library(tidyverse)
library(psych)
library(lavaan)
library(semPlot)
library(semPower)
library(knitr)
library(apaTables)
library(stats)
library(dplyr)
library(rstatix)
library(lavaan)
library(semPlot)

teacher2<- read.csv("teacher2.csv")

teacher2<- 
separate(data = teacher2, col = Q5, into = c("teach1", "Teach2"), sep = ",")%>%
  mutate(Level = case_when(teach1 %in% c("10th Grade", "11th Grade", "12th Grade", "10th Grade", "9th Grade") ~ "High_School",
        teach1 %in% c("6th Grade", "7th Grade", "8th Grade") ~ "Middle_School",
        teach1 %in% c("Kindergarten", "1st Grade", "2nd Grade", "3rd Grade", "4th Grade", "5th Grade") ~ "Elementary",
        teach1 == "Post Birth or Pre-K" ~ "Pre_K",
        teach1 == "Other (please explain)" ~ "Other"))

teacher2<- teacher2%>%
  mutate(gender = case_when(Q4 == "Female" ~ "Female",
         Q4 == "Male" ~ "Male"))

teacher2<- teacher2%>%
  mutate(Teach = Q17_1 + Q17_3 + Q17_5)%>%
  mutate(Anx = Q19_1 + Q19_2 + Q19_3 + Q19_4 + Q19_5)%>%
  mutate(Dep2 =  Q20_2 + Q20_3 + Q20_5 + Q20_7 + Q20_8)%>%
  mutate(Dep = Q20_1 + Q20_2 + Q20_3 + Q20_4 + Q20_5 + Q20_6 + Q20_7 + Q20_8)%>%
  mutate(PROS =  Q23_3 + Q23_8 + Q23_9)%>%
  mutate(GOV = Q23_5 + Q23_6 + Q23_7) %>%
  mutate(COM = Q23_1 + Q23_2 + Q23_4) %>%
  mutate(ASSM = Q41_1 + Q41_2 + Q41_4)%>%
  mutate(TEFF = Q44_1 + Q44_2 + Q44_3 + Q44_4) %>%
  mutate(Leave = Q15_4 + Q21 + Q25 + Q29 + Q41_3)

teacher2<- teacher2%>%
mutate(locale = case_when(Q10 %in% c("Rural community", "Small community, non-rural") ~ "Small Rural",
        Q10 %in% c("Other", "Suburban Area", "Traditional public school", "Urban Area", "Small community, non-rural") ~ "Larger Community"))


teacher2<- teacher2%>%
  select(ResponseId, Cont1, Level, gender, Q19_1, Q19_2, Q19_3, Q19_4, Q19_5, Q20_1, Q20_2, Q20_3, Q20_4, Q20_5, Q20_6, Q20_7, Q20_8, Q15_4, Q21, Q25, Q29, Q41_3,  Anx, Dep, Leave)
library(dplyr)
library(datawizard)
descriptives<- dplyr:: select(teacher2, Q19_1, Q19_2, Q19_3, Q19_4, Q19_5, Q20_1, Q20_2, Q20_3, Q20_4, Q20_5, Q20_6, Q20_7, Q20_8, Q15_4, Q21, Q25, Q29, Q41_3,  Anx, Dep, Leave)

descriptivetable<- psych::describe(descriptives)
write.csv(descriptivetable, "descriptives.csv")
descriptivetable
##       vars   n  mean   sd median trimmed  mad min max range  skew kurtosis   se
## Q19_1    1 624  2.83 0.92      3    2.90 1.48   1   4     3 -0.36    -0.72 0.04
## Q19_2    2 626  3.12 0.86      3    3.22 1.48   1   4     3 -0.73    -0.20 0.03
## Q19_3    3 623  2.91 0.88      3    2.98 1.48   1   4     3 -0.47    -0.50 0.04
## Q19_4    4 624  2.84 0.88      3    2.89 1.48   1   4     3 -0.32    -0.65 0.04
## Q19_5    5 625  2.43 0.93      2    2.41 1.48   1   4     3  0.15    -0.84 0.04
## Q20_1    6 623  2.37 0.85      2    2.35 1.48   1   4     3  0.09    -0.64 0.03
## Q20_2    7 624  2.29 0.87      2    2.26 1.48   1   4     3  0.16    -0.70 0.03
## Q20_3    8 623  2.77 0.93      3    2.84 1.48   1   4     3 -0.34    -0.73 0.04
## Q20_4    9 619  3.00 0.80      3    3.06 0.00   1   4     3 -0.65     0.21 0.03
## Q20_5   10 623  2.66 0.90      3    2.71 1.48   1   4     3 -0.20    -0.73 0.04
## Q20_6   11 622  2.25 0.92      2    2.19 1.48   1   4     3  0.32    -0.71 0.04
## Q20_7   12 623  2.53 0.90      3    2.53 1.48   1   4     3 -0.05    -0.77 0.04
## Q20_8   13 622  1.87 0.80      2    1.78 1.48   1   4     3  0.80     0.37 0.03
## Q15_4   14 595  2.84 1.10      3    2.92 1.48   1   4     3 -0.48    -1.10 0.05
## Q21     15 621  2.70 0.96      3    2.75 1.48   1   4     3 -0.33    -0.84 0.04
## Q25     16 598  2.94 0.87      3    3.01 1.48   1   4     3 -0.49    -0.44 0.04
## Q29     17 575  2.56 0.87      3    2.57 1.48   1   4     3 -0.08    -0.66 0.04
## Q41_3   18 549  2.60 0.91      3    2.62 1.48   1   4     3  0.07    -0.87 0.04
## Anx     19 620 14.13 3.72     14   14.32 4.45   5  20    15 -0.40    -0.39 0.15
## Dep     20 612 19.70 5.29     20   19.76 4.45   8  32    24 -0.07     0.06 0.21
## Leave   21 484 13.62 3.35     14   13.81 2.97   5  20    15 -0.51    -0.28 0.15
itemanalysis<- descriptives<- dplyr:: select(teacher2, Q19_1, Q19_2, Q19_3, Q19_4, Q19_5, Q20_1, Q20_2, Q20_3, Q20_4, Q20_5, Q20_6, Q20_7, Q20_8, Q15_4, Q21, Q25, Q29, Q41_3)

items<- sjPlot::tab_itemscale(itemanalysis)
items
Component 1
Row Missings Mean SD Skew Item Difficulty Item Discrimination α if deleted
Q19_1 8.24 % 2.83 0.92 -0.36 0.71 0.75 0.92
Q19_2 7.94 % 3.12 0.86 -0.73 0.78 0.65 0.92
Q19_3 8.38 % 2.91 0.88 -0.48 0.73 0.74 0.92
Q19_4 8.24 % 2.84 0.88 -0.32 0.71 0.72 0.92
Q19_5 8.09 % 2.43 0.93 0.15 0.61 0.65 0.92
Q20_1 8.38 % 2.37 0.85 0.09 0.59 0.66 0.92
Q20_2 8.24 % 2.29 0.87 0.16 0.57 0.73 0.92
Q20_3 8.38 % 2.77 0.93 -0.34 0.69 0.64 0.92
Q20_4 8.97 % 3 0.8 -0.65 0.75 0.63 0.92
Q20_5 8.38 % 2.66 0.9 -0.2 0.67 0.60 0.92
Q20_6 8.53 % 2.25 0.92 0.32 0.56 0.65 0.92
Q20_7 8.38 % 2.53 0.9 -0.05 0.63 0.69 0.92
Q20_8 8.53 % 1.87 0.8 0.8 0.47 0.51 0.92
Q15_4 12.50 % 2.84 1.1 -0.48 0.71 0.46 0.93
Q21 8.68 % 2.7 0.96 -0.33 0.68 0.66 0.92
Q25 12.06 % 2.94 0.87 -0.5 0.74 0.61 0.92
Q29 15.44 % 2.56 0.87 -0.08 0.64 0.36 0.93
Q41_3 19.26 % 2.6 0.91 0.08 0.65 0.37 0.93
Mean inter-item-correlation=0.410 · Cronbach’s α=0.925
gendertable<-with(teacher2, table(gender))
genderprop<- prop.table(gendertable)

teachertable<- with(teacher2, table(Cont1))
teacherprop<- prop.table(teachertable)

gradetable<- with(teacher2, table(Level))
gradeprop<- prop.table(gradetable)

gendern<- as.data.frame(gendertable)
genderprop<- as.data.frame(genderprop)
gen<- left_join(gendern, genderprop, by = "gender")%>%
  rename(category = gender)

teachern<- as.data.frame(teachertable)
teacherprop<- as.data.frame(teacherprop)
teach<- left_join(teachern, teacherprop, by = "Cont1")%>%
  rename(category = Cont1)

graden<-as.data.frame(gradetable)
gradeprop<- as.data.frame(gradeprop)
gd<- left_join(graden, gradeprop, by = "Level")%>%
  rename(category = Level)

frequencies<- rbind(gen, teach, gd)

write.csv(frequencies, "frequencies.csv")
frequencies
##                 category Freq.x     Freq.y
## 1                 Female    503 0.76327769
## 2                   Male    156 0.23672231
## 3               Elective     87 0.13063063
## 4  English Language Arts     70 0.10510511
## 5     General Elementary    195 0.29279279
## 6                   Math     83 0.12462462
## 7                  Other     47 0.07057057
## 8                Science     42 0.06306306
## 9         Social Studies     53 0.07957958
## 10     Special Education     89 0.13363363
## 11            Elementary    277 0.41037037
## 12           High_School    166 0.24592593
## 13         Middle_School    173 0.25629630
## 14                 Other     34 0.05037037
## 15                 Pre_K     25 0.03703704
anxcfa<- 
  
  '
ANXs=~ Q19_1 + Q19_2 + Q19_3 + Q19_4 + Q19_5


 '

fitanx<- cfa(anxcfa, data=teacher2)



summary(fitanx, fit.measures=TRUE, standardized = TRUE, rsquare = T)
## lavaan 0.6-12 ended normally after 21 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        10
## 
##                                                   Used       Total
##   Number of observations                           620         680
## 
## Model Test User Model:
##                                                       
##   Test statistic                                19.801
##   Degrees of freedom                                 5
##   P-value (Chi-square)                           0.001
## 
## Model Test Baseline Model:
## 
##   Test statistic                              1703.143
##   Degrees of freedom                                10
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.991
##   Tucker-Lewis Index (TLI)                       0.983
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)              -3205.970
##   Loglikelihood unrestricted model (H1)      -3196.069
##                                                       
##   Akaike (AIC)                                6431.940
##   Bayesian (BIC)                              6476.237
##   Sample-size adjusted Bayesian (BIC)         6444.489
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.069
##   90 Percent confidence interval - lower         0.039
##   90 Percent confidence interval - upper         0.102
##   P-value RMSEA <= 0.05                          0.136
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.017
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   ANXs =~                                                               
##     Q19_1             1.000                               0.743    0.811
##     Q19_2             0.897    0.043   21.094    0.000    0.667    0.774
##     Q19_3             1.036    0.042   24.512    0.000    0.770    0.873
##     Q19_4             0.934    0.043   21.638    0.000    0.694    0.790
##     Q19_5             0.854    0.047   18.036    0.000    0.635    0.684
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .Q19_1             0.287    0.021   13.745    0.000    0.287    0.342
##    .Q19_2             0.297    0.020   14.634    0.000    0.297    0.401
##    .Q19_3             0.184    0.017   11.181    0.000    0.184    0.237
##    .Q19_4             0.291    0.020   14.306    0.000    0.291    0.377
##    .Q19_5             0.458    0.029   15.884    0.000    0.458    0.532
##     ANXs              0.552    0.047   11.837    0.000    1.000    1.000
## 
## R-Square:
##                    Estimate
##     Q19_1             0.658
##     Q19_2             0.599
##     Q19_3             0.763
##     Q19_4             0.623
##     Q19_5             0.468
semPaths(fitanx,  whatLabels = "std.all", structural = FALSE, edge.label.cex = .8, node.label.cex = .8, 
        label.prop=0.9, edge.label.color = "black", rotation = 4, 
        equalizeManifests = TRUE, optimizeLatRes = TRUE, node.width = 1.5, 
        edge.width = 0.5, shapeMan = "rectangle", shapeLat = "ellipse", 
        shapeInt = "triangle", sizeMan = 4, sizeInt = 2, sizeLat = 4, 
        curve=2, unCol = "#070b8c", title = FALSE, intercepts = FALSE, residuals = TRUE)

