   cons_percent <dbl>
write.csv(two_output_additive, "additive_data/two_sp_add.csv", row.names = F)

graphing effect size

effect <- read.csv("additive_data/effect_size.csv", header=T)
head(effect)
##                 Full_ID REP.. PG.SPECIES PG_Goal_moisture AG.dry.weight..g.
## 1 ACTH7_35_BRTE_2.5g_25     2      ACTH7               35              2.50
## 2 ACTH7_35_BRTE_2.5g_25     3      ACTH7               35              2.51
## 3 ACTH7_35_BRTE_2.5g_25     1      ACTH7               35              2.62
## 4 ACTH7_35_BRTE_2.5g_25     4      ACTH7               35              2.52
## 5  ACTH7_35_BRTE_2.5g_5     2      ACTH7               35              2.63
## 6  ACTH7_35_BRTE_2.5g_5     3      ACTH7               35              2.66
##   AG.GOAL.DRY.MASS AG.GOAL.MOISTURE. PG.WET.ACTUAL AG.WET.ACTUAL PG.MOISTURE
## 1              2.5                25         26.58          3.05       34.24
## 2              2.5                25         26.67          3.32       34.97
## 3              2.5                25         26.93          3.28       34.72
## 4              2.5                25         26.70          3.37       34.37
## 5              2.5                 5         27.47          2.82       35.19
## 6              2.5                 5         26.85          2.87       35.61
##   AG.MOISTURE dur_obs  max_obs  load_obs consumption_obs  dur_exp  max_exp
## 1       22.00    33.0  461.460 15190.560           27.57 50.55556 540.2333
## 2       32.27    39.5  220.640 13005.610           15.67 50.55556 540.2333
## 3       25.19   103.5 1059.485 72057.110           70.74 50.55556 540.2333
## 4       33.73   104.5  657.335 53506.100           82.01 50.55556 540.2333
## 5        7.22    26.0  157.375  6801.395           13.87 49.88889 559.7683
## 6        7.89    64.5  789.495 42510.425           78.77 49.88889 559.7683
##   load_exp consumption_exp dur_effectSize max_effectSize load_effectSize
## 1 28553.34        64.93514     -0.3472527     -0.1458135      -0.4679936
## 2 28553.34        64.93514     -0.2186813     -0.5915839      -0.5445153
## 3 28553.34        64.93514      1.0472527      0.9611618       1.5235963
## 4 28553.34        64.93514      1.0670330      0.2167613       0.8738997
## 5 28667.74        64.99968     -0.4788419     -0.7188569      -0.7627509
## 6 28667.74        64.99968      0.2928731      0.4103960       0.4828664
##   Consumption_effectSize
## 1            -0.57542249
## 2            -0.75868228
## 3             0.08939474
## 4             0.26295254
## 5            -0.78661432
## 6             0.21185218
effect$PG.SPECIES <-factor(effect$PG.SPECIES)
effect$PG_Goal_moisture <-factor(effect$PG_Goal_moisture)
effect$AG.GOAL.DRY.MASS <-factor(effect$AG.GOAL.DRY.MASS)
effect$AG.GOAL.MOISTURE. <-factor(effect$AG.GOAL.MOISTURE.)
effect$Full_ID <-factor(effect$Full_ID)

set custom colors

acth55_effect_colors = c("#ffffcc", "#c2e699", "#78c679", "#238443")
pssp55_effect_colors = c("#ece7f2","#a6bddb", "#2b8cbe")

acth35_effect_colors = c("#ffffcc", "#c2e699")
print(pssp_custom_colors)
## [1] "#636363" "#ece7f2" "#a6bddb" "#2b8cbe"

stats

library(car)
## Warning: package 'car' was built under R version 4.0.5
## Loading required package: carData
## Warning: package 'carData' was built under R version 4.0.5
## 
## Attaching package: 'car'
## The following object is masked from 'package:dplyr':
## 
##     recode
## The following object is masked from 'package:purrr':
## 
##     some

Loop through t test with all flammability attributes and for each trail This will tell us if effect size is different from 0 If different = some non-additive effects

# create an empty output table
output_table <- data.frame(Full_ID = character(), variable = character(), p_value = numeric(), sample_size = integer(), significant = character(), stringsAsFactors = FALSE)

# define the columns to loop through
cols_effectSize <- c("load_effectSize", "max_effectSize", "dur_effectSize", "Consumption_effectSize")
summary(effect)
##                   Full_ID        REP..       PG.SPECIES PG_Goal_moisture
##  ACTH7_35_BRTE_2.5g_25:  4   Min.   :1.000   ACTH7:72   35:27           
##  ACTH7_35_BRTE_2.5g_5 :  4   1st Qu.:2.000   PSSP6:54   55:99           
##  ACTH7_35_BRTE_5g_25  :  4   Median :2.000                              
##  ACTH7_55_BRTE_10g_15 :  4   Mean   :2.492                              
##  ACTH7_55_BRTE_10g_25 :  4   3rd Qu.:3.000                              
##  ACTH7_55_BRTE_10g_35 :  4   Max.   :4.000                              
##  (Other)              :102                                              
##  AG.dry.weight..g. AG.GOAL.DRY.MASS AG.GOAL.MOISTURE. PG.WET.ACTUAL  
##  Min.   : 2.370    2.5:42           5 :40             Min.   :25.97  
##  1st Qu.: 2.610    5  :38           15:24             1st Qu.:29.69  
##  Median : 5.135    10 :32           25:38             Median :30.86  
##  Mean   : 6.651    15 :14           35:24             Mean   :29.96  
##  3rd Qu.:10.010                                       3rd Qu.:30.95  
##  Max.   :15.450                                       Max.   :32.20  
##                                                                      
##  AG.WET.ACTUAL     PG.MOISTURE     AG.MOISTURE         dur_obs      
##  Min.   : 2.610   Min.   :29.53   Min.   :-16.250   Min.   : 25.75  
##  1st Qu.: 3.280   1st Qu.:48.34   1st Qu.:  8.925   1st Qu.: 66.00  
##  Median : 6.180   Median :54.26   Median : 17.745   Median : 82.25  
##  Mean   : 7.923   Mean   :49.68   Mean   : 19.337   Mean   : 83.74  
##  3rd Qu.:11.585   3rd Qu.:54.67   3rd Qu.: 27.483   3rd Qu.:101.38  
##  Max.   :20.800   Max.   :61.00   Max.   : 53.910   Max.   :168.25  
##                                                                     
##     max_obs          load_obs      consumption_obs    dur_exp     
##  Min.   : 118.3   Min.   :  6722   Min.   :13.87   Min.   :47.89  
##  1st Qu.: 377.1   1st Qu.: 32228   1st Qu.:72.50   1st Qu.:50.60  
##  Median : 605.5   Median : 42539   Median :81.41   Median :53.67  
##  Mean   : 589.0   Mean   : 42884   Mean   :78.72   Mean   :58.44  
##  3rd Qu.: 789.3   3rd Qu.: 53985   3rd Qu.:89.94   3rd Qu.:71.00  
##  Max.   :1302.7   Max.   :138934   Max.   :94.10   Max.   :72.56  
##                                                                   
##     max_exp         load_exp     consumption_exp dur_effectSize   
##  Min.   :371.5   Min.   :19736   Min.   :64.94   Min.   :-0.6418  
##  1st Qu.:446.2   1st Qu.:23096   1st Qu.:69.75   1st Qu.: 0.1083  
##  Median :552.1   Median :28668   Median :77.28   Median : 0.4656  
##  Mean   :532.5   Mean   :28160   Mean   :80.23   Mean   : 0.4770  
##  3rd Qu.:620.6   3rd Qu.:34297   3rd Qu.:92.56   3rd Qu.: 0.8432  
##  Max.   :683.1   Max.   :36450   Max.   :93.67   Max.   : 2.1575  
##                                                                   
##  max_effectSize    load_effectSize    Consumption_effectSize
##  Min.   :-0.8015   Min.   :-0.80612   Min.   :-0.78661      
##  1st Qu.:-0.2376   1st Qu.: 0.02816   1st Qu.:-0.14979      
##  Median : 0.1883   Median : 0.50662   Median :-0.02615      
##  Mean   : 0.1260   Mean   : 0.59157   Mean   : 0.00135      
##  3rd Qu.: 0.4096   3rd Qu.: 1.03111   3rd Qu.: 0.21105      
##  Max.   : 1.2734   Max.   : 4.59185   Max.   : 0.33652      
## 
# loop through all unique values of Full_ID and variable
for (id in unique(effect$Full_ID)) {
  for (col in cols_effectSize) {
    # filter the data for the current Full_ID and variable
    trial_dataset <- effect %>% filter(Full_ID == id) %>% select(Full_ID, .data[[col]])
    
    # check the sample size of the current dataset
    sample_size <- nrow(trial_dataset)
    
    # check if there are at least two observations
    if (sample_size >= 2) {
      # perform the t-test and extract the p-value
      ttest_result <- t.test(trial_dataset[[2]], mu = 0, alternative = "two.sided")
      p_value <- ttest_result$p.value
      
      # determine if the p-value is significant at the 0.05 level
      if (p_value < 0.05) {
        significant <- "Yes"
      } else {
        significant <- "No"
      }
      
      # add the Full_ID, variable, p-value, sample size, and significance to the output table
      output_table <- rbind(output_table, data.frame(Full_ID = id, variable = col, p_value = p_value, sample_size = sample_size, significant = significant))
    } else {
      # add a row with NA if there are less than two observations
      output_table <- rbind(output_table, data.frame(Full_ID = id, variable = col, p_value = NA, sample_size = sample_size, significant = "NA"))
    }
  }
}

