# my_vcf <- "16.33690720-33930720.ALL.chr16_GRCh38.genotypes.20170504.vcf"
# vcf <- vcfR::read.vcfR(my_vcf, convertNA = T)
# #Convert raw VCF file to genotype scores
# vcf_num <- vcfR::extract.gt(vcf,
# element = "GT",
# IDtoRowNames = F,
# as.numeric = T,
# convertNA = T)
#
# #Save the csv and confirm presence
# write.csv(vcf_num, file = "vcf_num.csv", row.names = F)
# list.files()
#
# #Transpose original VCF orientation to dataframe orientation
# vcf_num_t <- t(vcf_num)
#All data prior to here processed by Dr. Brouwer
#Load transposed data
snps_num_t <- read.csv(file="snps_num_t.csv")
dim(snps_num_t)
## [1] 2504 2001
#Make into a dataframe
vcf_num_df <- data.frame(snps_num_t)
dim(vcf_num_df)
## [1] 2504 2001
#Get person (sample) names
#sample <- row.names(snps_num_t)
#Add sample info to dataframe
#vcf_num_df <- data.frame(sample, vcf_num_df)
#Check working directory, save csv, and confirm presence of file
getwd()
## [1] "/Users/neha/Desktop/Computational Biology/my_snps"
write.csv(vcf_num_df, file = "vcf_num_df.csv", row.names = F)
list.files
## function (path = ".", pattern = NULL, all.files = FALSE, full.names = FALSE,
## recursive = FALSE, ignore.case = FALSE, include.dirs = FALSE,
## no.. = FALSE)
## .Internal(list.files(path, pattern, all.files, full.names, recursive,
## ignore.case, include.dirs, no..))
## <bytecode: 0x7fccd2732540>
## <environment: namespace:base>
#Load population metadata
pop_meta <- read.csv(file = "1000genomes_people_info2-1.csv")
#Merge metadata with SNP data
names(pop_meta)
## [1] "pop" "super_pop" "sample" "sex" "lat" "lng"
names(vcf_num_df)[1:10]
## [1] "sample" "X3811" "X5736" "X3141" "X1804" "X973" "X4260" "X1873"
## [9] "X6198" "X1082"
dim(vcf_num_df)
## [1] 2504 2001
vcf_num_df2 <- merge(pop_meta, vcf_num_df, by = "sample", all.x = TRUE)
#Check
nrow(vcf_num_df) == nrow(vcf_num_df2)
## [1] TRUE
names(vcf_num_df2)[1:15]
## [1] "sample" "pop" "super_pop" "sex" "lat" "lng"
## [7] "X3811" "X5736" "X3141" "X1804" "X973" "X4260"
## [13] "X1873" "X6198" "X1082"
#Save the CSV
write.csv(vcf_num_df2, file = "vcf_num_df2.csv", row.names = F)
dim(vcf_num_df2)
## [1] 2504 2006
invar_omit <- function(x){
cat("Dataframe of dim",dim(x), "processed...\n")
sds <- apply(x, 2, sd, na.rm = TRUE)
i_var0 <- which(sds == 0)
cat(length(i_var0),"columns removed\n")
if(length(i_var0) > 0){
x <- x[, -i_var0]
}
## add return() with x in it
return(x)
}
names(vcf_num_df2)[1:10]
## [1] "sample" "pop" "super_pop" "sex" "lat" "lng"
## [7] "X3811" "X5736" "X3141" "X1804"
#Omit invariants
vcf_noinvar <- vcf_num_df2[, -c(1:6)]
vcf_noinvar <- invar_omit(vcf_noinvar)