depcfa<- 
  
  '
DEPs=~ Q20_1 + Q20_2 + Q20_3 + Q20_4 + Q20_5 + Q20_6 + Q20_7 + Q20_8


 '

fitdep<- cfa(depcfa, data=teacher2)



summary(fitdep, fit.measures=TRUE, standardized = TRUE, rsquare = T)
## lavaan 0.6-12 ended normally after 22 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        16
## 
##                                                   Used       Total
##   Number of observations                           612         680
## 
## Model Test User Model:
##                                                       
##   Test statistic                               151.926
##   Degrees of freedom                                20
##   P-value (Chi-square)                           0.000
## 
## Model Test Baseline Model:
## 
##   Test statistic                              2437.152
##   Degrees of freedom                                28
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.945
##   Tucker-Lewis Index (TLI)                       0.923
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)              -5101.736
##   Loglikelihood unrestricted model (H1)      -5025.773
##                                                       
##   Akaike (AIC)                               10235.472
##   Bayesian (BIC)                             10306.139
##   Sample-size adjusted Bayesian (BIC)        10255.343
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.104
##   90 Percent confidence interval - lower         0.089
##   90 Percent confidence interval - upper         0.120
##   P-value RMSEA <= 0.05                          0.000
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.041
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   DEPs =~                                                               
##     Q20_1             1.000                               0.676    0.794
##     Q20_2             1.067    0.048   22.386    0.000    0.721    0.829
##     Q20_3             0.962    0.053   18.231    0.000    0.650    0.702
##     Q20_4             0.804    0.046   17.586    0.000    0.543    0.682
##     Q20_5             0.881    0.052   17.009    0.000    0.595    0.663
##     Q20_6             0.982    0.052   18.958    0.000    0.664    0.725
##     Q20_7             1.007    0.050   20.080    0.000    0.681    0.760
##     Q20_8             0.696    0.046   15.043    0.000    0.471    0.596
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .Q20_1             0.267    0.019   14.312    0.000    0.267    0.369
##    .Q20_2             0.236    0.018   13.397    0.000    0.236    0.312
##    .Q20_3             0.434    0.028   15.695    0.000    0.434    0.507
##    .Q20_4             0.340    0.021   15.892    0.000    0.340    0.535
##    .Q20_5             0.453    0.028   16.049    0.000    0.453    0.561
##    .Q20_6             0.397    0.026   15.440    0.000    0.397    0.474
##    .Q20_7             0.339    0.023   14.958    0.000    0.339    0.422
##    .Q20_8             0.401    0.024   16.478    0.000    0.401    0.644
##     DEPs              0.457    0.040   11.442    0.000    1.000    1.000
## 
## R-Square:
##                    Estimate
##     Q20_1             0.631
##     Q20_2             0.688
##     Q20_3             0.493
##     Q20_4             0.465
##     Q20_5             0.439
##     Q20_6             0.526
##     Q20_7             0.578
##     Q20_8             0.356
semPaths(fitdep,  whatLabels = "std.all", structural = FALSE, edge.label.cex = .8, node.label.cex = .8, 
        label.prop=0.9, edge.label.color = "black", rotation = 4, 
        equalizeManifests = TRUE, optimizeLatRes = TRUE, node.width = 1.5, 
        edge.width = 0.5, shapeMan = "rectangle", shapeLat = "ellipse", 
        shapeInt = "triangle", sizeMan = 4, sizeInt = 2, sizeLat = 4, 
        curve=2, unCol = "#070b8c", title = FALSE, intercepts = FALSE, residuals = TRUE)

lvcfa<- 
  
  '
lvs=~ Q15_4 + Q21 + Q25 + Q29 + Q41_3


 '

fitlv<- cfa(lvcfa, data=teacher2)



summary(fitlv, fit.measures=TRUE, standardized = TRUE, rsquare = T)
## lavaan 0.6-12 ended normally after 21 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        10
## 
##                                                   Used       Total
##   Number of observations                           484         680
## 
## Model Test User Model:
##                                                       
##   Test statistic                                15.022
##   Degrees of freedom                                 5
##   P-value (Chi-square)                           0.010
## 
## Model Test Baseline Model:
## 
##   Test statistic                               629.151
##   Degrees of freedom                                10
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.984
##   Tucker-Lewis Index (TLI)                       0.968
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)              -2954.509
##   Loglikelihood unrestricted model (H1)      -2946.998
##                                                       
##   Akaike (AIC)                                5929.018
##   Bayesian (BIC)                              5970.838
##   Sample-size adjusted Bayesian (BIC)         5939.099
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.064
##   90 Percent confidence interval - lower         0.028
##   90 Percent confidence interval - upper         0.103
##   P-value RMSEA <= 0.05                          0.222
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.027
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   lvs =~                                                                
##     Q15_4             1.000                               0.722    0.657
##     Q21               0.980    0.074   13.178    0.000    0.707    0.750
##     Q25               1.013    0.074   13.621    0.000    0.731    0.846
##     Q29               0.555    0.062    8.974    0.000    0.401    0.470
##     Q41_3             0.498    0.065    7.614    0.000    0.360    0.393
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .Q15_4             0.685    0.053   12.984    0.000    0.685    0.568
##    .Q21               0.390    0.036   10.878    0.000    0.390    0.438
##    .Q25               0.213    0.030    7.187    0.000    0.213    0.285
##    .Q29               0.567    0.039   14.651    0.000    0.567    0.779
##    .Q41_3             0.709    0.047   14.980    0.000    0.709    0.846
##     lvs               0.522    0.070    7.434    0.000    1.000    1.000
## 
## R-Square:
##                    Estimate
##     Q15_4             0.432
##     Q21               0.562
##     Q25               0.715
##     Q29               0.221
##     Q41_3             0.154
semPaths(fitlv,  whatLabels = "std.all", structural = FALSE, edge.label.cex = .8, node.label.cex = .8, 
        label.prop=0.9, edge.label.color = "black", rotation = 4, 
        equalizeManifests = TRUE, optimizeLatRes = TRUE, node.width = 1.5, 
        edge.width = 0.5, shapeMan = "rectangle", shapeLat = "ellipse", 
        shapeInt = "triangle", sizeMan = 4, sizeInt = 2, sizeLat = 4, 
        curve=2, unCol = "#070b8c", title = FALSE, intercepts = FALSE, residuals = TRUE)

allcfa<- 
  
  '
alls=~ ANXs=~ Q19_1 + Q19_2 + Q19_3 + Q19_4 + Q19_5 + Q20_1 + Q20_2 + Q20_3 + Q20_4 + Q20_5 + Q20_6 + Q20_7 + Q20_8 + Q15_4 + Q21 + Q25 + Q29 + Q41_3


 '

fitall<- cfa(allcfa, data=teacher2)



summary(fitall, fit.measures=TRUE, standardized = TRUE, rsquare = T)
## lavaan 0.6-12 ended normally after 27 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        36
## 
##                                                   Used       Total
##   Number of observations                           476         680
## 
## Model Test User Model:
##                                                       
##   Test statistic                               878.764
##   Degrees of freedom                               135
##   P-value (Chi-square)                           0.000
## 
## Model Test Baseline Model:
## 
##   Test statistic                              4586.965
##   Degrees of freedom                               153
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.832
##   Tucker-Lewis Index (TLI)                       0.810
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)              -9307.549
##   Loglikelihood unrestricted model (H1)      -8868.167
##                                                       
##   Akaike (AIC)                               18687.098
##   Bayesian (BIC)                             18837.053
##   Sample-size adjusted Bayesian (BIC)        18722.794
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.108
##   90 Percent confidence interval - lower         0.101
##   90 Percent confidence interval - upper         0.114
##   P-value RMSEA <= 0.05                          0.000
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.067
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   alls =~                                                               
##     Q19_1             1.000                               0.732    0.796
##     Q19_2             0.809    0.050   16.333    0.000    0.592    0.693
##     Q19_3             0.951    0.050   19.201    0.000    0.697    0.787
##     Q19_4             0.937    0.050   18.642    0.000    0.686    0.769
##     Q19_5             0.895    0.054   16.435    0.000    0.656    0.697
##     Q20_1             0.789    0.049   16.115    0.000    0.578    0.686
##     Q20_2             0.916    0.049   18.738    0.000    0.671    0.772
##     Q20_3             0.855    0.054   15.837    0.000    0.626    0.676
##     Q20_4             0.709    0.046   15.318    0.000    0.519    0.658
##     Q20_5             0.753    0.052   14.386    0.000    0.551    0.624
##     Q20_6             0.836    0.053   15.899    0.000    0.612    0.678
##     Q20_7             0.886    0.051   17.449    0.000    0.648    0.731
##     Q20_8             0.583    0.048   12.130    0.000    0.427    0.539
##     Q15_4             0.666    0.068    9.790    0.000    0.488    0.444
##     Q21               0.849    0.056   15.290    0.000    0.622    0.657
##     Q25               0.690    0.052   13.277    0.000    0.506    0.583
##     Q29               0.404    0.054    7.481    0.000    0.296    0.345
##     Q41_3             0.457    0.058    7.943    0.000    0.335    0.365
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .Q19_1             0.309    0.023   13.695    0.000    0.309    0.366
##    .Q19_2             0.379    0.026   14.504    0.000    0.379    0.519
##    .Q19_3             0.299    0.022   13.805    0.000    0.299    0.381
##    .Q19_4             0.325    0.023   13.980    0.000    0.325    0.408
##    .Q19_5             0.455    0.031   14.486    0.000    0.455    0.514
##    .Q20_1             0.376    0.026   14.541    0.000    0.376    0.530
##    .Q20_2             0.305    0.022   13.952    0.000    0.305    0.404
##    .Q20_3             0.465    0.032   14.587    0.000    0.465    0.543
##    .Q20_4             0.353    0.024   14.666    0.000    0.353    0.567
##    .Q20_5             0.475    0.032   14.790    0.000    0.475    0.610
##    .Q20_6             0.440    0.030   14.577    0.000    0.440    0.540
##    .Q20_7             0.367    0.026   14.283    0.000    0.367    0.466
##    .Q20_8             0.445    0.030   15.020    0.000    0.445    0.710
##    .Q15_4             0.968    0.064   15.183    0.000    0.968    0.803
##    .Q21               0.509    0.035   14.670    0.000    0.509    0.568
##    .Q25               0.496    0.033   14.914    0.000    0.496    0.660
##    .Q29               0.647    0.042   15.293    0.000    0.647    0.881
##    .Q41_3             0.728    0.048   15.274    0.000    0.728    0.867
##     alls              0.536    0.052   10.300    0.000    1.000    1.000
## 
## R-Square:
##                    Estimate
##     Q19_1             0.634
##     Q19_2             0.481
##     Q19_3             0.619
##     Q19_4             0.592
##     Q19_5             0.486
##     Q20_1             0.470
##     Q20_2             0.596
##     Q20_3             0.457
##     Q20_4             0.433
##     Q20_5             0.390
##     Q20_6             0.460
##     Q20_7             0.534
##     Q20_8             0.290
##     Q15_4             0.197
##     Q21               0.432
##     Q25               0.340
##     Q29               0.119
##     Q41_3             0.133
semPaths(fitall,  whatLabels = "std.all", structural = FALSE, edge.label.cex = .8, node.label.cex = .8, 
        label.prop=0.9, edge.label.color = "black", rotation = 4, 
        equalizeManifests = TRUE, optimizeLatRes = TRUE, node.width = 1.5, 
        edge.width = 0.5, shapeMan = "rectangle", shapeLat = "ellipse", 
        shapeInt = "triangle", sizeMan = 4, sizeInt = 2, sizeLat = 4, 
        curve=2, unCol = "#070b8c", title = FALSE, intercepts = FALSE, residuals = TRUE)

threecfa<- 
  
  '
ANXs=~ Q19_1 + Q19_2 + Q19_3 + Q19_4 + Q19_5
DEPs=~ Q20_1 + Q20_2 + Q20_3 + Q20_4 + Q20_5 + Q20_6 + Q20_7 + Q20_8
QT=~  Q15_4 + Q21 + Q25 + Q29 + Q41_3