# print the output table
print(output_table)
##                   Full_ID               variable      p_value sample_size
## 1   ACTH7_35_BRTE_2.5g_25        load_effectSize 5.458653e-01           4
## 2   ACTH7_35_BRTE_2.5g_25         max_effectSize 7.593821e-01           4
## 3   ACTH7_35_BRTE_2.5g_25         dur_effectSize 3.917266e-01           4
## 4   ACTH7_35_BRTE_2.5g_25 Consumption_effectSize 3.966437e-01           4
## 5    ACTH7_35_BRTE_2.5g_5        load_effectSize 3.373221e-01           4
## 6    ACTH7_35_BRTE_2.5g_5         max_effectSize 4.109086e-01           4
## 7    ACTH7_35_BRTE_2.5g_5         dur_effectSize 3.612269e-01           4
## 8    ACTH7_35_BRTE_2.5g_5 Consumption_effectSize 7.969136e-01           4
## 9     ACTH7_35_BRTE_5g_25        load_effectSize 7.302964e-04           4
## 10    ACTH7_35_BRTE_5g_25         max_effectSize 1.870819e-02           4
## 11    ACTH7_35_BRTE_5g_25         dur_effectSize 9.910582e-05           4
## 12    ACTH7_35_BRTE_5g_25 Consumption_effectSize 1.893914e-01           4
## 13     ACTH7_35_BRTE_5g_5        load_effectSize 7.451071e-02           3
## 14     ACTH7_35_BRTE_5g_5         max_effectSize 3.293856e-01           3
## 15     ACTH7_35_BRTE_5g_5         dur_effectSize 5.764703e-02           3
## 16     ACTH7_35_BRTE_5g_5 Consumption_effectSize 2.750948e-02           3
## 17   ACTH7_55_BRTE_10g_15        load_effectSize 1.468915e-01           4
## 18   ACTH7_55_BRTE_10g_15         max_effectSize 4.779817e-01           4
## 19   ACTH7_55_BRTE_10g_15         dur_effectSize 2.375957e-02           4
## 20   ACTH7_55_BRTE_10g_15 Consumption_effectSize 1.067426e-01           4
## 21   ACTH7_55_BRTE_10g_25        load_effectSize 6.476324e-02           4
## 22   ACTH7_55_BRTE_10g_25         max_effectSize 4.127060e-01           4
## 23   ACTH7_55_BRTE_10g_25         dur_effectSize 1.735073e-02           4
## 24   ACTH7_55_BRTE_10g_25 Consumption_effectSize 2.609981e-03           4
## 25   ACTH7_55_BRTE_10g_35        load_effectSize 4.715725e-02           4
## 26   ACTH7_55_BRTE_10g_35         max_effectSize 5.727492e-01           4
## 27   ACTH7_55_BRTE_10g_35         dur_effectSize 2.829428e-02           4
## 28   ACTH7_55_BRTE_10g_35 Consumption_effectSize 7.240491e-02           4
## 29    ACTH7_55_BRTE_10g_5        load_effectSize 1.598429e-02           4
## 30    ACTH7_55_BRTE_10g_5         max_effectSize 7.322858e-01           4
## 31    ACTH7_55_BRTE_10g_5         dur_effectSize 9.239756e-06           4
## 32    ACTH7_55_BRTE_10g_5 Consumption_effectSize 5.124320e-04           4
## 33   ACTH7_55_BRTE_15g_15        load_effectSize 6.253714e-03           4
## 34   ACTH7_55_BRTE_15g_15         max_effectSize 5.428178e-02           4
## 35   ACTH7_55_BRTE_15g_15         dur_effectSize 5.746847e-05           4
## 36   ACTH7_55_BRTE_15g_15 Consumption_effectSize 1.365024e-04           4
## 37   ACTH7_55_BRTE_15g_25        load_effectSize 2.855472e-01           4
## 38   ACTH7_55_BRTE_15g_25         max_effectSize 2.364880e-02           4
## 39   ACTH7_55_BRTE_15g_25         dur_effectSize 1.298246e-01           4
## 40   ACTH7_55_BRTE_15g_25 Consumption_effectSize 8.051905e-02           4
## 41   ACTH7_55_BRTE_15g_35        load_effectSize 1.349081e-02           2
## 42   ACTH7_55_BRTE_15g_35         max_effectSize 1.407539e-02           2
## 43   ACTH7_55_BRTE_15g_35         dur_effectSize 1.022887e-01           2
## 44   ACTH7_55_BRTE_15g_35 Consumption_effectSize 6.243707e-02           2
## 45    ACTH7_55_BRTE_15g_5        load_effectSize 7.607961e-02           4
## 46    ACTH7_55_BRTE_15g_5         max_effectSize 2.386745e-01           4
## 47    ACTH7_55_BRTE_15g_5         dur_effectSize 1.023898e-02           4
## 48    ACTH7_55_BRTE_15g_5 Consumption_effectSize 6.468080e-04           4
## 49  ACTH7_55_BRTE_2.5g_15        load_effectSize 3.924190e-01           4
## 50  ACTH7_55_BRTE_2.5g_15         max_effectSize 6.580319e-01           4
## 51  ACTH7_55_BRTE_2.5g_15         dur_effectSize 4.095383e-01           4
## 52  ACTH7_55_BRTE_2.5g_15 Consumption_effectSize 3.227389e-01           4
## 53  ACTH7_55_BRTE_2.5g_25        load_effectSize 3.360005e-01           3
## 54  ACTH7_55_BRTE_2.5g_25         max_effectSize 3.873424e-01           3
## 55  ACTH7_55_BRTE_2.5g_25         dur_effectSize 2.771563e-01           3
## 56  ACTH7_55_BRTE_2.5g_25 Consumption_effectSize 8.428912e-01           3
## 57  ACTH7_55_BRTE_2.5g_35        load_effectSize 1.846489e-01           3
## 58  ACTH7_55_BRTE_2.5g_35         max_effectSize 1.663685e-01           3
## 59  ACTH7_55_BRTE_2.5g_35         dur_effectSize 2.197175e-01           3
## 60  ACTH7_55_BRTE_2.5g_35 Consumption_effectSize 3.004099e-02           3
## 61   ACTH7_55_BRTE_2.5g_5        load_effectSize 3.701585e-02           2
## 62   ACTH7_55_BRTE_2.5g_5         max_effectSize 7.117074e-02           2
## 63   ACTH7_55_BRTE_2.5g_5         dur_effectSize 1.370839e-01           2
## 64   ACTH7_55_BRTE_2.5g_5 Consumption_effectSize 8.594297e-01           2
## 65    ACTH7_55_BRTE_5g_15        load_effectSize 8.354410e-02           4
## 66    ACTH7_55_BRTE_5g_15         max_effectSize 4.073210e-01           4
## 67    ACTH7_55_BRTE_5g_15         dur_effectSize 1.407103e-02           4
## 68    ACTH7_55_BRTE_5g_15 Consumption_effectSize 3.892326e-05           4
## 69    ACTH7_55_BRTE_5g_25        load_effectSize 3.869476e-01           4
## 70    ACTH7_55_BRTE_5g_25         max_effectSize 7.082865e-01           4
## 71    ACTH7_55_BRTE_5g_25         dur_effectSize 2.798697e-01           4
## 72    ACTH7_55_BRTE_5g_25 Consumption_effectSize 1.614950e-04           4
## 73    ACTH7_55_BRTE_5g_35        load_effectSize 2.243718e-01           3
## 74    ACTH7_55_BRTE_5g_35         max_effectSize 4.042255e-01           3
## 75    ACTH7_55_BRTE_5g_35         dur_effectSize 9.969321e-02           3
## 76    ACTH7_55_BRTE_5g_35 Consumption_effectSize 1.908080e-03           3
## 77     ACTH7_55_BRTE_5g_5        load_effectSize 1.229905e-02           4
## 78     ACTH7_55_BRTE_5g_5         max_effectSize 1.456504e-02           4
## 79     ACTH7_55_BRTE_5g_5         dur_effectSize 8.124120e-03           4
## 80     ACTH7_55_BRTE_5g_5 Consumption_effectSize 1.375000e-05           4
## 81  PSSP6_35_BRTE_2.5g_25        load_effectSize 1.786715e-02           4
## 82  PSSP6_35_BRTE_2.5g_25         max_effectSize 5.766435e-02           4
## 83  PSSP6_35_BRTE_2.5g_25         dur_effectSize 1.066888e-02           4
## 84  PSSP6_35_BRTE_2.5g_25 Consumption_effectSize 5.191669e-02           4
## 85   PSSP6_35_BRTE_2.5g_5        load_effectSize 2.234015e-01           4
## 86   PSSP6_35_BRTE_2.5g_5         max_effectSize 1.329867e-01           4
## 87   PSSP6_35_BRTE_2.5g_5         dur_effectSize 2.053925e-01           4
## 88   PSSP6_35_BRTE_2.5g_5 Consumption_effectSize 1.972517e-02           4
## 89     PSSP6_35_BRTE_5g_5        load_effectSize 5.965648e-02           4
## 90     PSSP6_35_BRTE_5g_5         max_effectSize 2.032887e-01           4
## 91     PSSP6_35_BRTE_5g_5         dur_effectSize 3.334566e-02           4
## 92     PSSP6_35_BRTE_5g_5 Consumption_effectSize 4.152246e-02           4
## 93   PSSP6_55_BRTE_10g_15        load_effectSize 1.511231e-01           4
## 94   PSSP6_55_BRTE_10g_15         max_effectSize 3.630695e-01           4
## 95   PSSP6_55_BRTE_10g_15         dur_effectSize 5.969838e-02           4
## 96   PSSP6_55_BRTE_10g_15 Consumption_effectSize 5.487829e-02           4
## 97   PSSP6_55_BRTE_10g_25        load_effectSize 4.918807e-02           4
## 98   PSSP6_55_BRTE_10g_25         max_effectSize 1.665639e-01           4
## 99   PSSP6_55_BRTE_10g_25         dur_effectSize 1.011345e-01           4
## 100  PSSP6_55_BRTE_10g_25 Consumption_effectSize 3.371099e-03           4
## 101  PSSP6_55_BRTE_10g_35        load_effectSize 1.462149e-01           4
## 102  PSSP6_55_BRTE_10g_35         max_effectSize 3.896217e-01           4
## 103  PSSP6_55_BRTE_10g_35         dur_effectSize 2.420803e-02           4
## 104  PSSP6_55_BRTE_10g_35 Consumption_effectSize 5.069548e-03           4
## 105   PSSP6_55_BRTE_10g_5        load_effectSize 2.373840e-02           4
## 106   PSSP6_55_BRTE_10g_5         max_effectSize 7.767653e-02           4
## 107   PSSP6_55_BRTE_10g_5         dur_effectSize 3.023908e-02           4
## 108   PSSP6_55_BRTE_10g_5 Consumption_effectSize 2.237805e-03           4
## 109 PSSP6_55_BRTE_2.5g_15        load_effectSize 5.208268e-01           3
## 110 PSSP6_55_BRTE_2.5g_15         max_effectSize 1.660691e-01           3
## 111 PSSP6_55_BRTE_2.5g_15         dur_effectSize 6.247317e-02           3
## 112 PSSP6_55_BRTE_2.5g_15 Consumption_effectSize 1.329954e-02           3
## 113 PSSP6_55_BRTE_2.5g_25        load_effectSize 3.216293e-01           3
## 114 PSSP6_55_BRTE_2.5g_25         max_effectSize 6.271538e-01           3
## 115 PSSP6_55_BRTE_2.5g_25         dur_effectSize 2.734124e-01           3
## 116 PSSP6_55_BRTE_2.5g_25 Consumption_effectSize 7.566748e-02           3
## 117 PSSP6_55_BRTE_2.5g_35        load_effectSize 7.358142e-01           4
## 118 PSSP6_55_BRTE_2.5g_35         max_effectSize 8.105976e-01           4
## 119 PSSP6_55_BRTE_2.5g_35         dur_effectSize 1.165255e-01           4
## 120 PSSP6_55_BRTE_2.5g_35 Consumption_effectSize 1.894199e-03           4
## 121  PSSP6_55_BRTE_2.5g_5        load_effectSize 5.150497e-01           4
## 122  PSSP6_55_BRTE_2.5g_5         max_effectSize 1.537413e-01           4
## 123  PSSP6_55_BRTE_2.5g_5         dur_effectSize 2.391278e-01           4
## 124  PSSP6_55_BRTE_2.5g_5 Consumption_effectSize 1.723614e-02           4
## 125   PSSP6_55_BRTE_5g_15        load_effectSize           NA           1
## 126   PSSP6_55_BRTE_5g_15         max_effectSize           NA           1
## 127   PSSP6_55_BRTE_5g_15         dur_effectSize           NA           1
## 128   PSSP6_55_BRTE_5g_15 Consumption_effectSize           NA           1
## 129   PSSP6_55_BRTE_5g_25        load_effectSize 9.778662e-02           4
## 130   PSSP6_55_BRTE_5g_25         max_effectSize 4.440999e-02           4
## 131   PSSP6_55_BRTE_5g_25         dur_effectSize 2.516522e-01           4
## 132   PSSP6_55_BRTE_5g_25 Consumption_effectSize 9.208205e-03           4
## 133   PSSP6_55_BRTE_5g_35        load_effectSize 4.130465e-01           4
## 134   PSSP6_55_BRTE_5g_35         max_effectSize 5.130328e-01           4
## 135   PSSP6_55_BRTE_5g_35         dur_effectSize 7.149295e-01           4
## 136   PSSP6_55_BRTE_5g_35 Consumption_effectSize 3.328304e-02           4
## 137    PSSP6_55_BRTE_5g_5        load_effectSize 8.015165e-01           3
## 138    PSSP6_55_BRTE_5g_5         max_effectSize 3.746766e-01           3
## 139    PSSP6_55_BRTE_5g_5         dur_effectSize 8.559401e-01           3
## 140    PSSP6_55_BRTE_5g_5 Consumption_effectSize 6.628102e-02           3
##     significant
## 1            No
## 2            No
## 3            No
## 4            No
## 5            No
## 6            No
## 7            No
## 8            No
## 9           Yes
## 10          Yes
## 11          Yes
## 12           No
## 13           No
## 14           No
## 15           No
## 16          Yes
## 17           No
## 18           No
## 19          Yes
## 20           No
## 21           No
## 22           No
## 23          Yes
## 24          Yes
## 25          Yes
## 26           No
## 27          Yes
## 28           No
## 29          Yes
## 30           No
## 31          Yes
## 32          Yes
## 33          Yes
## 34           No
## 35          Yes
## 36          Yes
## 37           No
## 38          Yes
## 39           No
## 40           No
## 41          Yes
## 42          Yes
## 43           No
## 44           No
## 45           No
## 46           No
## 47          Yes
## 48          Yes
## 49           No
## 50           No
## 51           No
## 52           No
## 53           No
## 54           No
## 55           No
## 56           No
## 57           No
## 58           No
## 59           No
## 60          Yes
## 61          Yes
## 62           No
## 63           No
## 64           No
## 65           No
## 66           No
## 67          Yes
## 68          Yes
## 69           No
## 70           No
## 71           No
## 72          Yes
## 73           No
## 74           No
## 75           No
## 76          Yes
## 77          Yes
## 78          Yes
## 79          Yes
## 80          Yes
## 81          Yes
## 82           No
## 83          Yes
## 84           No
## 85           No
## 86           No
## 87           No
## 88          Yes
## 89           No
## 90           No
## 91          Yes
## 92          Yes
## 93           No
## 94           No
## 95           No
## 96           No
## 97          Yes
## 98           No
## 99           No
## 100         Yes
## 101          No
## 102          No
## 103         Yes
## 104         Yes
## 105         Yes
## 106          No
## 107         Yes
## 108         Yes
## 109          No
## 110          No
## 111          No
## 112         Yes
## 113          No
## 114          No
## 115          No
## 116          No
## 117          No
## 118          No
## 119          No
## 120         Yes
## 121          No
## 122          No
## 123          No
## 124         Yes
## 125          NA
## 126          NA
## 127          NA
## 128          NA
## 129          No
## 130         Yes
## 131          No
## 132         Yes
## 133          No
## 134          No
## 135          No
## 136         Yes
## 137          No
## 138          No
## 139          No
## 140          No
write.csv(output_table, "tables/effectSize_diffFrom0_output.csv", row.names = F)