## Dataframe of dim 2504 2000 processed...
## 526 columns removed
vcf_noinvar <- data.frame(vcf_num_df2[, c("sample","pop","super_pop","sex","lat","lng")],
vcf_noinvar)
my_meta_N_invar_cols <- 526
#Load find_NAs()
find_NAs <- function(x){
NAs_TF <- is.na(x)
i_NA <- which(NAs_TF == TRUE)
N_NA <- length(i-NA)
return(i_NA)
}
#search for NAs
#number of rows (individuals)
N_rows <- nrow(vcf_noinvar)
#vector to hold output (# of NAs)
N_NA <- rep(x=0, times = N_rows)
#total number of columns (SNPs)
N_SNPs <- ncol(vcf_noinvar)
for (i in 1:N_rows){
#for each row find the location of NAs
i_NA <- find_NAs(vcf_noinvar[i,])
#then determine how many NAs
N_NA_i <- length(i_NA)
#then save the output
N_NA[i] <- N_NA_i
}
#Check if any row has >50% NAs
cutoff50 <- N_SNPs*0.5
percent_NA <- N_NA/N_SNPs*100
any(percent_NA > 50)
## [1] FALSE
mean(percent_NA)
## [1] 0
my_meta_N_meanNA_rows <- mean(percent_NA)
#Load imputation function
mean_imputation <- function(df){
n_cols <- ncol(df)
for(i in 1:n_cols){
#get current column
column_i <- df[,i]
#get mean of current column
mean_i <- mean(column_i, na.rm = TRUE)
#get NAs in current column
NAs_i <- which (is.na(column_i))
#report number of NAs
N_NAs <- length(NAs_i)
#replace the NAs in current column
column_i[NAs_i] <- mean_i
#replace original column with updated columns
df[,i] <- column_i
}
return(df)
}
#Run the function on numeric columns
names(vcf_noinvar)[1:10]
## [1] "sample" "pop" "super_pop" "sex" "lat" "lng"
## [7] "X3811" "X5736" "X4260" "X1873"
vcf_noNA <- vcf_noinvar
dim(vcf_noinvar)
## [1] 2504 1480
vcf_noNA[,-c(1:6)] <- mean_imputation(vcf_noinvar[,-c(1:6)])
##Prepare for PCA
#Scale the Data
#new copy of data
vcf_scaled <- vcf_noNA
dim(vcf_noNA)
## [1] 2504 1480
#scale
vcf_scaled_char <- vcf_scaled[,c(1:6)]
dim(vcf_scaled_char)
## [1] 2504 6
vcf_scaled_num <- vcf_scaled[,-c(1:6)]
vcf_scaled_num <- scale(vcf_scaled_num)
vcf_scaled <- data.frame(vcf_scaled_char, vcf_scaled_num)
dim(vcf_scaled)
## [1] 2504 1480
write.csv(vcf_scaled,
file = "vcf_scaled.csv",
row.names=F)
##Run the PCA
vcf_pca <- prcomp(vcf_scaled[,-c(1:6)])
#Examine the defualt screeplot
screeplot(vcf_pca)
#Calculate Explained variation
#Load PCA variation function
PCA_variation <- function(pca_summary, PCs = 2){
var_explained <- pca_summary$importance[2,1:PCs]*100
var_explained <- round(var_explained,3)
return(var_explained)
}
#Extract PCA variation data and calculate percentage variation
#get summary information
vcf_pca_summary <- summary(vcf_pca)
var_out <- PCA_variation(vcf_pca_summary, PCs = 500)
#Calculate the cut off
#number dimensions of PCA dataframe
N_columns <- ncol(vcf_scaled)
#value of the cutoff
cut_off <- 1/N_columns*100
#Calculate the number PCs which exceed the cut off
#which values below the cutoff
i_cut_off <- which(var_out < cut_off)
#what is first value below cuttoff and save
i_cut_off <- min(i_cut_off)
## Warning in min(i_cut_off): no non-missing arguments to min; returning Inf
my_meta_N_meanNA_rowPCs <- i_cut_off
#Extract the amount of variation explained by first 3 PCs
my_meta_var_PC123 <- var_out[c(1,2,3)]
#Plot percentage variation
barplot(var_out,
main = "Percent variation (%) Scree plot",
ylab = "Percent variation (%) explained",
names.arg = 1:length(var_out))
abline(h=cut_off, col=2, lwd=2)
abline(v=i_cut_off)
legend("topright",
col=c(2,1),
lty=c(1,1),
legend = c("Vertical line: cutoff", "Horizontal line: 1st value below cutoff"))
#Plot cumulative percentage variation
cumulative_variation <- cumsum(var_out)
plot (cumulative_variation)
#call vegan::scores()
vcf_pca_scores <- vegan::scores(vcf_pca)
#combine scores with species information into dataframe
vcf_pca_scores2 <- data.frame(super_pop = vcf_noNA$super_pop, vcf_pca_scores)
my_meta_var_PC123[1]
## PC1
## 6.081
my_meta_var_PC123[2]
## PC2
## 1.769
my_meta_var_PC123[3]
## PC3
## 0.823
#Plot results
#PC1 vs PC2
ggpubr::ggscatter(data = vcf_pca_scores2,
y="PC2",
x="PC1",
color="super_pop",
shape="super_pop",
main="PCA Scatterplot",
xlab="PC1 (6.1% of variation)",
ylab="PC2 (1.8% of variation)")
#PC2 vs PC3
ggpubr::ggscatter(data = vcf_pca_scores2,
y="PC3",
x="PC2",
color="super_pop",
shape="super_pop",
main="PCA Scatterplot",
xlab="PC2 (1.8% of variation)",
ylab="PC3 (0.8% of variation)")
#PC1 vs PC3
ggpubr::ggscatter(data = vcf_pca_scores2,
y="PC3",
x="PC1",
color="super_pop",
shape="super_pop",
main="PCA Scatterplot",
xlab="PC1 (6.1% of variation)",
ylab="PC3 (0.8% of variation)")