 '

fitthree<- cfa(threecfa, data=teacher2)



summary(fitthree, fit.measures=TRUE, standardized = TRUE, rsquare = T)
## lavaan 0.6-12 ended normally after 40 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        39
## 
##                                                   Used       Total
##   Number of observations                           476         680
## 
## Model Test User Model:
##                                                       
##   Test statistic                               373.569
##   Degrees of freedom                               132
##   P-value (Chi-square)                           0.000
## 
## Model Test Baseline Model:
## 
##   Test statistic                              4586.965
##   Degrees of freedom                               153
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.946
##   Tucker-Lewis Index (TLI)                       0.937
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)              -9054.951
##   Loglikelihood unrestricted model (H1)      -8868.167
##                                                       
##   Akaike (AIC)                               18187.902
##   Bayesian (BIC)                             18350.354
##   Sample-size adjusted Bayesian (BIC)        18226.573
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.062
##   90 Percent confidence interval - lower         0.055
##   90 Percent confidence interval - upper         0.069
##   P-value RMSEA <= 0.05                          0.004
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.042
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   ANXs =~                                                               
##     Q19_1             1.000                               0.765    0.832
##     Q19_2             0.849    0.045   18.938    0.000    0.650    0.761
##     Q19_3             0.993    0.044   22.546    0.000    0.760    0.858
##     Q19_4             0.935    0.046   20.424    0.000    0.715    0.802
##     Q19_5             0.874    0.051   17.249    0.000    0.669    0.711
##   DEPs =~                                                               
##     Q20_1             1.000                               0.647    0.768
##     Q20_2             1.102    0.059   18.815    0.000    0.713    0.821
##     Q20_3             0.992    0.064   15.483    0.000    0.642    0.694
##     Q20_4             0.832    0.055   15.193    0.000    0.538    0.682
##     Q20_5             0.897    0.062   14.573    0.000    0.581    0.658
##     Q20_6             0.990    0.062   15.892    0.000    0.641    0.710
##     Q20_7             1.050    0.061   17.353    0.000    0.680    0.766
##     Q20_8             0.708    0.056   12.635    0.000    0.458    0.578
##   QT =~                                                                 
##     Q15_4             1.000                               0.697    0.634
##     Q21               1.084    0.081   13.405    0.000    0.755    0.798
##     Q25               1.001    0.074   13.459    0.000    0.697    0.804
##     Q29               0.569    0.065    8.749    0.000    0.397    0.463
##     Q41_3             0.552    0.069    8.009    0.000    0.384    0.419
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   ANXs ~~                                                               
##     DEPs              0.401    0.036   11.017    0.000    0.811    0.811
##     QT                0.371    0.041    9.095    0.000    0.696    0.696
##   DEPs ~~                                                               
##     QT                0.295    0.034    8.626    0.000    0.655    0.655
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .Q19_1             0.260    0.021   12.224    0.000    0.260    0.308
##    .Q19_2             0.307    0.023   13.484    0.000    0.307    0.421
##    .Q19_3             0.207    0.018   11.448    0.000    0.207    0.264
##    .Q19_4             0.284    0.022   12.865    0.000    0.284    0.357
##    .Q19_5             0.438    0.031   13.990    0.000    0.438    0.495
##    .Q20_1             0.292    0.022   13.322    0.000    0.292    0.410
##    .Q20_2             0.246    0.020   12.394    0.000    0.246    0.326
##    .Q20_3             0.444    0.032   14.071    0.000    0.444    0.519
##    .Q20_4             0.332    0.023   14.155    0.000    0.332    0.534
##    .Q20_5             0.442    0.031   14.315    0.000    0.442    0.567
##    .Q20_6             0.404    0.029   13.942    0.000    0.404    0.496
##    .Q20_7             0.325    0.024   13.346    0.000    0.325    0.413
##    .Q20_8             0.417    0.028   14.695    0.000    0.417    0.665
##    .Q15_4             0.721    0.053   13.545    0.000    0.721    0.598
##    .Q21               0.325    0.031   10.361    0.000    0.325    0.363
##    .Q25               0.266    0.026   10.151    0.000    0.266    0.354
##    .Q29               0.577    0.039   14.677    0.000    0.577    0.786
##    .Q41_3             0.693    0.047   14.842    0.000    0.693    0.824
##     ANXs              0.585    0.054   10.887    0.000    1.000    1.000
##     DEPs              0.419    0.043    9.646    0.000    1.000    1.000
##     QT                0.485    0.068    7.173    0.000    1.000    1.000
## 
## R-Square:
##                    Estimate
##     Q19_1             0.692
##     Q19_2             0.579
##     Q19_3             0.736
##     Q19_4             0.643
##     Q19_5             0.505
##     Q20_1             0.590
##     Q20_2             0.674
##     Q20_3             0.481
##     Q20_4             0.466
##     Q20_5             0.433
##     Q20_6             0.504
##     Q20_7             0.587
##     Q20_8             0.335
##     Q15_4             0.402
##     Q21               0.637
##     Q25               0.646
##     Q29               0.214
##     Q41_3             0.176
threefit<- standardizedsolution(fitthree, type = "std.all")
threefit
##      lhs op   rhs est.std    se      z pvalue ci.lower ci.upper
## 1   ANXs =~ Q19_1   0.832 0.017 49.294      0    0.799    0.865
## 2   ANXs =~ Q19_2   0.761 0.022 35.016      0    0.718    0.803
## 3   ANXs =~ Q19_3   0.858 0.015 56.847      0    0.828    0.887
## 4   ANXs =~ Q19_4   0.802 0.019 42.383      0    0.765    0.839
## 5   ANXs =~ Q19_5   0.711 0.025 28.444      0    0.662    0.760
## 6   DEPs =~ Q20_1   0.768 0.021 35.942      0    0.726    0.810
## 7   DEPs =~ Q20_2   0.821 0.018 46.247      0    0.786    0.856
## 8   DEPs =~ Q20_3   0.694 0.026 26.543      0    0.643    0.745
## 9   DEPs =~ Q20_4   0.682 0.027 25.421      0    0.630    0.735
## 10  DEPs =~ Q20_5   0.658 0.028 23.218      0    0.602    0.713
## 11  DEPs =~ Q20_6   0.710 0.025 28.237      0    0.661    0.759
## 12  DEPs =~ Q20_7   0.766 0.021 35.652      0    0.724    0.808
## 13  DEPs =~ Q20_8   0.578 0.033 17.662      0    0.514    0.643
## 14    QT =~ Q15_4   0.634 0.032 19.789      0    0.572    0.697
## 15    QT =~   Q21   0.798 0.023 34.265      0    0.752    0.844
## 16    QT =~   Q25   0.804 0.023 34.974      0    0.759    0.849
## 17    QT =~   Q29   0.463 0.040 11.513      0    0.384    0.541
## 18    QT =~ Q41_3   0.419 0.042 10.004      0    0.337    0.501
## 19 Q19_1 ~~ Q19_1   0.308 0.028 10.973      0    0.253    0.363
## 20 Q19_2 ~~ Q19_2   0.421 0.033 12.739      0    0.356    0.486
## 21 Q19_3 ~~ Q19_3   0.264 0.026 10.200      0    0.213    0.315
## 22 Q19_4 ~~ Q19_4   0.357 0.030 11.747      0    0.297    0.416
## 23 Q19_5 ~~ Q19_5   0.495 0.036 13.931      0    0.425    0.564
## 24 Q20_1 ~~ Q20_1   0.410 0.033 12.513      0    0.346    0.475
## 25 Q20_2 ~~ Q20_2   0.326 0.029 11.202      0    0.269    0.383
## 26 Q20_3 ~~ Q20_3   0.519 0.036 14.293      0    0.447    0.590
## 27 Q20_4 ~~ Q20_4   0.534 0.037 14.582      0    0.462    0.606
## 28 Q20_5 ~~ Q20_5   0.567 0.037 15.226      0    0.494    0.640
## 29 Q20_6 ~~ Q20_6   0.496 0.036 13.898      0    0.426    0.566
## 30 Q20_7 ~~ Q20_7   0.413 0.033 12.556      0    0.349    0.478
## 31 Q20_8 ~~ Q20_8   0.665 0.038 17.568      0    0.591    0.740
## 32 Q15_4 ~~ Q15_4   0.598 0.041 14.696      0    0.518    0.677
## 33   Q21 ~~   Q21   0.363 0.037  9.776      0    0.290    0.436
## 34   Q25 ~~   Q25   0.354 0.037  9.563      0    0.281    0.426
## 35   Q29 ~~   Q29   0.786 0.037 21.131      0    0.713    0.859
## 36 Q41_3 ~~ Q41_3   0.824 0.035 23.482      0    0.756    0.893
## 37  ANXs ~~  ANXs   1.000 0.000     NA     NA    1.000    1.000
## 38  DEPs ~~  DEPs   1.000 0.000     NA     NA    1.000    1.000
## 39    QT ~~    QT   1.000 0.000     NA     NA    1.000    1.000
## 40  ANXs ~~  DEPs   0.811 0.021 38.191      0    0.769    0.852
## 41  ANXs ~~    QT   0.696 0.032 22.086      0    0.634    0.758
## 42  DEPs ~~    QT   0.655 0.034 19.238      0    0.588    0.721
write.csv(threefit, "threefactmodel.csv")

semPaths(fitthree,  whatLabels = "std.all", structural = FALSE, edge.label.cex = .8, node.label.cex = .8, 
        label.prop=0.9, edge.label.color = "black", rotation = 4, 
        equalizeManifests = TRUE, optimizeLatRes = TRUE, node.width = 1.5, 
        edge.width = 0.5, shapeMan = "rectangle", shapeLat = "ellipse", 
        shapeInt = "triangle", sizeMan = 4, sizeInt = 2, sizeLat = 4, 
        curve=2, unCol = "#070b8c", title = FALSE, intercepts = FALSE, residuals = TRUE)

teacher2<- teacher2%>%
  mutate(gender2 = case_when(gender == "Female" ~ 1,
         gender == "Male" ~ 0))

mentalSEM<- 
  
  '
ANXs=~ Q19_1 + Q19_2 + Q19_3 + Q19_4 + Q19_5
DEPs=~ Q20_1 + Q20_2 + Q20_3 + Q20_4 + Q20_5 + Q20_6 + Q20_7 + Q20_8
QT=~  Q15_4 + Q21 + Q25 + Q29 + Q41_3
GEN=~ gender2

DEPs~a*GEN
GEN~b*QT
DEPs~c*QT

ANXs~d*GEN
ANXs~e*QT

Depmed:= a*b
Deptot:= c + (a*b)
Anxmed:= d*b
Anxtot:= e + (d*b)


  
 '

fithealth<- sem(mentalSEM, data=teacher2, ordered = "GEN")