try that without AG FM since that is non sig

#create new ID column without AG FM
effect$ID_noAGFM <- paste(effect$PG.SPECIES, effect$PG_Goal_moisture, effect$AG.GOAL.DRY.MASS, sep = "_")
unique(effect$ID_noAGFM)
##  [1] "ACTH7_35_2.5" "ACTH7_35_5"   "ACTH7_55_10"  "ACTH7_55_15"  "ACTH7_55_2.5"
##  [6] "ACTH7_55_5"   "PSSP6_35_2.5" "PSSP6_35_5"   "PSSP6_55_10"  "PSSP6_55_2.5"
## [11] "PSSP6_55_5"
# create an empty output table
output_table_noAGFM <- data.frame(Full_ID = character(), variable = character(), p_value = numeric(), sample_size = integer(), significant = character(), stringsAsFactors = FALSE)

# define the columns to loop through
cols_effectSize <- c("load_effectSize", "max_effectSize", "dur_effectSize", "Consumption_effectSize")

# loop through all unique values of Full_ID and variable
for (id in unique(effect$ID_noAGFM)) {
  for (col in cols_effectSize) {
    # filter the data for the current Full_ID and variable
    trial_dataset <- effect %>% filter(ID_noAGFM == id) %>% select(ID_noAGFM, .data[[col]])
    
    # check the sample size of the current dataset
    sample_size <- nrow(trial_dataset)
    
    # check if there are at least two observations
    if (sample_size >= 2) {
      # perform the t-test and extract the p-value
      ttest_result <- t.test(trial_dataset[[2]], mu = 0, alternative = "two.sided")
      p_value <- ttest_result$p.value
      
      # determine if the p-value is significant at the 0.05 level
      if (p_value < 0.05) {
        significant <- "Yes"
      } else {
        significant <- "No"
      }
      
      # add the Full_ID, variable, p-value, sample size, and significance to the output table
      output_table_noAGFM <- rbind(output_table_noAGFM, data.frame(Full_ID = id, variable = col, p_value = p_value, sample_size = sample_size, significant = significant))
    } else {
      # add a row with NA if there are less than two observations
      output_table_noAGFM <- rbind(output_table_noAGFM, data.frame(Full_ID = id, variable = col, p_value = NA, sample_size = sample_size, significant = "NA"))
    }
  }
}

