library(vcfR)
##
## ***** *** vcfR *** *****
## This is vcfR 1.13.0
## browseVignettes('vcfR') # Documentation
## citation('vcfR') # Citation
## ***** ***** ***** *****
library(vegan)
## Loading required package: permute
## Loading required package: lattice
## This is vegan 2.6-4
library(ggplot2)
library(ggpubr)
getwd()
## [1] "/Users/eeshamukherjee/Downloads/Computaional Bio 1/Final Project"
list.files(pattern="vcf")
## [1] "all_loci.vcf" "My_snp.vcf.gz"
snps <- vcfR::read.vcfR("My_snp.vcf.gz", convertNA= T)
## Scanning file to determine attributes.
## File attributes:
## meta lines: 130
## header_line: 131
## variant count: 7109
## column count: 2513
##
Meta line 130 read in.
## All meta lines processed.
## gt matrix initialized.
## Character matrix gt created.
## Character matrix gt rows: 7109
## Character matrix gt cols: 2513
## skip: 0
## nrows: 7109
## row_num: 0
##
Processed variant 1000
Processed variant 2000
Processed variant 3000
Processed variant 4000
Processed variant 5000
Processed variant 6000
Processed variant 7000
Processed variant: 7109
## All variants processed
snps_num <- vcfR::extract.gt(snps,
element="GT",
IDtoRowNames=F,
as.numeric=T,
convertNA= T)
snps_num_t <- t(snps_num)
snps_num_df <- data.frame(snps_num_t)
sample <- row.names(snps_num_df)
snps_num_df <- data.frame(sample, snps_num_df)
pop_meta <- read.csv("1000genomes_people_info2-1.csv")
snps_num_df2 <- merge(pop_meta,
snps_num_df,
by = "sample",)
invar_omit <- function(x){
cat("Dataframe of dim",dim(x), "processed...\n")
sds <- apply(x, 2, sd, na.rm = TRUE)
i_var0 <- which(sds == 0)
cat(length(i_var0),"columns removed\n")
if(length(i_var0) > 0){
x <- x[,-i_var0]
}
return(x)
}
snps_no_invar <- data.frame(snps_num_df2[,c(1:6)],
invar_omit(snps_num_df2[,-c(1:6)]),
row.names = NULL)
## Dataframe of dim 2504 7109 processed...
## 1844 columns removed
find_NAs <- function(x){
NAs_TF <- is.na(x)
i_NA <- which(NAs_TF == TRUE)
N_NA <- length(i_NA)
# cat("Results:",N_NA, "NAs present\n.")
return(i_NA)
}
N_rows <- nrow(snps_no_invar)
N_NA <- rep(x = 0, times = N_rows)
N_SNPs <- ncol(snps_no_invar)
for (i in 1:N_rows) {
i_NA <- find_NAs(snps_no_invar[i,])
N_NA_i <- length(i_NA)
N_NA[i] <- N_NA_i
}
cutoff50 <- N_SNPs*0.5
percent_NA <- N_NA/N_SNPs*100
any(percent_NA > 50)
## [1] FALSE
mean(percent_NA)
## [1] 0
mean_imputation <- function(df) {
n_cols <- ncol(df)
for (i in 1:n_cols) {
column_i <- df[,i]
mean_i <- mean(column_i,
na.rm = T)
NAs_i <- which(is.na(column_i))
N_NAs <- length(NAs_i)
column_i[NAs_i] <- mean_i
df[,i] <- column_i
}
return(df)
}
names(snps_no_invar)[1:10]
## [1] "sample" "pop" "super_pop" "sex" "lat" "lng"
## [7] "X2" "X3" "X7" "X8"
snp_noNA <- snps_no_invar
snp_noNA[, -c(1:6)]<- mean_imputation(snps_no_invar[, -c(1:6)])
snp_scaled <- snp_noNA
snp_scaled[, -c(1:6)]<- scale(snp_noNA[, -c(1:6)])
getwd()
## [1] "/Users/eeshamukherjee/Downloads/Computaional Bio 1/Final Project"
write.csv(snp_scaled,
file = "snp_scaled.csv",
row.names = F)
list.files(pattern = "csv")
## [1] "1000genomes_people_info2-1.csv" "snp_scaled.csv"
## [3] "SNPs_cleaned.csv" "walsh2017morphology.csv"
```