summary(fithealth, fit.measures=TRUE, standardized = TRUE, rsquare = T)
## lavaan 0.6-12 ended normally after 43 iterations
## 
##   Estimator                                       DWLS
##   Optimization method                           NLMINB
##   Number of model parameters                        62
## 
##                                                   Used       Total
##   Number of observations                           468         680
## 
## Model Test User Model:
##                                               Standard      Robust
##   Test Statistic                               112.391     283.596
##   Degrees of freedom                               147         147
##   P-value (Chi-square)                           0.985       0.000
##   Scaling correction factor                                  0.474
##   Shift parameter                                           46.308
##     simple second-order correction                                
## 
## Model Test Baseline Model:
## 
##   Test statistic                             11201.804    2734.586
##   Degrees of freedom                               171         171
##   P-value                                        0.000       0.000
##   Scaling correction factor                                  4.303
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    1.000       0.947
##   Tucker-Lewis Index (TLI)                       1.004       0.938
##                                                                   
##   Robust Comparative Fit Index (CFI)                            NA
##   Robust Tucker-Lewis Index (TLI)                               NA
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.000       0.045
##   90 Percent confidence interval - lower         0.000       0.037
##   90 Percent confidence interval - upper         0.000       0.052
##   P-value RMSEA <= 0.05                          1.000       0.870
##                                                                   
##   Robust RMSEA                                                  NA
##   90 Percent confidence interval - lower                        NA
##   90 Percent confidence interval - upper                        NA
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.037       0.037
## 
## Parameter Estimates:
## 
##   Standard errors                           Robust.sem
##   Information                                 Expected
##   Information saturated (h1) model        Unstructured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   ANXs =~                                                               
##     Q19_1             1.000                               0.777    0.844
##     Q19_2             0.799    0.049   16.150    0.000    0.621    0.726
##     Q19_3             0.957    0.045   21.421    0.000    0.744    0.835
##     Q19_4             0.935    0.051   18.421    0.000    0.727    0.812
##     Q19_5             0.881    0.053   16.763    0.000    0.685    0.726
##   DEPs =~                                                               
##     Q20_1             1.000                               0.615    0.728
##     Q20_2             1.156    0.052   22.177    0.000    0.711    0.816
##     Q20_3             1.061    0.070   15.057    0.000    0.652    0.707
##     Q20_4             0.881    0.061   14.406    0.000    0.542    0.688
##     Q20_5             0.955    0.063   15.251    0.000    0.587    0.663
##     Q20_6             1.057    0.064   16.566    0.000    0.650    0.717
##     Q20_7             1.129    0.062   18.072    0.000    0.694    0.777
##     Q20_8             0.730    0.058   12.638    0.000    0.449    0.565
##   QT =~                                                                 
##     Q15_4             1.000                               0.656    0.596
##     Q21               1.229    0.121   10.191    0.000    0.806    0.847
##     Q25               1.013    0.089   11.444    0.000    0.664    0.769
##     Q29               0.580    0.079    7.346    0.000    0.380    0.442
##     Q41_3             0.673    0.082    8.159    0.000    0.441    0.481
##   GEN =~                                                                
##     gender2           1.000                               0.428    1.000
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   DEPs ~                                                                
##     GEN        (a)    0.079    0.060    1.322    0.186    0.055    0.055
##   GEN ~                                                                 
##     QT         (b)    0.061    0.034    1.817    0.069    0.093    0.093
##   DEPs ~                                                                
##     QT         (c)    0.610    0.063    9.632    0.000    0.651    0.651
##   ANXs ~                                                                
##     GEN        (d)    0.271    0.076    3.553    0.000    0.149    0.149
##     QT         (e)    0.818    0.081   10.059    0.000    0.690    0.690
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##  .ANXs ~~                                                               
##    .DEPs              0.168    0.023    7.344    0.000    0.671    0.671
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .Q19_1             2.812    0.043   66.106    0.000    2.812    3.056
##    .Q19_2             3.143    0.040   79.526    0.000    3.143    3.676
##    .Q19_3             2.921    0.041   70.984    0.000    2.921    3.281
##    .Q19_4             2.844    0.041   68.786    0.000    2.844    3.180
##    .Q19_5             2.415    0.044   55.371    0.000    2.415    2.560
##    .Q20_1             2.368    0.039   60.673    0.000    2.368    2.805
##    .Q20_2             2.288    0.040   56.858    0.000    2.288    2.628
##    .Q20_3             2.791    0.043   65.437    0.000    2.791    3.025
##    .Q20_4             2.994    0.036   82.326    0.000    2.994    3.806
##    .Q20_5             2.665    0.041   65.083    0.000    2.665    3.008
##    .Q20_6             2.252    0.042   53.712    0.000    2.252    2.483
##    .Q20_7             2.519    0.041   60.995    0.000    2.519    2.820
##    .Q20_8             1.840    0.037   50.077    0.000    1.840    2.315
##    .Q15_4             2.865    0.051   56.380    0.000    2.865    2.606
##    .Q21               2.701    0.044   61.456    0.000    2.701    2.841
##    .Q25               2.921    0.040   73.193    0.000    2.921    3.383
##    .Q29               2.558    0.040   64.334    0.000    2.558    2.974
##    .Q41_3             2.568    0.042   60.583    0.000    2.568    2.800
##    .gender2           0.759    0.020   38.303    0.000    0.759    1.771
##    .ANXs              0.000                               0.000    0.000
##    .DEPs              0.000                               0.000    0.000
##     QT                0.000                               0.000    0.000
##    .GEN               0.000                               0.000    0.000
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .Q19_1             0.243    0.033    7.413    0.000    0.243    0.287
##    .Q19_2             0.346    0.033   10.612    0.000    0.346    0.473
##    .Q19_3             0.239    0.023   10.241    0.000    0.239    0.302
##    .Q19_4             0.272    0.030    9.085    0.000    0.272    0.340
##    .Q19_5             0.421    0.033   12.629    0.000    0.421    0.473
##    .Q20_1             0.335    0.027   12.508    0.000    0.335    0.469
##    .Q20_2             0.253    0.024   10.381    0.000    0.253    0.334
##    .Q20_3             0.426    0.032   13.115    0.000    0.426    0.500
##    .Q20_4             0.325    0.028   11.637    0.000    0.325    0.526
##    .Q20_5             0.440    0.037   11.741    0.000    0.440    0.560
##    .Q20_6             0.400    0.035   11.381    0.000    0.400    0.486
##    .Q20_7             0.317    0.029   11.028    0.000    0.317    0.397
##    .Q20_8             0.430    0.030   14.557    0.000    0.430    0.681
##    .Q15_4             0.779    0.066   11.766    0.000    0.779    0.644
##    .Q21               0.255    0.066    3.877    0.000    0.255    0.282
##    .Q25               0.304    0.039    7.852    0.000    0.304    0.408
##    .Q29               0.595    0.040   14.727    0.000    0.595    0.805
##    .Q41_3             0.646    0.045   14.282    0.000    0.646    0.769
##    .gender2           0.000                               0.000    0.000
##    .ANXs              0.291    0.037    7.946    0.000    0.482    0.482
##    .DEPs              0.214    0.026    8.206    0.000    0.567    0.567
##     QT                0.430    0.069    6.235    0.000    1.000    1.000
##    .GEN               0.182    0.010   17.826    0.000    0.991    0.991
## 
## R-Square:
##                    Estimate
##     Q19_1             0.713
##     Q19_2             0.527
##     Q19_3             0.698
##     Q19_4             0.660
##     Q19_5             0.527
##     Q20_1             0.531
##     Q20_2             0.666
##     Q20_3             0.500
##     Q20_4             0.474
##     Q20_5             0.440
##     Q20_6             0.514
##     Q20_7             0.603
##     Q20_8             0.319
##     Q15_4             0.356
##     Q21               0.718
##     Q25               0.592
##     Q29               0.195
##     Q41_3             0.231
##     gender2           1.000
##     ANXs              0.518
##     DEPs              0.433
##     GEN               0.009
## 
## Defined Parameters:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     Depmed            0.005    0.004    1.143    0.253    0.005    0.005
##     Deptot            0.615    0.064    9.675    0.000    0.656    0.656
##     Anxmed            0.016    0.009    1.743    0.081    0.014    0.014
##     Anxtot            0.834    0.083   10.051    0.000    0.704    0.704
semfit<- standardizedsolution(fithealth, type = "std.all")

write.csv(semfit, "anxSEMModel.csv")

semfit
##        lhs op     rhs  label est.std    se       z pvalue ci.lower ci.upper
## 1     ANXs =~   Q19_1          0.844 0.023  36.016  0.000    0.798    0.890
## 2     ANXs =~   Q19_2          0.726 0.031  23.176  0.000    0.665    0.788
## 3     ANXs =~   Q19_3          0.835 0.019  42.926  0.000    0.797    0.874
## 4     ANXs =~   Q19_4          0.812 0.024  33.638  0.000    0.765    0.860
## 5     ANXs =~   Q19_5          0.726 0.027  26.462  0.000    0.672    0.780
## 6     DEPs =~   Q20_1          0.728 0.027  26.714  0.000    0.675    0.782
## 7     DEPs =~   Q20_2          0.816 0.021  38.940  0.000    0.775    0.857
## 8     DEPs =~   Q20_3          0.707 0.029  23.970  0.000    0.649    0.765
## 9     DEPs =~   Q20_4          0.688 0.033  21.177  0.000    0.625    0.752
## 10    DEPs =~   Q20_5          0.663 0.035  19.016  0.000    0.595    0.731
## 11    DEPs =~   Q20_6          0.717 0.029  24.408  0.000    0.659    0.774
## 12    DEPs =~   Q20_7          0.777 0.024  31.799  0.000    0.729    0.825
## 13    DEPs =~   Q20_8          0.565 0.033  17.070  0.000    0.500    0.630
## 14      QT =~   Q15_4          0.596 0.044  13.691  0.000    0.511    0.682
## 15      QT =~     Q21          0.847 0.042  20.383  0.000    0.766    0.929
## 16      QT =~     Q25          0.769 0.034  22.872  0.000    0.704    0.835
## 17      QT =~     Q29          0.442 0.048   9.187  0.000    0.348    0.536
## 18      QT =~   Q41_3          0.481 0.047  10.143  0.000    0.388    0.574
## 19     GEN =~ gender2          1.000 0.000      NA     NA    1.000    1.000
## 20    DEPs  ~     GEN      a   0.055 0.042   1.323  0.186   -0.027    0.137
## 21     GEN  ~      QT      b   0.093 0.050   1.849  0.064   -0.006    0.192
## 22    DEPs  ~      QT      c   0.651 0.036  18.187  0.000    0.581    0.721
## 23    ANXs  ~     GEN      d   0.149 0.042   3.590  0.000    0.068    0.231
## 24    ANXs  ~      QT      e   0.690 0.037  18.791  0.000    0.618    0.762
## 25   Q19_1 ~~   Q19_1          0.287 0.040   7.248  0.000    0.209    0.365
## 26   Q19_2 ~~   Q19_2          0.473 0.045  10.391  0.000    0.384    0.562
## 27   Q19_3 ~~   Q19_3          0.302 0.033   9.289  0.000    0.238    0.366
## 28   Q19_4 ~~   Q19_4          0.340 0.039   8.660  0.000    0.263    0.417
## 29   Q19_5 ~~   Q19_5          0.473 0.040  11.880  0.000    0.395    0.551
## 30   Q20_1 ~~   Q20_1          0.469 0.040  11.819  0.000    0.392    0.547
## 31   Q20_2 ~~   Q20_2          0.334 0.034   9.765  0.000    0.267    0.401
## 32   Q20_3 ~~   Q20_3          0.500 0.042  11.987  0.000    0.418    0.582
## 33   Q20_4 ~~   Q20_4          0.526 0.045  11.749  0.000    0.438    0.614
## 34   Q20_5 ~~   Q20_5          0.560 0.046  12.116  0.000    0.470    0.651
## 35   Q20_6 ~~   Q20_6          0.486 0.042  11.557  0.000    0.404    0.569
## 36   Q20_7 ~~   Q20_7          0.397 0.038  10.448  0.000    0.322    0.471
## 37   Q20_8 ~~   Q20_8          0.681 0.037  18.231  0.000    0.608    0.754
## 38   Q15_4 ~~   Q15_4          0.644 0.052  12.407  0.000    0.543    0.746
## 39     Q21 ~~     Q21          0.282 0.070   4.003  0.000    0.144    0.420
## 40     Q25 ~~     Q25          0.408 0.052   7.880  0.000    0.306    0.509
## 41     Q29 ~~     Q29          0.805 0.042  18.942  0.000    0.722    0.888
## 42   Q41_3 ~~   Q41_3          0.769 0.046  16.844  0.000    0.679    0.858
## 43 gender2 ~~ gender2          0.000 0.000      NA     NA    0.000    0.000
## 44    ANXs ~~    ANXs          0.482 0.051   9.503  0.000    0.383    0.582
## 45    DEPs ~~    DEPs          0.567 0.047  12.092  0.000    0.475    0.658
## 46      QT ~~      QT          1.000 0.000      NA     NA    1.000    1.000
## 47     GEN ~~     GEN          0.991 0.009 105.602  0.000    0.973    1.010
## 48    ANXs ~~    DEPs          0.671 0.043  15.680  0.000    0.587    0.755
## 49   Q19_1 ~1                  3.056 0.102  30.091  0.000    2.857    3.255
## 50   Q19_2 ~1                  3.676 0.150  24.462  0.000    3.382    3.971
## 51   Q19_3 ~1                  3.281 0.120  27.343  0.000    3.046    3.516
## 52   Q19_4 ~1                  3.180 0.109  29.261  0.000    2.967    3.393
## 53   Q19_5 ~1                  2.560 0.072  35.684  0.000    2.419    2.700
## 54   Q20_1 ~1                  2.805 0.085  32.859  0.000    2.637    2.972
## 55   Q20_2 ~1                  2.628 0.078  33.529  0.000    2.475    2.782
## 56   Q20_3 ~1                  3.025 0.104  29.072  0.000    2.821    3.229
## 57   Q20_4 ~1                  3.806 0.158  24.066  0.000    3.496    4.115
## 58   Q20_5 ~1                  3.008 0.099  30.367  0.000    2.814    3.203
## 59   Q20_6 ~1                  2.483 0.070  35.468  0.000    2.346    2.620
## 60   Q20_7 ~1                  2.820 0.088  31.914  0.000    2.646    2.993
## 61   Q20_8 ~1                  2.315 0.070  33.214  0.000    2.178    2.451
## 62   Q15_4 ~1                  2.606 0.093  28.171  0.000    2.425    2.787
## 63     Q21 ~1                  2.841 0.098  29.131  0.000    2.650    3.032
## 64     Q25 ~1                  3.383 0.123  27.537  0.000    3.143    3.624
## 65     Q29 ~1                  2.974 0.096  31.111  0.000    2.787    3.161
## 66   Q41_3 ~1                  2.800 0.080  35.139  0.000    2.644    2.957
## 67 gender2 ~1                  1.771 0.096  18.517  0.000    1.583    1.958
## 68    ANXs ~1                  0.000 0.000      NA     NA    0.000    0.000
## 69    DEPs ~1                  0.000 0.000      NA     NA    0.000    0.000
## 70      QT ~1                  0.000 0.000      NA     NA    0.000    0.000
## 71     GEN ~1                  0.000 0.000      NA     NA    0.000    0.000
## 72  Depmed :=     a*b Depmed   0.005 0.004   1.146  0.252   -0.004    0.014
## 73  Deptot := c+(a*b) Deptot   0.656 0.036  18.400  0.000    0.586    0.726
## 74  Anxmed :=     d*b Anxmed   0.014 0.008   1.783  0.075   -0.001    0.029
## 75  Anxtot := e+(d*b) Anxtot   0.704 0.037  19.251  0.000    0.632    0.776
semPaths(fithealth,  whatLabels = "std.all", structural = FALSE, edge.label.cex = .8, node.label.cex = .8, 
        label.prop=0.9, edge.label.color = "black", rotation = 4, 
        equalizeManifests = TRUE, optimizeLatRes = TRUE, node.width = 1.5, 
        edge.width = 0.5, shapeMan = "rectangle", shapeLat = "ellipse", 
        shapeInt = "triangle", sizeMan = 4, sizeInt = 2, sizeLat = 4, 
        curve=2, unCol = "#070b8c", title = FALSE, intercepts = FALSE, residuals = TRUE)