# print the output table
print(output_table_noAGFM)
##         Full_ID               variable      p_value sample_size significant
## 1  ACTH7_35_2.5        load_effectSize 2.100308e-01           8          No
## 2  ACTH7_35_2.5         max_effectSize 3.504323e-01           8          No
## 3  ACTH7_35_2.5         dur_effectSize 1.661714e-01           8          No
## 4  ACTH7_35_2.5 Consumption_effectSize 3.712065e-01           8          No
## 5    ACTH7_35_5        load_effectSize 1.129824e-04           7         Yes
## 6    ACTH7_35_5         max_effectSize 1.018466e-02           7         Yes
## 7    ACTH7_35_5         dur_effectSize 6.162431e-05           7         Yes
## 8    ACTH7_35_5 Consumption_effectSize 1.828926e-02           7         Yes
## 9   ACTH7_55_10        load_effectSize 2.601908e-05          16         Yes
## 10  ACTH7_55_10         max_effectSize 4.603927e-01          16          No
## 11  ACTH7_55_10         dur_effectSize 3.776972e-08          16         Yes
## 12  ACTH7_55_10 Consumption_effectSize 5.114068e-07          16         Yes
## 13  ACTH7_55_15        load_effectSize 1.301135e-03          14         Yes
## 14  ACTH7_55_15         max_effectSize 9.384052e-01          14          No
## 15  ACTH7_55_15         dur_effectSize 2.158398e-06          14         Yes
## 16  ACTH7_55_15 Consumption_effectSize 6.042400e-08          14         Yes
## 17 ACTH7_55_2.5        load_effectSize 5.831942e-03          12         Yes
## 18 ACTH7_55_2.5         max_effectSize 1.587186e-02          12         Yes
## 19 ACTH7_55_2.5         dur_effectSize 5.597125e-03          12         Yes
## 20 ACTH7_55_2.5 Consumption_effectSize 1.202494e-01          12          No
## 21   ACTH7_55_5        load_effectSize 3.817549e-04          15         Yes
## 22   ACTH7_55_5         max_effectSize 4.484418e-02          15         Yes
## 23   ACTH7_55_5         dur_effectSize 3.299839e-05          15         Yes
## 24   ACTH7_55_5 Consumption_effectSize 3.314841e-18          15         Yes
## 25 PSSP6_35_2.5        load_effectSize 7.935356e-03           8         Yes
## 26 PSSP6_35_2.5         max_effectSize 7.693314e-03           8         Yes
## 27 PSSP6_35_2.5         dur_effectSize 5.560543e-03           8         Yes
## 28 PSSP6_35_2.5 Consumption_effectSize 1.303155e-03           8         Yes
## 29   PSSP6_35_5        load_effectSize 5.965648e-02           4          No
## 30   PSSP6_35_5         max_effectSize 2.032887e-01           4          No
## 31   PSSP6_35_5         dur_effectSize 3.334566e-02           4         Yes
## 32   PSSP6_35_5 Consumption_effectSize 4.152246e-02           4         Yes
## 33  PSSP6_55_10        load_effectSize 7.779420e-04          16         Yes
## 34  PSSP6_55_10         max_effectSize 9.372142e-01          16          No
## 35  PSSP6_55_10         dur_effectSize 3.743279e-05          16         Yes
## 36  PSSP6_55_10 Consumption_effectSize 3.097020e-08          16         Yes
## 37 PSSP6_55_2.5        load_effectSize 2.900605e-01          14          No
## 38 PSSP6_55_2.5         max_effectSize 7.148576e-01          14          No
## 39 PSSP6_55_2.5         dur_effectSize 1.904810e-03          14         Yes
## 40 PSSP6_55_2.5 Consumption_effectSize 2.710397e-05          14         Yes
## 41   PSSP6_55_5        load_effectSize 3.332921e-01          12          No
## 42   PSSP6_55_5         max_effectSize 4.623547e-02          12         Yes
## 43   PSSP6_55_5         dur_effectSize 2.876348e-01          12          No
## 44   PSSP6_55_5 Consumption_effectSize 4.561912e-06          12         Yes
#write.csv(output_table_noAGFM, "tables/effectSize_diffFrom0_noAGFM_output.csv", row.names = F)

additional stats - linear models set up the data

#confirm data format
summary(effect)
##                   Full_ID        REP..       PG.SPECIES PG_Goal_moisture
##  ACTH7_35_BRTE_2.5g_25:  4   Min.   :1.000   ACTH7:72   35:27           
##  ACTH7_35_BRTE_2.5g_5 :  4   1st Qu.:2.000   PSSP6:54   55:99           
##  ACTH7_35_BRTE_5g_25  :  4   Median :2.000                              
##  ACTH7_55_BRTE_10g_15 :  4   Mean   :2.492                              
##  ACTH7_55_BRTE_10g_25 :  4   3rd Qu.:3.000                              
##  ACTH7_55_BRTE_10g_35 :  4   Max.   :4.000                              
##  (Other)              :102                                              
##  AG.dry.weight..g. AG.GOAL.DRY.MASS AG.GOAL.MOISTURE. PG.WET.ACTUAL  
##  Min.   : 2.370    2.5:42           5 :40             Min.   :25.97  
##  1st Qu.: 2.610    5  :38           15:24             1st Qu.:29.69  
##  Median : 5.135    10 :32           25:38             Median :30.86  
##  Mean   : 6.651    15 :14           35:24             Mean   :29.96  
##  3rd Qu.:10.010                                       3rd Qu.:30.95  
##  Max.   :15.450                                       Max.   :32.20  
##                                                                      
##  AG.WET.ACTUAL     PG.MOISTURE     AG.MOISTURE         dur_obs      
##  Min.   : 2.610   Min.   :29.53   Min.   :-16.250   Min.   : 25.75  
##  1st Qu.: 3.280   1st Qu.:48.34   1st Qu.:  8.925   1st Qu.: 66.00  
##  Median : 6.180   Median :54.26   Median : 17.745   Median : 82.25  
##  Mean   : 7.923   Mean   :49.68   Mean   : 19.337   Mean   : 83.74  
##  3rd Qu.:11.585   3rd Qu.:54.67   3rd Qu.: 27.483   3rd Qu.:101.38  
##  Max.   :20.800   Max.   :61.00   Max.   : 53.910   Max.   :168.25  
##                                                                     
##     max_obs          load_obs      consumption_obs    dur_exp     
##  Min.   : 118.3   Min.   :  6722   Min.   :13.87   Min.   :47.89  
##  1st Qu.: 377.1   1st Qu.: 32228   1st Qu.:72.50   1st Qu.:50.60  
##  Median : 605.5   Median : 42539   Median :81.41   Median :53.67  
##  Mean   : 589.0   Mean   : 42884   Mean   :78.72   Mean   :58.44  
##  3rd Qu.: 789.3   3rd Qu.: 53985   3rd Qu.:89.94   3rd Qu.:71.00  
##  Max.   :1302.7   Max.   :138934   Max.   :94.10   Max.   :72.56  
##                                                                   
##     max_exp         load_exp     consumption_exp dur_effectSize   
##  Min.   :371.5   Min.   :19736   Min.   :64.94   Min.   :-0.6418  
##  1st Qu.:446.2   1st Qu.:23096   1st Qu.:69.75   1st Qu.: 0.1083  
##  Median :552.1   Median :28668   Median :77.28   Median : 0.4656  
##  Mean   :532.5   Mean   :28160   Mean   :80.23   Mean   : 0.4770  
##  3rd Qu.:620.6   3rd Qu.:34297   3rd Qu.:92.56   3rd Qu.: 0.8432  
##  Max.   :683.1   Max.   :36450   Max.   :93.67   Max.   : 2.1575  
##                                                                   
##  max_effectSize    load_effectSize    Consumption_effectSize  ID_noAGFM        
##  Min.   :-0.8015   Min.   :-0.80612   Min.   :-0.78661       Length:126        
##  1st Qu.:-0.2376   1st Qu.: 0.02816   1st Qu.:-0.14979       Class :character  
##  Median : 0.1883   Median : 0.50662   Median :-0.02615       Mode  :character  
##  Mean   : 0.1260   Mean   : 0.59157   Mean   : 0.00135                         
##  3rd Qu.: 0.4096   3rd Qu.: 1.03111   3rd Qu.: 0.21105                         
##  Max.   : 1.2734   Max.   : 4.59185   Max.   : 0.33652                         
## 
#transform AG goal moisture to continuous
effect$AG.GOAL.MOISTURE._cont <- as.numeric(effect$AG.GOAL.MOISTURE.)
#transform AG mass to continuous 
effect$AG.GOAL.DRY.MASS_cont <- as.numeric(effect$AG.GOAL.DRY.MASS)

# define the columns to loop through
cols_effectSize <- c("load_effectSize", "max_effectSize", "dur_effectSize", "Consumption_effectSize")

heat load

lm_effect_load <- lm(load_effectSize ~ PG.SPECIES + PG_Goal_moisture + AG.GOAL.MOISTURE._cont + AG.GOAL.DRY.MASS_cont, data = effect)
summary(lm_effect_load)
## 
## Call:
## lm(formula = load_effectSize ~ PG.SPECIES + PG_Goal_moisture + 
##     AG.GOAL.MOISTURE._cont + AG.GOAL.DRY.MASS_cont, data = effect)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -1.6445 -0.4285  0.0034  0.3968  3.3117 
## 
## Coefficients:
##                        Estimate Std. Error t value Pr(>|t|)    
## (Intercept)             0.68868    0.20859   3.302 0.001264 ** 
## PG.SPECIESPSSP6        -0.59351    0.12491  -4.751 5.61e-06 ***
## PG_Goal_moisture55     -0.31398    0.16347  -1.921 0.057128 .  
## AG.GOAL.MOISTURE._cont -0.04432    0.05537  -0.801 0.424954    
## AG.GOAL.DRY.MASS_cont   0.23743    0.06665   3.562 0.000527 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.6752 on 121 degrees of freedom
## Multiple R-squared:  0.2804, Adjusted R-squared:  0.2566 
## F-statistic: 11.79 on 4 and 121 DF,  p-value: 4.048e-08
# AG moisture is not sig, so lets drop it 