semPaths(fithealth,
        whatLabels = "std.all", structural = TRUE, edge.label.cex = 1, node.label.cex = 1.5, 
        label.prop=0.9, edge.label.color = "black", rotation = 2, 
        equalizeManifests = FALSE, optimizeLatRes = TRUE, node.width = 1.5, 
        edge.width = 0.5, shapeMan = "rectangle", shapeLat = "ellipse", 
        shapeInt = "triangle", sizeMan = 4, sizeInt = 2, sizeLat = 4, 
        curve=2, unCol = "#070b8c", title = FALSE, intercepts = FALSE, residuals = FALSE)

ANXAlpha<- dplyr:: select(teacher2, Q19_1, Q19_2, Q19_3, Q19_4, Q19_5)
DEPAlpha2<- dplyr:: select(teacher2,  Q20_1, Q20_2, Q20_3, Q20_4, Q20_5, Q20_7, Q20_8)
LeaveAlpha<-dplyr::select(teacher2, Q15_4, Q21, Q25, Q29, Q41_3) 

totalAlpha2<- dplyr:: select(teacher2, Q19_1, Q19_2, Q19_3, Q19_4, Q19_5, 
                             Q20_1, Q20_2, Q20_3, Q20_4, Q20_5, Q20_7, Q20_8,
                             Q15_4, Q21, Q25, Q29, Q41_3) 

bannerCommenter::banner("Anxiety Alpha and Omega")
## 
## #################################################################
## ##                   Anxiety Alpha and Omega                   ##
## #################################################################
omega(ANXAlpha)

## Omega 
## Call: omegah(m = m, nfactors = nfactors, fm = fm, key = key, flip = flip, 
##     digits = digits, title = title, sl = sl, labels = labels, 
##     plot = plot, n.obs = n.obs, rotate = rotate, Phi = Phi, option = option, 
##     covar = covar)
## Alpha:                 0.89 
## G.6:                   0.87 
## Omega Hierarchical:    0.87 
## Omega H asymptotic:    0.96 
## Omega Total            0.91 
## 
## Schmid Leiman Factor loadings greater than  0.2 
##          g   F1*   F2*   F3*   h2   u2   p2
## Q19_1 0.85                   0.74 0.26 0.98
## Q19_2 0.79              0.20 0.65 0.35 0.95
## Q19_3 0.83        0.35       0.82 0.18 0.84
## Q19_4 0.74        0.30       0.64 0.36 0.85
## Q19_5 0.67                   0.51 0.49 0.90
## 
## With Sums of squares  of:
##    g  F1*  F2*  F3* 
## 3.03 0.00 0.23 0.10 
## 
## general/max  13.21   max/min =   118.19
## mean percent general =  0.9    with sd =  0.06 and cv of  0.07 
## Explained Common Variance of the general factor =  0.9 
## 
## The degrees of freedom are -2  and the fit is  0 
## The number of observations was  680  with Chi Square =  0  with prob <  NA
## The root mean square of the residuals is  0 
## The df corrected root mean square of the residuals is  NA
## 
## Compare this with the adequacy of just a general factor and no group factors
## The degrees of freedom for just the general factor are 5  and the fit is  0.07 
## The number of observations was  680  with Chi Square =  47.05  with prob <  5.5e-09
## The root mean square of the residuals is  0.04 
## The df corrected root mean square of the residuals is  0.06 
## 
## RMSEA index =  0.111  and the 10 % confidence intervals are  0.084 0.141
## BIC =  14.44 
## 
## Measures of factor score adequacy             
##                                                  g   F1*   F2*   F3*
## Correlation of scores with factors            0.94  0.05  0.56  0.46
## Multiple R square of scores with factors      0.88  0.00  0.31  0.21
## Minimum correlation of factor score estimates 0.77 -0.99 -0.38 -0.58
## 
##  Total, General and Subset omega for each subset
##                                                  g F1*  F2*  F3*
## Omega total for total scores and subscales    0.91  NA 0.84 0.82
## Omega general for total scores and subscales  0.87  NA 0.72 0.82
## Omega group for total scores and subscales    0.02  NA 0.12 0.00
bannerCommenter::banner("Depression Alpha and Omega")
## 
## ##################################################################
## ##                  Depression Alpha and Omega                  ##
## ##################################################################
omega(DEPAlpha2)

## Omega 
## Call: omegah(m = m, nfactors = nfactors, fm = fm, key = key, flip = flip, 
##     digits = digits, title = title, sl = sl, labels = labels, 
##     plot = plot, n.obs = n.obs, rotate = rotate, Phi = Phi, option = option, 
##     covar = covar)
## Alpha:                 0.88 
## G.6:                   0.88 
## Omega Hierarchical:    0.76 
## Omega H asymptotic:    0.83 
## Omega Total            0.92 
## 
## Schmid Leiman Factor loadings greater than  0.2 
##          g   F1*   F2*   F3*   h2   u2   p2
## Q20_1 0.72  0.21  0.21       0.62 0.38 0.85
## Q20_2 0.86        0.50       1.00 0.00 0.75
## Q20_3 0.63  0.36             0.54 0.46 0.74
## Q20_4 0.62  0.52             0.65 0.35 0.58
## Q20_5 0.59  0.40             0.51 0.49 0.67
## Q20_7 0.68  0.22        0.25 0.58 0.42 0.79
## Q20_8 0.58              0.60 0.70 0.30 0.48
## 
## With Sums of squares  of:
##    g  F1*  F2*  F3* 
## 3.18 0.65 0.30 0.45 
## 
## general/max  4.87   max/min =   2.19
## mean percent general =  0.69    with sd =  0.13 and cv of  0.18 
## Explained Common Variance of the general factor =  0.69 
## 
## The degrees of freedom are 3  and the fit is  0.01 
## The number of observations was  680  with Chi Square =  4.18  with prob <  0.24
## The root mean square of the residuals is  0.01 
## The df corrected root mean square of the residuals is  0.02
## RMSEA index =  0.024  and the 10 % confidence intervals are  0 0.073
## BIC =  -15.39
## 
## Compare this with the adequacy of just a general factor and no group factors
## The degrees of freedom for just the general factor are 14  and the fit is  0.32 
## The number of observations was  680  with Chi Square =  219.01  with prob <  7e-39
## The root mean square of the residuals is  0.1 
## The df corrected root mean square of the residuals is  0.12 
## 
## RMSEA index =  0.147  and the 10 % confidence intervals are  0.13 0.164
## BIC =  127.7 
## 
## Measures of factor score adequacy             
##                                                  g   F1*   F2*  F3*
## Correlation of scores with factors            0.91  0.70  0.68 0.72
## Multiple R square of scores with factors      0.83  0.49  0.46 0.52
## Minimum correlation of factor score estimates 0.65 -0.01 -0.07 0.04
## 
##  Total, General and Subset omega for each subset
##                                                  g  F1*  F2*  F3*
## Omega total for total scores and subscales    0.92 0.79 0.87 0.75
## Omega general for total scores and subscales  0.76 0.53 0.73 0.51
## Omega group for total scores and subscales    0.10 0.26 0.14 0.24
bannerCommenter::banner("Quitting")
## 
## ##################################################################
## ##                           Quitting                           ##
## ##################################################################
omega(LeaveAlpha)

## Omega 
## Call: omegah(m = m, nfactors = nfactors, fm = fm, key = key, flip = flip, 
##     digits = digits, title = title, sl = sl, labels = labels, 
##     plot = plot, n.obs = n.obs, rotate = rotate, Phi = Phi, option = option, 
##     covar = covar)
## Alpha:                 0.75 
## G.6:                   0.73 
## Omega Hierarchical:    0.74 
## Omega H asymptotic:    0.94 
## Omega Total            0.79 
## 
## Schmid Leiman Factor loadings greater than  0.2 
##          g   F1*   F2*   F3*   h2   u2   p2
## Q15_4 0.66        0.20       0.49 0.51 0.90
## Q21   0.72                   0.54 0.46 0.98
## Q25   0.87                   0.77 0.23 0.99
## Q29   0.45              0.34 0.32 0.68 0.64
## Q41_3 0.36        0.35       0.28 0.72 0.46
## 
## With Sums of squares  of:
##    g  F1*  F2*  F3* 
## 2.05 0.00 0.20 0.15 
## 
## general/max  10.42   max/min =   Inf
## mean percent general =  0.79    with sd =  0.23 and cv of  0.3 
## Explained Common Variance of the general factor =  0.85 
## 
## The degrees of freedom are -2  and the fit is  0 
## The number of observations was  680  with Chi Square =  0  with prob <  NA
## The root mean square of the residuals is  0 
## The df corrected root mean square of the residuals is  NA
## 
## Compare this with the adequacy of just a general factor and no group factors
## The degrees of freedom for just the general factor are 5  and the fit is  0.03 
## The number of observations was  680  with Chi Square =  23.11  with prob <  0.00032
## The root mean square of the residuals is  0.04 
## The df corrected root mean square of the residuals is  0.05 
## 
## RMSEA index =  0.073  and the 10 % confidence intervals are  0.045 0.104
## BIC =  -9.5 
## 
## Measures of factor score adequacy             
##                                                  g F1*   F2*   F3*
## Correlation of scores with factors            0.92   0  0.52  0.41
## Multiple R square of scores with factors      0.85   0  0.27  0.16
## Minimum correlation of factor score estimates 0.71  -1 -0.45 -0.67
## 
##  Total, General and Subset omega for each subset
##                                                  g F1*  F2*  F3*
## Omega total for total scores and subscales    0.79  NA 0.78 0.32
## Omega general for total scores and subscales  0.74  NA 0.75 0.20
## Omega group for total scores and subscales    0.03  NA 0.03 0.11
bannerCommenter::banner("Total")
## 
## #################################################################
## ##                            Total                            ##
## #################################################################
omega(totalAlpha2)