lm_effect_load <- lm(load_effectSize ~ PG.SPECIES*PG_Goal_moisture + AG.GOAL.DRY.MASS_cont, 
                     data = effect)
summary(lm_effect_load)
## 
## Call:
## lm(formula = load_effectSize ~ PG.SPECIES * PG_Goal_moisture + 
##     AG.GOAL.DRY.MASS_cont, data = effect)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -1.5027 -0.4040 -0.0210  0.3951  3.3275 
## 
## Coefficients:
##                                    Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                         0.37435    0.19570   1.913 0.058123 .  
## PG.SPECIESPSSP6                    -0.04274    0.25610  -0.167 0.867747    
## PG_Goal_moisture55                 -0.01942    0.20468  -0.095 0.924556    
## AG.GOAL.DRY.MASS_cont               0.22735    0.06533   3.480 0.000697 ***
## PG.SPECIESPSSP6:PG_Goal_moisture55 -0.70916    0.29016  -2.444 0.015966 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.6609 on 121 degrees of freedom
## Multiple R-squared:  0.3107, Adjusted R-squared:  0.2879 
## F-statistic: 13.63 on 4 and 121 DF,  p-value: 3.327e-09
#only needlegrass
lm_effect_acth_load <- lm(load_effectSize ~  PG_Goal_moisture +AG.GOAL.DRY.MASS_cont, data = (effect %>% filter(PG.SPECIES == "ACTH7")))
summary(lm_effect_acth_load)
## 
## Call:
## lm(formula = load_effectSize ~ PG_Goal_moisture + AG.GOAL.DRY.MASS_cont, 
##     data = (effect %>% filter(PG.SPECIES == "ACTH7")))
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -1.4815 -0.5416 -0.0059  0.5300  3.3488 
## 
## Coefficients:
##                        Estimate Std. Error t value Pr(>|t|)  
## (Intercept)            0.396010   0.248557   1.593    0.116  
## PG_Goal_moisture55    -0.003256   0.253466  -0.013    0.990  
## AG.GOAL.DRY.MASS_cont  0.212586   0.095301   2.231    0.029 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.796 on 69 degrees of freedom
## Multiple R-squared:  0.07954,    Adjusted R-squared:  0.05286 
## F-statistic: 2.981 on 2 and 69 DF,  p-value: 0.0573
#PG FM is non sig
#AG mass is sig

#only bluebunch
lm_effect_pssp_load <- lm(load_effectSize ~ 
                       PG_Goal_moisture +AG.GOAL.DRY.MASS_cont, 
                     data = (effect %>% filter(PG.SPECIES == "PSSP6")))
summary(lm_effect_pssp_load)
## 
## Call:
## lm(formula = load_effectSize ~ PG_Goal_moisture + AG.GOAL.DRY.MASS_cont, 
##     data = (effect %>% filter(PG.SPECIES == "PSSP6")))
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -0.83231 -0.26534 -0.04958  0.22276  1.15435 
## 
## Coefficients:
##                       Estimate Std. Error t value Pr(>|t|)    
## (Intercept)            0.28944    0.15668   1.847 0.070498 .  
## PG_Goal_moisture55    -0.75118    0.14785  -5.081  5.4e-06 ***
## AG.GOAL.DRY.MASS_cont  0.25899    0.07392   3.503 0.000965 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.4219 on 51 degrees of freedom
## Multiple R-squared:  0.3632, Adjusted R-squared:  0.3382 
## F-statistic: 14.54 on 2 and 51 DF,  p-value: 1.006e-05
#PG FM is sig
#AG mass is sig

max temp

lm_effect <- lm(max_effectSize ~ PG.SPECIES + PG_Goal_moisture + AG.GOAL.MOISTURE._cont + AG.GOAL.DRY.MASS_cont, 
                     data = effect)
summary(lm_effect)
## 
## Call:
## lm(formula = max_effectSize ~ PG.SPECIES + PG_Goal_moisture + 
##     AG.GOAL.MOISTURE._cont + AG.GOAL.DRY.MASS_cont, data = effect)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -1.16953 -0.37191  0.03289  0.31313  1.11827 
## 
## Coefficients:
##                        Estimate Std. Error t value Pr(>|t|)   
## (Intercept)             0.48265    0.14728   3.277  0.00137 **
## PG.SPECIESPSSP6        -0.26121    0.08820  -2.962  0.00368 **
## PG_Goal_moisture55     -0.23162    0.11542  -2.007  0.04701 * 
## AG.GOAL.MOISTURE._cont  0.02590    0.03909   0.663  0.50888   
## AG.GOAL.DRY.MASS_cont  -0.05787    0.04706  -1.230  0.22120   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.4767 on 121 degrees of freedom
## Multiple R-squared:  0.1178, Adjusted R-squared:  0.08866 
## F-statistic:  4.04 on 4 and 121 DF,  p-value: 0.004131
# AG moisture is not sig, so lets drop it 
# ALSO! AG mass is non sig

#only needlegrass
lm_effect_acth <- lm(max_effectSize ~ 
                       PG_Goal_moisture +AG.GOAL.DRY.MASS_cont, 
                     data = (effect %>% filter(PG.SPECIES == "ACTH7")))
summary(lm_effect_acth)
## 
## Call:
## lm(formula = max_effectSize ~ PG_Goal_moisture + AG.GOAL.DRY.MASS_cont, 
##     data = (effect %>% filter(PG.SPECIES == "ACTH7")))
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -1.13224 -0.38782 -0.00744  0.35533  1.13446 
## 
## Coefficients:
##                       Estimate Std. Error t value Pr(>|t|)   
## (Intercept)            0.53058    0.15921   3.333  0.00139 **
## PG_Goal_moisture55    -0.04007    0.16235  -0.247  0.80580   
## AG.GOAL.DRY.MASS_cont -0.11719    0.06104  -1.920  0.05901 . 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.5099 on 69 degrees of freedom
## Multiple R-squared:  0.06732,    Adjusted R-squared:  0.04029 
## F-statistic:  2.49 on 2 and 69 DF,  p-value: 0.09031
#PG FM is non sig
#AG mass is non sig

#only bluebunch
lm_effect_pssp<- lm(max_effectSize ~ 
                       PG_Goal_moisture +AG.GOAL.DRY.MASS_cont, 
                     data = (effect %>% filter(PG.SPECIES == "PSSP6")))
summary(lm_effect_pssp)
## 
## Call:
## lm(formula = max_effectSize ~ PG_Goal_moisture + AG.GOAL.DRY.MASS_cont, 
##     data = (effect %>% filter(PG.SPECIES == "PSSP6")))
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -0.70405 -0.32639  0.05982  0.30141  0.85625 
## 
## Coefficients:
##                       Estimate Std. Error t value Pr(>|t|)   
## (Intercept)            0.24031    0.15362   1.564   0.1239   
## PG_Goal_moisture55    -0.43204    0.14496  -2.980   0.0044 **
## AG.GOAL.DRY.MASS_cont  0.04716    0.07248   0.651   0.5181   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.4137 on 51 degrees of freedom
## Multiple R-squared:  0.1511, Adjusted R-squared:  0.1178 
## F-statistic:  4.54 on 2 and 51 DF,  p-value: 0.01533
#PG FM is sig
#AG mass is non sig

duration

lm_effect <- lm(dur_effectSize ~ PG.SPECIES + PG_Goal_moisture + AG.GOAL.MOISTURE._cont + AG.GOAL.DRY.MASS_cont, 
                     data = effect)
summary(lm_effect)
## 
## Call:
## lm(formula = dur_effectSize ~ PG.SPECIES + PG_Goal_moisture + 
##     AG.GOAL.MOISTURE._cont + AG.GOAL.DRY.MASS_cont, data = effect)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -1.12612 -0.16802 -0.01798  0.24357  0.98655 
## 
## Coefficients:
##                        Estimate Std. Error t value Pr(>|t|)    
## (Intercept)             0.40465    0.11572   3.497 0.000659 ***
## PG.SPECIESPSSP6        -0.43330    0.06930  -6.253 6.29e-09 ***
## PG_Goal_moisture55     -0.32216    0.09069  -3.552 0.000545 ***
## AG.GOAL.MOISTURE._cont -0.03932    0.03072  -1.280 0.202947    
## AG.GOAL.DRY.MASS_cont   0.28195    0.03698   7.625 6.12e-12 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.3746 on 121 degrees of freedom
## Multiple R-squared:  0.5181, Adjusted R-squared:  0.5021 
## F-statistic: 32.52 on 4 and 121 DF,  p-value: < 2.2e-16
# AG moisture is not sig, so lets drop it 

lm_effect <- lm(dur_effectSize ~ PG.SPECIES + PG_Goal_moisture + AG.GOAL.DRY.MASS_cont, 
                     data = effect)
summary(lm_effect)
## 
## Call:
## lm(formula = dur_effectSize ~ PG.SPECIES + PG_Goal_moisture + 
##     AG.GOAL.DRY.MASS_cont, data = effect)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -1.11909 -0.17555 -0.00974  0.23955  1.04033 
## 
## Coefficients:
##                       Estimate Std. Error t value Pr(>|t|)    
## (Intercept)            0.32559    0.09811   3.319 0.001193 ** 
## PG.SPECIESPSSP6       -0.43261    0.06948  -6.227  7.0e-09 ***
## PG_Goal_moisture55    -0.34897    0.08847  -3.944 0.000134 ***
## AG.GOAL.DRY.MASS_cont  0.28514    0.03699   7.709  3.8e-12 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.3756 on 122 degrees of freedom
## Multiple R-squared:  0.5116, Adjusted R-squared:  0.4995 
## F-statistic: 42.59 on 3 and 122 DF,  p-value: < 2.2e-16
#only needlegrass
lm_effect_acth <- lm(dur_effectSize ~ 
                       PG_Goal_moisture +AG.GOAL.DRY.MASS_cont, 
                     data = (effect %>% filter(PG.SPECIES == "ACTH7")))
summary(lm_effect_acth)
## 
## Call:
## lm(formula = dur_effectSize ~ PG_Goal_moisture + AG.GOAL.DRY.MASS_cont, 
##     data = (effect %>% filter(PG.SPECIES == "ACTH7")))
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -1.14936 -0.19016  0.03555  0.27885  1.01007 
## 
## Coefficients:
##                       Estimate Std. Error t value Pr(>|t|)    
## (Intercept)            0.15150    0.13102   1.156    0.252    
## PG_Goal_moisture55    -0.08555    0.13361  -0.640    0.524    
## AG.GOAL.DRY.MASS_cont  0.27037    0.05023   5.382 9.55e-07 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.4196 on 69 degrees of freedom
## Multiple R-squared:  0.3165, Adjusted R-squared:  0.2967 
## F-statistic: 15.98 on 2 and 69 DF,  p-value: 1.986e-06
#PG FM is non sig
#AG mass is non sig

#only bluebunch
lm_effect_pssp<- lm(dur_effectSize ~ 
                       PG_Goal_moisture +AG.GOAL.DRY.MASS_cont, 
                     data = (effect %>% filter(PG.SPECIES == "PSSP6")))
summary(lm_effect_pssp)
## 
## Call:
## lm(formula = dur_effectSize ~ PG_Goal_moisture + AG.GOAL.DRY.MASS_cont, 
##     data = (effect %>% filter(PG.SPECIES == "PSSP6")))
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -0.59436 -0.18673  0.01677  0.13611  0.65329 
## 
## Coefficients:
##                       Estimate Std. Error t value Pr(>|t|)    
## (Intercept)             0.1412     0.0958   1.474    0.147    
## PG_Goal_moisture55     -0.6616     0.0904  -7.319 1.71e-09 ***
## AG.GOAL.DRY.MASS_cont   0.2825     0.0452   6.249 8.33e-08 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.258 on 51 degrees of freedom
## Multiple R-squared:  0.574,  Adjusted R-squared:  0.5573 
## F-statistic: 34.36 on 2 and 51 DF,  p-value: 3.552e-10
#PG FM is sig
#AG mass is non sig

consumption

lm_effect <- lm(Consumption_effectSize ~ PG.SPECIES + PG_Goal_moisture + AG.GOAL.MOISTURE._cont + AG.GOAL.DRY.MASS_cont, 
                     data = effect)
summary(lm_effect)
## 
## Call:
## lm(formula = Consumption_effectSize ~ PG.SPECIES + PG_Goal_moisture + 
##     AG.GOAL.MOISTURE._cont + AG.GOAL.DRY.MASS_cont, data = effect)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -0.85869 -0.04302  0.02488  0.11278  0.20696 
## 
## Coefficients:
##                         Estimate Std. Error t value Pr(>|t|)    
## (Intercept)             0.034716   0.053909   0.644   0.5208    
## PG.SPECIESPSSP6        -0.318231   0.032283  -9.858   <2e-16 ***
## PG_Goal_moisture55      0.031496   0.042249   0.745   0.4574    
## AG.GOAL.MOISTURE._cont -0.008039   0.014309  -0.562   0.5753    
## AG.GOAL.DRY.MASS_cont   0.045400   0.017225   2.636   0.0095 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.1745 on 121 degrees of freedom
## Multiple R-squared:  0.5125, Adjusted R-squared:  0.4963 
## F-statistic:  31.8 on 4 and 121 DF,  p-value: < 2.2e-16
# AG moisture is not sig, so lets drop it 

lm_effect <- lm(Consumption_effectSize ~ PG.SPECIES + PG_Goal_moisture + AG.GOAL.DRY.MASS_cont, 
                     data = effect)
summary(lm_effect)
## 
## Call:
## lm(formula = Consumption_effectSize ~ PG.SPECIES + PG_Goal_moisture + 
##     AG.GOAL.DRY.MASS_cont, data = effect)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -0.85122 -0.04352  0.02228  0.11766  0.19985 
## 
## Coefficients:
##                       Estimate Std. Error t value Pr(>|t|)    
## (Intercept)            0.01855    0.04546   0.408  0.68396    
## PG.SPECIESPSSP6       -0.31809    0.03219  -9.881  < 2e-16 ***
## PG_Goal_moisture55     0.02602    0.04099   0.635  0.52684    
## AG.GOAL.DRY.MASS_cont  0.04605    0.01714   2.687  0.00821 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.174 on 122 degrees of freedom
## Multiple R-squared:  0.5112, Adjusted R-squared:  0.4992 
## F-statistic: 42.53 on 3 and 122 DF,  p-value: < 2.2e-16
#only needlegrass
lm_effect_acth <- lm(Consumption_effectSize ~ 
                       PG_Goal_moisture +AG.GOAL.DRY.MASS_cont, 
                     data = (effect %>% filter(PG.SPECIES == "ACTH7")))
summary(lm_effect_acth)
## 
## Call:
## lm(formula = Consumption_effectSize ~ PG_Goal_moisture + AG.GOAL.DRY.MASS_cont, 
##     data = (effect %>% filter(PG.SPECIES == "ACTH7")))
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -0.74997 -0.04351  0.02548  0.12535  0.30490 
## 
## Coefficients:
##                       Estimate Std. Error t value Pr(>|t|)   
## (Intercept)           -0.06670    0.06051  -1.102  0.27418   
## PG_Goal_moisture55     0.18086    0.06170   2.931  0.00458 **
## AG.GOAL.DRY.MASS_cont  0.03005    0.02320   1.295  0.19954   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.1938 on 69 degrees of freedom
## Multiple R-squared:  0.1894, Adjusted R-squared:  0.166 
## F-statistic: 8.064 on 2 and 69 DF,  p-value: 0.0007127
#PG FM is sig
#AG mass is non sig

#only bluebunch
lm_effect_pssp<- lm(Consumption_effectSize ~ 
                       PG_Goal_moisture +AG.GOAL.DRY.MASS_cont, 
                     data = (effect %>% filter(PG.SPECIES == "PSSP6")))
summary(lm_effect_pssp)
## 
## Call:
## lm(formula = Consumption_effectSize ~ PG_Goal_moisture + AG.GOAL.DRY.MASS_cont, 
##     data = (effect %>% filter(PG.SPECIES == "PSSP6")))
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -0.39033 -0.04047  0.02444  0.05759  0.18195 
## 
## Coefficients:
##                       Estimate Std. Error t value Pr(>|t|)    
## (Intercept)           -0.18396    0.03922  -4.690 2.08e-05 ***
## PG_Goal_moisture55    -0.15958    0.03701  -4.312 7.42e-05 ***
## AG.GOAL.DRY.MASS_cont  0.06128    0.01851   3.311  0.00171 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.1056 on 51 degrees of freedom
## Multiple R-squared:  0.3032, Adjusted R-squared:  0.2758 
## F-statistic: 11.09 on 2 and 51 DF,  p-value: 9.997e-05
#PG FM is sig
#AG mass is sig

duration

#graph it 
summary(effect$dur_effectSize)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
## -0.6418  0.1083  0.4656  0.4770  0.8432  2.1575
acth55 <- ggplot(effect %>% filter(PG.SPECIES == "ACTH7" & PG_Goal_moisture == 55), 
             aes(x = AG.GOAL.DRY.MASS, y= dur_effectSize, fill = AG.GOAL.DRY.MASS))+
  geom_boxplot()+  
  scale_fill_manual(values = acth55_effect_colors) + 
  ylim(-1,2.5)+geom_hline(yintercept=0, linetype="dashed", color="black")+
  labs(fill = "", x="AG mass (g)",
       y="Effect size (duration)",)+
  theme(legend.position = "none")
acth55

pssp55 <- ggplot(effect %>% filter(PG.SPECIES == "PSSP6" & PG_Goal_moisture == 55), 
             aes(x = AG.GOAL.DRY.MASS, y= dur_effectSize, fill = AG.GOAL.DRY.MASS))+
  geom_boxplot()+
  scale_fill_manual(values = pssp55_effect_colors) + 
  ylim(-1,2.5)+geom_hline(yintercept=0, linetype="dashed", color="black")+
  labs(y="Effect size", x="AG mass (g)")+
  theme(legend.position = "none")
pssp55

effect_dur_55 <- ggarrange(acth55, 
            pssp55+theme(axis.title.y = element_blank()),
            ncol = 2, nrow =1)
effect_dur_55

ggsave('figures/additive/pg_55/dur55.png', effect_dur_55, height = 3, width = 5,bg='transparent')




acth35 <- ggplot(effect %>% filter(PG.SPECIES == "ACTH7" & PG_Goal_moisture == 35), 
             aes(x = AG.GOAL.DRY.MASS, y= dur_effectSize, fill = AG.GOAL.DRY.MASS))+
  geom_boxplot()+  
  scale_fill_manual(values = acth55_effect_colors) + 
  ylim(-1,2)+geom_hline(yintercept=0, linetype="dashed", color="black")+
  labs(fill = "",y="Effect size (duration)", x="AG mass (g)")+
  theme(legend.position = "none")
acth35

pssp35 <- ggplot(effect %>% filter(PG.SPECIES == "PSSP6" & PG_Goal_moisture == 35), 
             aes(x = AG.GOAL.DRY.MASS, y= dur_effectSize, fill = AG.GOAL.DRY.MASS))+
  geom_boxplot()+
  scale_fill_manual(values = pssp55_effect_colors) + 
  ylim(-1,2)+geom_hline(yintercept=0, linetype="dashed", color="black")+
  labs(y="Effect size", x="AG mass (g)")+
  theme(legend.position = "none")
pssp35

effect_dur_35 <- 
  ggarrange(acth35, 
            pssp35+theme(axis.title.y = element_blank()),
            ncol = 2, nrow =1)

effect_dur_35

ggsave('figures/additive/pg_35/dur35.png', effect_dur_35, height = 3, width = 5,bg='transparent')

head load Effect size

#first up, we should see if either AG.goal moisutre or dry mass are significant
#test for normality of the dur_effectSize

result = bartlett.test(load_effectSize~AG.GOAL.MOISTURE., effect)
print(result)
## 
##  Bartlett test of homogeneity of variances
## 
## data:  load_effectSize by AG.GOAL.MOISTURE.
## Bartlett's K-squared = 10.449, df = 3, p-value = 0.01511
result = bartlett.test(load_effectSize~AG.GOAL.DRY.MASS, effect)
print(result)
## 
##  Bartlett test of homogeneity of variances
## 
## data:  load_effectSize by AG.GOAL.DRY.MASS
## Bartlett's K-squared = 11.653, df = 3, p-value = 0.00867
# NOT normally distributed 