## Omega 
## Call: omegah(m = m, nfactors = nfactors, fm = fm, key = key, flip = flip, 
##     digits = digits, title = title, sl = sl, labels = labels, 
##     plot = plot, n.obs = n.obs, rotate = rotate, Phi = Phi, option = option, 
##     covar = covar)
## Alpha:                 0.92 
## G.6:                   0.93 
## Omega Hierarchical:    0.78 
## Omega H asymptotic:    0.83 
## Omega Total            0.94 
## 
## Schmid Leiman Factor loadings greater than  0.2 
##          g   F1*   F2*   F3*   h2   u2   p2
## Q19_1 0.72        0.36       0.67 0.33 0.78
## Q19_2 0.65        0.44       0.62 0.38 0.68
## Q19_3 0.74        0.48       0.78 0.22 0.71
## Q19_4 0.71        0.33       0.62 0.38 0.80
## Q19_5 0.63        0.26       0.48 0.52 0.82
## Q20_1 0.65  0.49             0.68 0.32 0.63
## Q20_2 0.72  0.41             0.69 0.31 0.75
## Q20_3 0.64  0.30             0.53 0.47 0.77
## Q20_4 0.62  0.30             0.48 0.52 0.79
## Q20_5 0.57  0.33             0.44 0.56 0.75
## Q20_7 0.67  0.36             0.58 0.42 0.76
## Q20_8 0.50  0.33             0.35 0.65 0.69
## Q15_4 0.44              0.52 0.46 0.54 0.41
## Q21   0.62              0.44 0.59 0.41 0.65
## Q25   0.54              0.60 0.66 0.34 0.45
## Q29   0.31              0.37 0.24 0.76 0.39
## Q41_3 0.32              0.25 0.17 0.83 0.61
## 
## With Sums of squares  of:
##    g  F1*  F2*  F3* 
## 6.21 0.99 0.81 1.04 
## 
## general/max  5.96   max/min =   1.28
## mean percent general =  0.67    with sd =  0.14 and cv of  0.2 
## Explained Common Variance of the general factor =  0.69 
## 
## The degrees of freedom are 88  and the fit is  0.41 
## The number of observations was  680  with Chi Square =  277.33  with prob <  1.8e-21
## The root mean square of the residuals is  0.03 
## The df corrected root mean square of the residuals is  0.03
## RMSEA index =  0.056  and the 10 % confidence intervals are  0.049 0.064
## BIC =  -296.61
## 
## Compare this with the adequacy of just a general factor and no group factors
## The degrees of freedom for just the general factor are 119  and the fit is  1.77 
## The number of observations was  680  with Chi Square =  1187.05  with prob <  1.9e-175
## The root mean square of the residuals is  0.1 
## The df corrected root mean square of the residuals is  0.1 
## 
## RMSEA index =  0.115  and the 10 % confidence intervals are  0.109 0.121
## BIC =  410.92 
## 
## Measures of factor score adequacy             
##                                                  g   F1*   F2*  F3*
## Correlation of scores with factors            0.89  0.68  0.67 0.78
## Multiple R square of scores with factors      0.80  0.46  0.44 0.61
## Minimum correlation of factor score estimates 0.60 -0.08 -0.11 0.21
## 
##  Total, General and Subset omega for each subset
##                                                  g  F1*  F2*  F3*
## Omega total for total scores and subscales    0.94 0.88 0.89 0.77
## Omega general for total scores and subscales  0.78 0.66 0.68 0.39
## Omega group for total scores and subscales    0.11 0.22 0.20 0.37
library(diagram)
dataplot3 <- c(0, "'.15'", 0,
          0, 0, 0, 
          "'.09'", "'.69*+(.01)=[.70*]'", 0)
M<- matrix (nrow=3, ncol=3, byrow = TRUE, data=dataplot3)
plot<- plotmat (M, pos=c(1,2), 
                name= c( "Gender","Anxiety", "Desire to Quit"), 
                box.type = "rect", box.size = 0.12, box.prop=0.5,  curve=0)

library(diagram)
dataplot3 <- c(0, "'.06'", 0,
          0, 0, 0, 
          "'.09'", "'.65*+(.01)=[.66*]'", 0)
M<- matrix (nrow=3, ncol=3, byrow = TRUE, data=dataplot3)
plot<- plotmat (M, pos=c(1,2), 
                name= c( "Gender","Depression", "Desire to Quit"), 
                box.type = "rect", box.size = 0.12, box.prop=0.5,  curve=0)

matrix<- dplyr::select(teacher2, Anx, Dep, Leave)
matrix2<-na.omit(matrix)

apa.cor.table(matrix, filename = "correlation.doc")
## 
## 
## Means, standard deviations, and correlations with confidence intervals
##  
## 
##   Variable M     SD   1          2         
##   1. Anx   14.13 3.72                      
##                                            
##   2. Dep   19.70 5.29 .74**                
##                       [.71, .78]           
##                                            
##   3. Leave 13.62 3.35 .58**      .53**     
##                       [.51, .63] [.47, .59]
##                                            
## 
## Note. M and SD are used to represent mean and standard deviation, respectively.
## Values in square brackets indicate the 95% confidence interval.
## The confidence interval is a plausible range of population correlations 
## that could have caused the sample correlation (Cumming, 2014).
##  * indicates p < .05. ** indicates p < .01.
## 
#Anxiety and Gender
anxgender<-lm(Anx ~ gender, data = teacher2)
apa.aov.table(anxgender,"anxgenderanova.doc")
## 
## 
## ANOVA results using Anx as the dependent variable
##  
## 
##    Predictor       SS  df       MS       F    p partial_eta2 CI_90_partial_eta2
##  (Intercept) 97478.69   1 97478.69 7352.12 .000                                
##       gender   351.61   1   351.61   26.52 .000          .04         [.02, .07]
##        Error  8008.18 604    13.26                                             
## 
## Note: Values in square brackets indicate the bounds of the 90% confidence interval for partial eta-squared
cohens_d(teacher2, Anx~gender)
## # A tibble: 1 x 7
##   .y.   group1 group2 effsize    n1    n2 magnitude
## * <chr> <chr>  <chr>    <dbl> <int> <int> <ord>    
## 1 Anx   Female Male     0.477   503   156 small
GenAnx<- na.omit(dplyr::select(teacher2, ResponseId, Anx, gender))
GenAnx<- GenAnx %>% 
  group_by(gender) %>% 
              summarize(
             n = n_distinct(ResponseId),
             Avg = mean(Anx), 
             SD = sd(Anx, .75))

#Anxiety and Grade Level
anxgrade<-lm(Anx ~ Level, data = teacher2)
apa.aov.table(anxgrade,"anxlevelanova.doc")
## 
## 
## ANOVA results using Anx as the dependent variable
##  
## 
##    Predictor       SS  df       MS       F    p partial_eta2 CI_90_partial_eta2
##  (Intercept) 54484.68   1 54484.68 3990.84 .000                                
##        Level   189.80   4    47.45    3.48 .008          .02         [.00, .04]
##        Error  8382.60 614    13.65                                             
## 
## Note: Values in square brackets indicate the bounds of the 90% confidence interval for partial eta-squared
cohens_d(teacher2, Anx~Level)
## # A tibble: 10 x 7
##    .y.   group1        group2          effsize    n1    n2 magnitude 
##  * <chr> <chr>         <chr>             <dbl> <int> <int> <ord>     
##  1 Anx   Elementary    High_School    0.365      277   166 small     
##  2 Anx   Elementary    Middle_School  0.0897     277   173 negligible
##  3 Anx   Elementary    Other         -0.0418     277    34 negligible
##  4 Anx   Elementary    Pre_K          0.102      277    25 negligible
##  5 Anx   High_School   Middle_School -0.265      166   173 small     
##  6 Anx   High_School   Other         -0.420      166    34 small     
##  7 Anx   High_School   Pre_K         -0.298      166    25 small     
##  8 Anx   Middle_School Other         -0.133      173    34 negligible
##  9 Anx   Middle_School Pre_K          0.000748   173    25 negligible
## 10 Anx   Other         Pre_K          0.152       34    25 negligible
ANXLevel<- na.omit(dplyr::select(teacher2, ResponseId, Anx, Level))
ANXLevel<- ANXLevel %>% 
  group_by(Level) %>% 
              summarize(
             n = n_distinct(ResponseId),
             Avg = mean(Anx), 
             SD = sd(Anx, .75))


#Anxiety and Content
anxcont<-lm(Anx ~ Cont1, data = teacher2)
apa.aov.table(anxcont,"anxcontanova.doc")
## 
## 
## ANOVA results using Anx as the dependent variable
##  
## 
##    Predictor       SS  df       MS       F    p partial_eta2 CI_90_partial_eta2
##  (Intercept) 17718.57   1 17718.57 1329.87 .000                                
##        Cont1   388.64   7    55.52    4.17 .000          .05         [.01, .07]
##        Error  8047.42 604    13.32                                             
## 
## Note: Values in square brackets indicate the bounds of the 90% confidence interval for partial eta-squared
cohens_d(teacher2, Anx~Cont1)
## # A tibble: 28 x 7
##    .y.   group1                group2                effsize    n1    n2 magni~1
##  * <chr> <chr>                 <chr>                   <dbl> <int> <int> <ord>  
##  1 Anx   Elective              English Language Ar~ -0.118      87    70 neglig~
##  2 Anx   Elective              General Elementary    0.00932    87   195 neglig~
##  3 Anx   Elective              Math                  0.430      87    83 small  
##  4 Anx   Elective              Other                 0.485      87    47 small  
##  5 Anx   Elective              Science               0.544      87    42 modera~
##  6 Anx   Elective              Social Studies        0.468      87    53 small  
##  7 Anx   Elective              Special Education     0.270      87    89 small  
##  8 Anx   English Language Arts General Elementary    0.121      70   195 neglig~
##  9 Anx   English Language Arts Math                  0.528      70    83 modera~
## 10 Anx   English Language Arts Other                 0.582      70    47 modera~
## # ... with 18 more rows, and abbreviated variable name 1: magnitude
ContAnx<- na.omit(dplyr::select(teacher2, ResponseId, Anx, Cont1))
ContAnx<- ContAnx %>% 
  group_by(Cont1) %>% 
              summarize(
             n = n_distinct(ResponseId),
             Avg = mean(Anx), 
             SD = sd(Anx, .75))



GenAnx<- as.data.frame(GenAnx)%>%
  rename(category = gender)
ANXLevel<- as.data.frame(ANXLevel)%>%
  rename(category = Level)
ContAnx<- as.data.frame(ContAnx)%>%
  rename(category = Cont1)

anovameansanxiety<- rbind(GenAnx, ANXLevel, ContAnx)
anovameansanxiety
##                 category   n      Avg       SD
## 1                 Female 459 14.57298 3.564228
## 2                   Male 147 12.79592 3.872875
## 3             Elementary 257 14.56031 3.692960
## 4            High_School 158 13.22152 3.633923
## 5          Middle_School 150 14.22000 3.894360
## 6                  Other  31 14.70968 3.446675
## 7                  Pre_K  23 14.21739 3.029499
## 8               Elective  81 14.79012 3.235414
## 9  English Language Arts  61 15.18033 3.398569
## 10    General Elementary 182 14.75824 3.593551
## 11                  Math  79 13.24051 3.932818
## 12                 Other  43 13.04651 3.915497
## 13               Science  40 13.05000 3.161872
## 14        Social Studies  49 13.16327 3.704428
## 15     Special Education  77 13.79221 4.104996
#Depression and Gender
Depgender<-lm(Dep ~ gender, data = teacher2)
apa.aov.table(Depgender,"Depgenderanova.doc")
## 
## 
## ANOVA results using Dep as the dependent variable
##  
## 
##    Predictor        SS  df        MS       F    p partial_eta2
##  (Intercept) 182721.73   1 182721.73 6640.82 .000             
##       gender    217.01   1    217.01    7.89 .005          .01
##        Error  16398.91 596     27.51                          
##  CI_90_partial_eta2
##                    
##          [.00, .03]
##                    
## 
## Note: Values in square brackets indicate the bounds of the 90% confidence interval for partial eta-squared
cohens_d(teacher2, Dep~gender)
## # A tibble: 1 x 7
##   .y.   group1 group2 effsize    n1    n2 magnitude
## * <chr> <chr>  <chr>    <dbl> <int> <int> <ord>    
## 1 Dep   Female Male     0.267   503   156 small
GenDep<- na.omit(dplyr::select(teacher2, ResponseId, Dep, gender))
GenDep<- GenDep %>% 
  group_by(gender) %>% 
              summarize(
             n = n_distinct(ResponseId),
             Avg = mean(Dep), 
             SD = sd(Dep, .75))

#Depression and Grade Level
Depgrade<-lm(Dep ~ Level, data = teacher2)
apa.aov.table(Depgrade,"Deplevelanova.doc")
## 
## 
## ANOVA results using Dep as the dependent variable
##  
## 
##    Predictor        SS  df        MS       F    p partial_eta2
##  (Intercept) 103807.94   1 103807.94 3734.41 .000             
##        Level    238.73   4     59.68    2.15 .074          .01
##        Error  16845.42 606     27.80                          
##  CI_90_partial_eta2
##                    
##          [.00, .03]
##                    
## 
## Note: Values in square brackets indicate the bounds of the 90% confidence interval for partial eta-squared
cohens_d(teacher2, Dep~Level)
## # A tibble: 10 x 7
##    .y.   group1        group2        effsize    n1    n2 magnitude 
##  * <chr> <chr>         <chr>           <dbl> <int> <int> <ord>     
##  1 Dep   Elementary    High_School    0.286    277   166 small     
##  2 Dep   Elementary    Middle_School  0.0450   277   173 negligible
##  3 Dep   Elementary    Other          0.0716   277    34 negligible
##  4 Dep   Elementary    Pre_K          0.0356   277    25 negligible
##  5 Dep   High_School   Middle_School -0.241    166   173 small     
##  6 Dep   High_School   Other         -0.220    166    34 small     
##  7 Dep   High_School   Pre_K         -0.267    166    25 small     
##  8 Dep   Middle_School Other          0.0256   173    34 negligible
##  9 Dep   Middle_School Pre_K         -0.0122   173    25 negligible
## 10 Dep   Other         Pre_K         -0.0397    34    25 negligible
DEPLevel<- na.omit(dplyr::select(teacher2, ResponseId, Dep, Level))
DEPLevel<- DEPLevel %>% 
  group_by(Level) %>% 
              summarize(
             n = n_distinct(ResponseId),
             Avg = mean(Dep), 
             SD = sd(Dep, .75))

#Depression and Content
Depcont<-lm(Dep ~ Cont1, data = teacher2)
apa.aov.table(Depcont,"Depcontanova.doc")
## 
## 
## ANOVA results using Dep as the dependent variable
##  
## 
##    Predictor       SS  df       MS       F    p partial_eta2 CI_90_partial_eta2
##  (Intercept) 35028.45   1 35028.45 1277.41 .000                                
##        Cont1   445.53   7    63.65    2.32 .024          .03         [.00, .04]
##        Error 16343.23 596    27.42                                             
## 
## Note: Values in square brackets indicate the bounds of the 90% confidence interval for partial eta-squared
cohens_d(teacher2, Dep~Cont1)
## # A tibble: 28 x 7
##    .y.   group1                group2                effsize    n1    n2 magni~1
##  * <chr> <chr>                 <chr>                   <dbl> <int> <int> <ord>  
##  1 Dep   Elective              English Language Arts  0.0847    87    70 neglig~
##  2 Dep   Elective              General Elementary     0.162     87   195 neglig~
##  3 Dep   Elective              Math                   0.379     87    83 small  
##  4 Dep   Elective              Other                  0.523     87    47 modera~
##  5 Dep   Elective              Science                0.510     87    42 modera~
##  6 Dep   Elective              Social Studies         0.378     87    53 small  
##  7 Dep   Elective              Special Education      0.230     87    89 small  
##  8 Dep   English Language Arts General Elementary     0.0843    70   195 neglig~
##  9 Dep   English Language Arts Math                   0.312     70    83 small  
## 10 Dep   English Language Arts Other                  0.464     70    47 small  
## # ... with 18 more rows, and abbreviated variable name 1: magnitude
ContDep<- na.omit(dplyr::select(teacher2, ResponseId, Dep, Cont1))
ContDep<- ContDep %>% 
  group_by(Cont1) %>% 
              summarize(
             n = n_distinct(ResponseId),
             Avg = mean(Dep), 
             SD = sd(Dep, .75))



GenDep<- as.data.frame(GenDep)%>%
  rename(category = gender)
DEPLevel<- as.data.frame(DEPLevel)%>%
  rename(category = Level)
ContDep<- as.data.frame(ContDep)%>%
  rename(category = Cont1)

anovameansdep<- rbind(GenDep, DEPLevel, ContDep)

write.csv(anovameansdep, "anovameansdep.csv")

anovameansdep
##                 category   n      Avg       SD
## 1                 Female 454 20.06167 5.213811
## 2                   Male 144 18.65278 5.344521
## 3             Elementary 255 20.17647 5.244066
## 4            High_School 154 18.64935 5.419081
## 5          Middle_School 148 19.93919 5.290508
## 6                  Other  31 19.80645 5.088676
## 7                  Pre_K  23 20.00000 4.651490
## 8               Elective  80 20.92500 5.120757
## 9  English Language Arts  59 20.50847 4.702798
## 10    General Elementary 181 20.09392 5.124778
## 11                  Math  75 18.90667 5.526773
## 12                 Other  43 18.02326 5.946141
## 13               Science  40 18.35000 4.969394
## 14        Social Studies  47 19.08511 4.595980
## 15     Special Education  79 19.67089 5.752862
#leave and Gender
LVgender<-lm(Leave ~ gender, data = teacher2)
apa.aov.table(LVgender,"Leavegenderanova.doc")
## 
## 
## ANOVA results using Leave as the dependent variable
##  
## 
##    Predictor       SS  df       MS       F    p partial_eta2 CI_90_partial_eta2
##  (Intercept) 68478.63   1 68478.63 6093.94 .000                                
##       gender    35.99   1    35.99    3.20 .074          .01         [.00, .02]
##        Error  5326.42 474    11.24                                             
## 
## Note: Values in square brackets indicate the bounds of the 90% confidence interval for partial eta-squared
cohens_d(teacher2, Leave~gender)
## # A tibble: 1 x 7
##   .y.   group1 group2 effsize    n1    n2 magnitude 
## * <chr> <chr>  <chr>    <dbl> <int> <int> <ord>     
## 1 Leave Female Male     0.192   503   156 negligible
LVGen<- na.omit(dplyr::select(teacher2, ResponseId, Leave, gender))
LVGen<- LVGen %>% 
  group_by(gender) %>% 
              summarize(
             n = n_distinct(ResponseId),
             Avg = mean(Leave), 
             SD = sd(Leave, .75))

#leave and Grade Level
LVgrade<-lm(Leave ~ Level, data = teacher2)
apa.aov.table(LVgrade,"Leavelevelanova.doc")
## 
## 
## ANOVA results using Leave as the dependent variable
##  
## 
##    Predictor       SS  df       MS       F    p partial_eta2 CI_90_partial_eta2
##  (Intercept) 39761.10   1 39761.10 3591.05 .000                                
##        Level   121.11   4    30.28    2.73 .028          .02         [.00, .04]
##        Error  5292.55 478    11.07                                             
## 
## Note: Values in square brackets indicate the bounds of the 90% confidence interval for partial eta-squared
cohens_d(teacher2, Leave~Level)
## # A tibble: 10 x 7
##    .y.   group1        group2        effsize    n1    n2 magnitude 
##  * <chr> <chr>         <chr>           <dbl> <int> <int> <ord>     
##  1 Leave Elementary    High_School    0.303    277   166 small     
##  2 Leave Elementary    Middle_School  0.0483   277   173 negligible
##  3 Leave Elementary    Other          0.350    277    34 small     
##  4 Leave Elementary    Pre_K         -0.284    277    25 small     
##  5 Leave High_School   Middle_School -0.249    166   173 small     
##  6 Leave High_School   Other          0.0496   166    34 negligible
##  7 Leave High_School   Pre_K         -0.620    166    25 moderate  
##  8 Leave Middle_School Other          0.295    173    34 small     
##  9 Leave Middle_School Pre_K         -0.330    173    25 small     
## 10 Leave Other         Pre_K         -0.669     34    25 moderate
LVLevel<- na.omit(dplyr::select(teacher2, ResponseId, Leave, Level))
LVLevel<- LVLevel %>% 
  group_by(Level) %>% 
              summarize(
             n = n_distinct(ResponseId),
             Avg = mean(Leave), 
             SD = sd(Leave, .75))


#Leave and Content
LVcont<-lm(Leave ~ Cont1, data = teacher2)
apa.aov.table(LVcont,"LVcontanova.doc")
## 
## 
## ANOVA results using Leave as the dependent variable
##  
## 
##    Predictor       SS  df       MS       F    p partial_eta2 CI_90_partial_eta2
##  (Intercept) 12742.93   1 12742.93 1143.76 .000                                
##        Cont1   159.02   7    22.72    2.04 .049          .03         [.00, .04]
##        Error  5225.23 469    11.14                                             
## 
## Note: Values in square brackets indicate the bounds of the 90% confidence interval for partial eta-squared
cohens_d(teacher2, Leave~Cont1)
## # A tibble: 28 x 7
##    .y.   group1                group2                effsize    n1    n2 magni~1
##  * <chr> <chr>                 <chr>                   <dbl> <int> <int> <ord>  
##  1 Leave Elective              English Language Ar~  0.0305     87    70 neglig~
##  2 Leave Elective              General Elementary   -0.158      87   195 neglig~
##  3 Leave Elective              Math                  0.142      87    83 neglig~
##  4 Leave Elective              Other                 0.181      87    47 neglig~
##  5 Leave Elective              Science               0.478      87    42 small  
##  6 Leave Elective              Social Studies        0.00212    87    53 neglig~
##  7 Leave Elective              Special Education     0.216      87    89 small  
##  8 Leave English Language Arts General Elementary   -0.191      70   195 neglig~
##  9 Leave English Language Arts Math                  0.116      70    83 neglig~
## 10 Leave English Language Arts Other                 0.156      70    47 neglig~
## # ... with 18 more rows, and abbreviated variable name 1: magnitude
ContLV<- na.omit(dplyr::select(teacher2, ResponseId, Leave, Cont1))
ContLV<- ContLV %>% 
  group_by(Cont1) %>% 
              summarize(
             n = n_distinct(ResponseId),
             Avg = mean(Leave), 
             SD = sd(Leave, .75))

LVGen<- as.data.frame(LVGen)%>%
  rename(category = gender)
LVLevel<- as.data.frame(LVLevel)%>%
  rename(category = Level)
ContLV<- as.data.frame(ContLV)%>%
  rename(category = Cont1)

anovameanslv<- rbind(LVGen, LVLevel, ContLV)

write.csv(anovameanslv, "anovameanslv.csv")