#now test for differences in Effect size by ag mass and moisture
kruskal.test(load_effectSize ~ AG.GOAL.DRY.MASS, data = effect)
## 
##  Kruskal-Wallis rank sum test
## 
## data:  load_effectSize by AG.GOAL.DRY.MASS
## Kruskal-Wallis chi-squared = 10.739, df = 3, p-value = 0.01322
# p 0.01322
# yes there are differences by ag mass
kruskal.test(load_effectSize ~ AG.GOAL.MOISTURE., data = effect)
## 
##  Kruskal-Wallis rank sum test
## 
## data:  load_effectSize by AG.GOAL.MOISTURE.
## Kruskal-Wallis chi-squared = 4.546, df = 3, p-value = 0.2082
# p 0.2082
# no diff by ag moisture
#graph it 
summary(effect$load_effectSize)
##     Min.  1st Qu.   Median     Mean  3rd Qu.     Max. 
## -0.80612  0.02816  0.50662  0.59157  1.03111  4.59185
acth55 <- ggplot(effect %>% filter(PG.SPECIES == "ACTH7" & PG_Goal_moisture == 55), 
             aes(x = AG.GOAL.DRY.MASS, y= load_effectSize, fill = AG.GOAL.DRY.MASS))+
  geom_boxplot()+  
  scale_fill_manual(values = acth55_effect_colors) + 
  ylim(-1,2.5)+geom_hline(yintercept=0, linetype="dashed", color="black")+
  labs(fill = "",y="Effect size (thermal dose)", x="AG mass (g)")+
  theme(legend.position = "none")
acth55
## Warning: Removed 1 rows containing non-finite values (stat_boxplot).

#outlier ACTH7 55 at 4.59 for AG mass 15 g

pssp55 <- ggplot(effect %>% filter(PG.SPECIES == "PSSP6" & PG_Goal_moisture == 55), 
             aes(x = AG.GOAL.DRY.MASS, y= load_effectSize, fill = AG.GOAL.DRY.MASS))+
  geom_boxplot()+
  scale_fill_manual(values = pssp55_effect_colors) + 
  ylim(-1,2.5)+geom_hline(yintercept=0, linetype="dashed", color="black")+
  labs(y="Effect size", x="AG mass (g)")+
  theme(legend.position = "none")
pssp55

effect_load_55 <- 
  ggarrange(acth55, pssp55+theme(axis.title.y = element_blank()),
            ncol = 2, nrow =1)
## Warning: Removed 1 rows containing non-finite values (stat_boxplot).
effect_load_55

ggsave('figures/additive/pg_55/load55.png', effect_load_55, height = 3, width = 5,bg='transparent')




acth35 <- ggplot(effect %>% filter(PG.SPECIES == "ACTH7" & PG_Goal_moisture == 35), 
             aes(x = AG.GOAL.DRY.MASS, y= load_effectSize, fill = AG.GOAL.DRY.MASS))+
  geom_boxplot()+  
  scale_fill_manual(values = acth55_effect_colors) + 
  ylim(-1,2)+geom_hline(yintercept=0, linetype="dashed", color="black")+
  labs(fill = "",y="Effect size (thermal dose)", x="AG mass (g)")+
  theme(legend.position = "none")
acth35

pssp35 <- ggplot(effect %>% filter(PG.SPECIES == "PSSP6" & PG_Goal_moisture == 35), 
             aes(x = AG.GOAL.DRY.MASS, y= load_effectSize, fill = AG.GOAL.DRY.MASS))+
  geom_boxplot()+
  scale_fill_manual(values = pssp55_effect_colors) + 
  ylim(-1,2)+geom_hline(yintercept=0, linetype="dashed", color="black")+
  labs(y="Effect size", x="AG mass (g)")+
  theme(legend.position = "none")
pssp35

effect_load_35 <- 
  ggarrange(acth35, pssp35+theme(axis.title.y = element_blank()),
            ncol = 2, nrow =1)
effect_load_35

ggsave('figures/additive/pg_35/load35.png', effect_load_35, height = 3, width = 5,bg='transparent')

outlier ACTH7 55 at 4.59 for AG mass 15 g

max temp Effect size

#first up, we should see if either AG.goal moisutre or dry mass are significant
#test for normality of the dur_effectSize

result = bartlett.test(max_effectSize~AG.GOAL.MOISTURE., effect)
print(result)
## 
##  Bartlett test of homogeneity of variances
## 
## data:  max_effectSize by AG.GOAL.MOISTURE.
## Bartlett's K-squared = 0.95333, df = 3, p-value = 0.8125
result = bartlett.test(max_effectSize~AG.GOAL.DRY.MASS, effect)
print(result)
## 
##  Bartlett test of homogeneity of variances
## 
## data:  max_effectSize by AG.GOAL.DRY.MASS
## Bartlett's K-squared = 1.5068, df = 3, p-value = 0.6807
# YES normally distributed 

#now test for differences in Effect size by ag mass and moisture
aov1 <- aov(max_effectSize ~ AG.GOAL.DRY.MASS+ AG.GOAL.MOISTURE., data = effect)
summary(aov1) #no interaction
##                    Df Sum Sq Mean Sq F value Pr(>F)
## AG.GOAL.DRY.MASS    3  0.568  0.1892   0.754  0.522
## AG.GOAL.MOISTURE.   3  0.750  0.2500   0.997  0.397
## Residuals         119 29.857  0.2509
#neither ag mass nor moisture is sig
#graph it 
acth55 <- ggplot(effect %>% filter(PG.SPECIES == "ACTH7" & PG_Goal_moisture == 55), 
             aes(x = AG.GOAL.DRY.MASS, y= max_effectSize, fill = AG.GOAL.DRY.MASS))+
  geom_boxplot()+  
  scale_fill_manual(values = acth55_effect_colors) + 
  ylim(-1,2.5)+geom_hline(yintercept=0, linetype="dashed", color="black")+
  labs(fill = "",y="Effect size (max temp.)", x="AG mass (g)")+
  theme(legend.position = "none")
acth55

pssp55 <- ggplot(effect %>% filter(PG.SPECIES == "PSSP6" & PG_Goal_moisture == 55), 
             aes(x = AG.GOAL.DRY.MASS, y= max_effectSize, fill = AG.GOAL.DRY.MASS))+
  geom_boxplot()+
  scale_fill_manual(values = pssp55_effect_colors) + 
  ylim(-1,2.5)+geom_hline(yintercept=0, linetype="dashed", color="black")+
  labs(y="Effect size", x="AG mass (g)")+
  theme(legend.position = "none")
pssp55

effect_max_55 <- 
  ggarrange(acth55, pssp55+theme(axis.title.y = element_blank()),
            ncol = 2, nrow =1)
effect_max_55

ggsave('figures/additive/pg_55/max55.png', effect_max_55, height = 3, width = 5,bg='transparent')




acth35 <- ggplot(effect %>% filter(PG.SPECIES == "ACTH7" & PG_Goal_moisture == 35), 
             aes(x = AG.GOAL.DRY.MASS, y= max_effectSize, fill = AG.GOAL.DRY.MASS))+
  geom_boxplot()+  
  scale_fill_manual(values = acth55_effect_colors) + 
  ylim(-1,2)+geom_hline(yintercept=0, linetype="dashed", color="black")+
  labs(fill = "",y="Effect size (max temp.)", x="AG mass (g)")+
  theme(legend.position = "none")
acth35

pssp35 <- ggplot(effect %>% filter(PG.SPECIES == "PSSP6" & PG_Goal_moisture == 35), 
             aes(x = AG.GOAL.DRY.MASS, y= max_effectSize, fill = AG.GOAL.DRY.MASS))+
  geom_boxplot()+
  scale_fill_manual(values = pssp55_effect_colors) + 
  ylim(-1,2)+geom_hline(yintercept=0, linetype="dashed", color="black")+
  labs(y="Effect size", x="AG mass (g)")+
  theme(legend.position = "none")
pssp35

effect_max_35 <- 
  ggarrange(acth35, pssp35+theme(axis.title.y = element_blank()),
            ncol = 2, nrow =1)
effect_max_35

ggsave('figures/additive/pg_35/max35.png', effect_max_35, height = 3, width = 5,bg='transparent')

consumption

#first up, we should see if either AG.goal moisutre or dry mass are significant
#test for normality of the dur_effectSize

result = bartlett.test(Consumption_effectSize~AG.GOAL.MOISTURE., effect)
print(result)
## 
##  Bartlett test of homogeneity of variances
## 
## data:  Consumption_effectSize by AG.GOAL.MOISTURE.
## Bartlett's K-squared = 2.0112, df = 3, p-value = 0.5701
result = bartlett.test(Consumption_effectSize~AG.GOAL.DRY.MASS, effect)
print(result)
## 
##  Bartlett test of homogeneity of variances
## 
## data:  Consumption_effectSize by AG.GOAL.DRY.MASS
## Bartlett's K-squared = 27.719, df = 3, p-value = 4.16e-06
# YES normally distributed 


#now test for differences in Effect size by ag mass and moisture
aov1 <- aov(Consumption_effectSize ~ AG.GOAL.DRY.MASS+ AG.GOAL.MOISTURE., data = effect)
summary(aov1) #no interaction
##                    Df Sum Sq Mean Sq F value   Pr(>F)    
## AG.GOAL.DRY.MASS    3  1.160  0.3866   7.314 0.000153 ***
## AG.GOAL.MOISTURE.   3  0.108  0.0359   0.679 0.566819    
## Residuals         119  6.290  0.0529                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#ag mass is important
#graph it 
acth55 <- ggplot(effect %>% filter(PG.SPECIES == "ACTH7" & PG_Goal_moisture == 55), 
             aes(x = AG.GOAL.DRY.MASS, y= Consumption_effectSize, fill = AG.GOAL.DRY.MASS))+
  geom_boxplot()+  
  scale_fill_manual(values = acth55_effect_colors) + 
  ylim(-1,2.5)+geom_hline(yintercept=0, linetype="dashed", color="black")+
  labs(fill = "",y="Effect size (consumption)", x="AG mass (g)")+
  theme(legend.position = "none")
acth55

pssp55 <- ggplot(effect %>% filter(PG.SPECIES == "PSSP6" & PG_Goal_moisture == 55), 
             aes(x = AG.GOAL.DRY.MASS, y= Consumption_effectSize, fill = AG.GOAL.DRY.MASS))+
  geom_boxplot()+
  scale_fill_manual(values = pssp55_effect_colors) + 
  ylim(-1,2.5)+geom_hline(yintercept=0, linetype="dashed", color="black")+
  labs(y="Effect size", x="AG mass (g)")+
  theme(legend.position = "none")
pssp55

effect_mc_55 <- 
  ggarrange(acth55, pssp55+theme(axis.title.y = element_blank()),
            ncol = 2, nrow =1)
effect_mc_55

ggsave('figures/additive/pg_55/cons55.png', effect_mc_55, height = 3, width = 5,bg='transparent')




acth35 <- ggplot(effect %>% filter(PG.SPECIES == "ACTH7" & PG_Goal_moisture == 35), 
             aes(x = AG.GOAL.DRY.MASS, y= Consumption_effectSize, fill = AG.GOAL.DRY.MASS))+
  geom_boxplot()+  
  scale_fill_manual(values = acth55_effect_colors) + 
  ylim(-1,2)+geom_hline(yintercept=0, linetype="dashed", color="black")+
  labs(fill = "",y="Effect size (consumption)", x="AG mass (g)")+
  theme(legend.position = "none")
acth35

pssp35 <- ggplot(effect %>% filter(PG.SPECIES == "PSSP6" & PG_Goal_moisture == 35), 
             aes(x = AG.GOAL.DRY.MASS, y= Consumption_effectSize, fill = AG.GOAL.DRY.MASS))+
  geom_boxplot()+
  scale_fill_manual(values = pssp55_effect_colors) + 
  ylim(-1,2)+geom_hline(yintercept=0, linetype="dashed", color="black")+
  labs(y="Effect size", x="AG mass (g)")+
  theme(legend.position = "none")
pssp35

effect_mc_35 <- 
  ggarrange(acth35, pssp35+theme(axis.title.y = element_blank()),
            ncol = 2, nrow =1)
effect_mc_35

ggsave('figures/additive/pg_35/cons35.png', effect_mc_35, height = 3, width = 5,bg='transparent')

Combine all the 55 % fm into one

effect_55 <- 
    ggarrange(effect_mc_55, effect_dur_55, 
              effect_max_55, 
              effect_load_55,
            ncol = 1, nrow =4)
effect_55

ggsave('figures/additive/effect_55.png', effect_55, height = 15, width = 5,bg='transparent')


combine_35 <- 
    ggarrange(effect_mc_35, effect_dur_35, 
              effect_max_35, 
              effect_load_35,
            ncol = 1, nrow =4)
combine_35

ggsave('figures/additive/effect_35.png', combine_35, height = 15, width = 5,bg='transparent')

aov1 <- aov(max ~ SPECIES + goal_moisture_percent + SPECIES*goal_moisture_percent, data = one_max_condensed) summary(aov1)#interaction was non sign, remove for post hoc aov2 <- aov(max ~ SPECIES + goal_moisture_percent, data = one_max_condensed) summary(aov2) TukeyHSD(aov2)

#save plot ggsave <- g1 ggsave(‘figures/indiv_species_maxTemp.png’, ggsave, width = 5, height = 4, bg=‘transparent’)

head(effect)
##                 Full_ID REP.. PG.SPECIES PG_Goal_moisture AG.dry.weight..g.
## 1 ACTH7_35_BRTE_2.5g_25     2      ACTH7               35              2.50
## 2 ACTH7_35_BRTE_2.5g_25     3      ACTH7               35              2.51
## 3 ACTH7_35_BRTE_2.5g_25     1      ACTH7               35              2.62
## 4 ACTH7_35_BRTE_2.5g_25     4      ACTH7               35              2.52
## 5  ACTH7_35_BRTE_2.5g_5     2      ACTH7               35              2.63
## 6  ACTH7_35_BRTE_2.5g_5     3      ACTH7               35              2.66
##   AG.GOAL.DRY.MASS AG.GOAL.MOISTURE. PG.WET.ACTUAL AG.WET.ACTUAL PG.MOISTURE
## 1              2.5                25         26.58          3.05       34.24
## 2              2.5                25         26.67          3.32       34.97
## 3              2.5                25         26.93          3.28       34.72
## 4              2.5                25         26.70          3.37       34.37
## 5              2.5                 5         27.47          2.82       35.19
## 6              2.5                 5         26.85          2.87       35.61
##   AG.MOISTURE dur_obs  max_obs  load_obs consumption_obs  dur_exp  max_exp
## 1       22.00    33.0  461.460 15190.560           27.57 50.55556 540.2333
## 2       32.27    39.5  220.640 13005.610           15.67 50.55556 540.2333
## 3       25.19   103.5 1059.485 72057.110           70.74 50.55556 540.2333
## 4       33.73   104.5  657.335 53506.100           82.01 50.55556 540.2333
## 5        7.22    26.0  157.375  6801.395           13.87 49.88889 559.7683
## 6        7.89    64.5  789.495 42510.425           78.77 49.88889 559.7683
##   load_exp consumption_exp dur_effectSize max_effectSize load_effectSize
## 1 28553.34        64.93514     -0.3472527     -0.1458135      -0.4679936
## 2 28553.34        64.93514     -0.2186813     -0.5915839      -0.5445153
## 3 28553.34        64.93514      1.0472527      0.9611618       1.5235963
## 4 28553.34        64.93514      1.0670330      0.2167613       0.8738997
## 5 28667.74        64.99968     -0.4788419     -0.7188569      -0.7627509
## 6 28667.74        64.99968      0.2928731      0.4103960       0.4828664
##   Consumption_effectSize    ID_noAGFM AG.GOAL.MOISTURE._cont
## 1            -0.57542249 ACTH7_35_2.5                      3
## 2            -0.75868228 ACTH7_35_2.5                      3
## 3             0.08939474 ACTH7_35_2.5                      3
## 4             0.26295254 ACTH7_35_2.5                      3
## 5            -0.78661432 ACTH7_35_2.5                      1
## 6             0.21185218 ACTH7_35_2.5                      1
##   AG.GOAL.DRY.MASS_cont
## 1                     1
## 2                     1
## 3                     1
## 4                     1
## 5                     1
## 6                     1
summary(effect$load_effectSize)
##     Min.  1st Qu.   Median     Mean  3rd Qu.     Max. 
## -0.80612  0.02816  0.50662  0.59157  1.03111  4.59185
g1 <- ggplot(effect %>% filter(PG_Goal_moisture == 55), 
             aes(x = AG.GOAL.MOISTURE., y= load_effectSize))+
  geom_boxplot()+
  facet_grid(~PG.SPECIES)+
  geom_jitter(width=.15)+
  ylim(-1,5)+geom_hline(yintercept=0, linetype="dashed", color="black")+
  labs(title = "Thermal dose", subtitle = "only PG 55% FM", y="Effect size", x="AG moisture")
g1

summary(effect$max_effectSize)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
## -0.8015 -0.2376  0.1883  0.1260  0.4096  1.2734
g1 <- ggplot(effect %>% filter(PG_Goal_moisture == 55), 
             aes(x = AG.GOAL.MOISTURE., y= max_effectSize))+
  geom_boxplot()+
  facet_grid(~PG.SPECIES)+
  geom_jitter(width=.15)+
  ylim(-1,1.5)+geom_hline(yintercept=0, linetype="dashed", color="black")+
  labs(title = "Maximum temperature", subtitle = "only PG 55% FM", y="Effect size", x="AG moisture")
g1

summary(effect$dur_effectSize)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
## -0.6418  0.1083  0.4656  0.4770  0.8432  2.1575
g1 <- ggplot(effect %>% filter(PG_Goal_moisture == 55), 
             aes(x = AG.GOAL.MOISTURE., y= dur_effectSize))+
  geom_boxplot()+
  facet_grid(~PG.SPECIES)+
  geom_jitter(width=.15)+
  ylim(-1,3)+geom_hline(yintercept=0, linetype="dashed", color="black")+
  labs(title = "Flaming duration", subtitle = "only PG 55% FM", y="Effect size", x="AG moisture")
g1

summary(effect$Consumption_effectSize)
##     Min.  1st Qu.   Median     Mean  3rd Qu.     Max. 
## -0.78661 -0.14979 -0.02615  0.00135  0.21105  0.33652
g1 <- ggplot(effect %>% filter(PG_Goal_moisture == 55), 
             aes(x = AG.GOAL.MOISTURE., y= Consumption_effectSize))+
  geom_boxplot()+
  facet_grid(~PG.SPECIES)+ylim(-1,1)+
  geom_jitter(width=.15)+geom_hline(yintercept=0, linetype="dashed", color="black")+
  labs(title = "Consumption", subtitle = "only PG 55% FM", y="Effect size", x="AG moisture")
g1