anovameanslv
##                 category   n      Avg       SD
## 1                 Female 361 13.77285 3.352186
## 2                   Male 115 13.13043 3.352197
## 3             Elementary 205 13.92683 3.334242
## 4            High_School 120 12.92500 3.267262
## 5          Middle_School 118 13.76271 3.460838
## 6                  Other  21 12.76190 3.315189
## 7                  Pre_K  19 14.78947 2.719864
## 8               Elective  67 13.79104 3.259194
## 9  English Language Arts  49 13.69388 3.110494
## 10    General Elementary 140 14.30714 3.293544
## 11                  Math  57 13.29825 3.659454
## 12                 Other  33 13.18182 3.459178
## 13               Science  31 12.22581 3.283389
## 14        Social Studies  37 13.78378 3.591155
## 15     Special Education  63 13.09524 3.191290
## Anxiety and Gender
TukeyHSD(aov(Anx~gender, data = teacher2))
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = Anx ~ gender, data = teacher2)
## 
## $gender
##                  diff       lwr       upr p adj
## Male-Female -1.777066 -2.454769 -1.099364 4e-07
## Anxiety and Level
 TukeyHSD(aov(Anx ~ Level, data = teacher2))
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = Anx ~ Level, data = teacher2)
## 
## $Level
##                                   diff        lwr        upr     p adj
## High_School-Elementary    -1.338792297 -2.3607539 -0.3168307 0.0033475
## Middle_School-Elementary  -0.340311284 -1.3790126  0.6983900 0.8982336
## Other-Elementary           0.149366135 -1.7726388  2.0713710 0.9995452
## Pre_K-Elementary          -0.342919980 -2.5430796  1.8572396 0.9930958
## Middle_School-High_School  0.998481013 -0.1539285  2.1508905 0.1248514
## Other-High_School          1.488158432 -0.4976034  3.4739203 0.2434066
## Pre_K-High_School          0.995872317 -1.2601972  3.2519418 0.7469556
## Other-Middle_School        0.489677419 -1.5047510  2.4841059 0.9624258
## Pre_K-Middle_School       -0.002608696 -2.2663102  2.2610928 1.0000000
## Pre_K-Other               -0.492286115 -3.2742902  2.2897180 0.9888043
## Anxiety and Content
TukeyHSD(aov(Anx~Cont1, data = teacher2))
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = Anx ~ Cont1, data = teacher2)
## 
## $Cont1
##                                                  diff       lwr         upr
## English Language Arts-Elective            0.390204412 -1.491908  2.27231690
## General Elementary-Elective              -0.031881699 -1.514770  1.45100682
## Math-Elective                            -1.549617128 -3.305165  0.20593111
## Other-Elective                           -1.743611829 -3.838414  0.35118996
## Science-Elective                         -1.740123457 -3.885626  0.40537897
## Social Studies-Elective                  -1.626858151 -3.636136  0.38241952
## Special Education-Elective               -0.997915665 -2.764968  0.76913704
## General Elementary-English Language Arts -0.422086111 -2.064609  1.22043650
## Math-English Language Arts               -1.939821540 -3.832141 -0.04750239
## Other-English Language Arts              -2.133816241 -4.344499  0.07686617
## Science-English Language Arts            -2.130327869 -4.389111  0.12845562
## Social Studies-English Language Arts     -2.017062563 -4.146879  0.11275408
## Special Education-English Language Arts  -1.388120077 -3.291117  0.51487688
## Math-General Elementary                  -1.517735429 -3.013557 -0.02191368
## Other-General Elementary                 -1.711730130 -3.594209  0.17074899
## Science-General Elementary               -1.708241758 -3.646982  0.23049850
## Social Studies-General Elementary        -1.594976452 -3.381798  0.19184471
## Special Education-General Elementary     -0.966033966 -2.475341  0.54327328
## Other-Math                               -0.193994701 -2.297972  1.90998222
## Science-Math                             -0.190506329 -2.344968  1.96395533
## Social Studies-Math                      -0.077241023 -2.096083  1.94160051
## Special Education-Math                    0.551701463 -1.226219  2.32962149
## Science-Other                             0.003488372 -2.435354  2.44233030
## Social Studies-Other                      0.116753678 -2.203153  2.43666015
## Special Education-Other                   0.745696164 -1.367890  2.85928187
## Social Studies-Science                    0.113265306 -2.252523  2.47905316
## Special Education-Science                 0.742207792 -1.421638  2.90605406
## Special Education-Social Studies          0.628942486 -1.399911  2.65779604
##                                              p adj
## English Language Arts-Elective           0.9984498
## General Elementary-Elective              1.0000000
## Math-Elective                            0.1291958
## Other-Elective                           0.1841406
## Science-Elective                         0.2117836
## Social Studies-Elective                  0.2136716
## Special Education-Elective               0.6757195
## General Elementary-English Language Arts 0.9940142
## Math-English Language Arts               0.0399422
## Other-English Language Arts              0.0674155
## Science-English Language Arts            0.0809055
## Social Studies-English Language Arts     0.0783580
## Special Education-English Language Arts  0.3419234
## Math-General Elementary                  0.0438968
## Other-General Elementary                 0.1057372
## Science-General Elementary               0.1307133
## Social Studies-General Elementary        0.1200039
## Special Education-General Elementary     0.5191317
## Other-Math                               0.9999933
## Science-Math                             0.9999950
## Social Studies-Math                      1.0000000
## Special Education-Math                   0.9815758
## Science-Other                            1.0000000
## Social Studies-Other                     0.9999999
## Special Education-Other                  0.9621620
## Social Studies-Science                   0.9999999
## Special Education-Science                0.9675729
## Special Education-Social Studies         0.9816811
## Depression and Gender
TukeyHSD(aov(Dep~gender, data = teacher2))
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = Dep ~ gender, data = teacher2)
## 
## $gender
##                  diff      lwr        upr     p adj
## Male-Female -1.408896 -2.39417 -0.4236229 0.0051426
#Depression and Content
TukeyHSD(aov(Dep~Cont1, data = teacher2))
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = Dep ~ Cont1, data = teacher2)
## 
## $Cont1
##                                                diff       lwr       upr
## English Language Arts-Elective           -0.4165254 -3.149916 2.3168653
## General Elementary-Elective              -0.8310773 -2.969538 1.3073835
## Math-Elective                            -2.0183333 -4.578425 0.5417585
## Other-Elective                           -2.9017442 -5.913631 0.1101427
## Science-Elective                         -2.5750000 -5.659473 0.5094729
## Social Studies-Elective                  -1.8398936 -4.767234 1.0874470
## Special Education-Elective               -1.2541139 -3.780533 1.2723049
## General Elementary-English Language Arts -0.4145519 -2.802394 1.9732904
## Math-English Language Arts               -1.6018079 -4.373603 1.1699869
## Other-English Language Arts              -2.4852188 -5.679000 0.7085625
## Science-English Language Arts            -2.1584746 -5.420797 1.1038481
## Social Studies-English Language Arts     -1.4233682 -4.537545 1.6908090
## Special Education-English Language Arts  -0.8375885 -3.578313 1.9031356
## Math-General Elementary                  -1.1872560 -3.374591 1.0000794
## Other-General Elementary                 -2.0706668 -4.772856 0.6315228
## Science-General Elementary               -1.7439227 -4.526788 1.0389426
## Social Studies-General Elementary        -1.0088163 -3.616438 1.5988051
## Special Education-General Elementary     -0.4230366 -2.570863 1.7247898
## Other-Math                               -0.8834109 -3.930193 2.1633718
## Science-Math                             -0.5566667 -3.675223 2.5618898
## Social Studies-Math                       0.1784397 -2.784792 3.1416719
## Special Education-Math                    0.7642194 -1.803701 3.3321395
## Science-Other                             0.3267442 -3.172225 3.8257136
## Social Studies-Other                      1.0618506 -2.299420 4.4231207
## Special Education-Other                   1.6476303 -1.370913 4.6661739
## Social Studies-Science                    0.7351064 -2.691356 4.1615692
## Special Education-Science                 1.3208861 -1.770087 4.4118594
## Special Education-Social Studies          0.5857797 -2.348410 3.5199689
##                                              p adj
## English Language Arts-Elective           0.9997949
## General Elementary-Elective              0.9368821
## Math-Elective                            0.2441226
## Other-Elective                           0.0684366
## Science-Elective                         0.1810809
## Social Studies-Elective                  0.5432839
## Special Education-Elective               0.8020887
## General Elementary-English Language Arts 0.9995122
## Math-English Language Arts               0.6489722
## Other-English Language Arts              0.2597233
## Science-English Language Arts            0.4741989
## Social Studies-English Language Arts     0.8616615
## Special Education-English Language Arts  0.9831255
## Math-General Elementary                  0.7188159
## Other-General Elementary                 0.2785270
## Science-General Elementary               0.5471875
## Social Studies-General Elementary        0.9383389
## Special Education-General Elementary     0.9988862
## Other-Math                               0.9876002
## Science-Math                             0.9994142
## Social Studies-Math                      0.9999996
## Special Education-Math                   0.9855449
## Science-Other                            0.9999927
## Social Studies-Other                     0.9795742
## Special Education-Other                  0.7129399
## Social Studies-Science                   0.9980689
## Special Education-Science                0.8988588
## Special Education-Social Studies         0.9987844
## Leave and Gender
TukeyHSD(aov(Leave~gender, data = teacher2))
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = Leave ~ gender, data = teacher2)
## 
## $gender
##                   diff       lwr        upr     p adj
## Male-Female -0.6424184 -1.347741 0.06290423 0.0741348
### Leave Level
TukeyHSD(aov(Leave ~ Level, data = teacher2))
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = Leave ~ Level, data = teacher2)
## 
## $Level
##                                 diff        lwr        upr     p adj
## High_School-Elementary    -1.0018293 -2.0491047 0.04544616 0.0684507
## Middle_School-Elementary  -0.1641174 -1.2169762 0.88874136 0.9930652
## Other-Elementary          -1.1649245 -3.2525588 0.92270982 0.5447502
## Pre_K-Elementary           0.8626444 -1.3223839 3.04767272 0.8162949
## Middle_School-High_School  0.8377119 -0.3435431 2.01896681 0.2966399
## Other-High_School         -0.1630952 -2.3183374 1.99214692 0.9995890
## Pre_K-High_School          1.8644737 -0.3852375 4.11418486 0.1567244
## Other-Middle_School       -1.0008071 -3.1587678 1.15715363 0.7098481
## Pre_K-Middle_School        1.0267618 -1.2255539 3.27907754 0.7229428
## Pre_K-Other                2.0275689 -0.8573282 4.91246608 0.3056881
## Leave Given Level
TukeyHSD(aov(Leave~Cont1, data = teacher2))
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = Leave ~ Cont1, data = teacher2)
## 
## $Cont1
##                                                  diff        lwr         upr
## English Language Arts-Elective           -0.097167225 -2.0074582  1.81312373
## General Elementary-Elective               0.516098081 -0.9935987  2.02579483
## Math-Elective                            -0.492799162 -2.3240253  1.33842698
## Other-Elective                           -0.609226594 -2.7705094  1.55205620
## Science-Elective                         -1.565238325 -3.7727385  0.64226190
## Social Studies-Elective                  -0.007260992 -2.0887991  2.07427715
## Special Education-Elective               -0.695806681 -2.4792938  1.08768040
## General Elementary-English Language Arts  0.613265306 -1.0735783  2.30010888
## Math-English Language Arts               -0.395631937 -2.3754416  1.58417769
## Other-English Language Arts              -0.512059369 -2.8005961  1.77647734
## Science-English Language Arts            -1.468071099 -3.8003048  0.86416264
## Social Studies-English Language Arts      0.089906233 -2.1234753  2.30328781
## Special Education-English Language Arts  -0.598639456 -2.5343778  1.33709893
## Math-General Elementary                  -1.008897243 -2.6056499  0.58785536
## Other-General Elementary                 -1.125324675 -3.0918884  0.84123908
## Science-General Elementary               -2.081336406 -4.0985838 -0.06408904
## Social Studies-General Elementary        -0.523359073 -2.4019305  1.35521239
## Special Education-General Elementary     -1.211904762 -2.7536751  0.32986560
## Other-Math                               -0.116427432 -2.3393934  2.10653859
## Science-Math                             -1.072439162 -3.3403659  1.19548761
## Social Studies-Math                       0.485538170 -1.6599771  2.63105341
## Special Education-Math                   -0.203007519 -2.0607644  1.65474940
## Science-Other                            -0.956011730 -3.4979098  1.58588637
## Social Studies-Other                      0.601965602 -1.8313428  3.03527400
## Special Education-Other                  -0.086580087 -2.2703875  2.09722734
## Social Studies-Science                    1.557977332 -0.9164728  4.03242751
## Special Education-Science                 0.869431644 -1.3601263  3.09898963
## Special Education-Social Studies         -0.688545689 -2.7934620  1.41637061
##                                              p adj
## English Language Arts-Elective           0.9999999
## General Elementary-Elective              0.9679252
## Math-Elective                            0.9919990
## Other-Elective                           0.9894276
## Science-Elective                         0.3788962
## Social Studies-Elective                  1.0000000
## Special Education-Elective               0.9352072
## General Elementary-English Language Arts 0.9551982
## Math-English Language Arts               0.9987652
## Other-English Language Arts              0.9974534
## Science-English Language Arts            0.5401774
## Social Studies-English Language Arts     1.0000000
## Special Education-English Language Arts  0.9817848
## Math-General Elementary                  0.5351921
## Other-General Elementary                 0.6594261
## Science-General Elementary               0.0376133
## Social Studies-General Elementary        0.9901435
## Special Education-General Elementary     0.2470243
## Other-Math                               0.9999999
## Science-Math                             0.8382919
## Social Studies-Math                      0.9972638
## Special Education-Math                   0.9999782
## Science-Other                            0.9463977
## Social Studies-Other                     0.9952219
## Special Education-Other                  1.0000000
## Social Studies-Science                   0.5398503
## Special Education-Science                0.9353611
## Special Education-Social Studies         0.9749141