library(vcfR)
## Warning: package 'vcfR' was built under R version 4.2.2
##
## ***** *** vcfR *** *****
## This is vcfR 1.13.0
## browseVignettes('vcfR') # Documentation
## citation('vcfR') # Citation
## ***** ***** ***** *****
library(vegan)
## Warning: package 'vegan' was built under R version 4.2.2
## Loading required package: permute
## Warning: package 'permute' was built under R version 4.2.2
## Loading required package: lattice
## This is vegan 2.6-4
library(ggplot2)
library(ggpubr)
getwd()
## [1] "C:/Users/Grief Mage/Documents"
list.files(pattern = "vcf")
## [1] "22.26006210-26246210.ALL.chr22_GRCh38.genotypes.20170504.vcf"
## [2] "22.26006210-26246210.ALL.chr22_GRCh38.genotypes.20170504.vcf.gz"
## [3] "ALL.chr22_GRCh38.genotypes.20170504 (1).vcf.gz"
## [4] "all_loci.vcf"
## [5] "vcf_num.csv"
## [6] "vcf_num_df.csv"
## [7] "vcf_num_df2.csv"
## [8] "vcf_scaled.csv"
## [9] "vcfR_test.vcf"
## [10] "vcfR_test.vcf.gz"
#Set SNP data up for R
my_vcf <- "22.26006210-26246210.ALL.chr22_GRCh38.genotypes.20170504.vcf.gz"
vcf <- vcfR::read.vcfR(my_vcf, convertNA = T)
## Scanning file to determine attributes.
## File attributes:
## meta lines: 130
## header_line: 131
## variant count: 7212
## column count: 2513
##
Meta line 130 read in.
## All meta lines processed.
## gt matrix initialized.
## Character matrix gt created.
## Character matrix gt rows: 7212
## Character matrix gt cols: 2513
## skip: 0
## nrows: 7212
## row_num: 0
##
Processed variant 1000
Processed variant 2000
Processed variant 3000
Processed variant 4000
Processed variant 5000
Processed variant 6000
Processed variant 7000
Processed variant: 7212
## All variants processed
vcf_num <- extract.gt(vcf,
element = "GT",
IDtoRowNames = F,
as.numeric = T,
convertNA = T)
write.csv(vcf_num, file = "vcf_num.csv", row.names = F)
list.files()
## [1] "07-mean_imputation---Gabriel-Medeiros.html"
## [2] "07-mean_imputation--1-.docx"
## [3] "07-mean_imputation--1-.html"
## [4] "09-PCA_worked_example-SNPs-part1.Rmd"
## [5] "10-PCA_worked_example-SNPs-part2.html"
## [6] "10-PCA_worked_example-SNPs-part2.Rmd"
## [7] "1000-genomes"
## [8] "1000-genomes.gz"
## [9] "1000genomes_people_info2-1.csv"
## [10] "22.26006210-26246210.ALL.chr22_GRCh38.genotypes.20170504.vcf"
## [11] "22.26006210-26246210.ALL.chr22_GRCh38.genotypes.20170504.vcf.gz"
## [12] "ALL.chr22_GRCh38.genotypes.20170504 (1).vcf.gz"
## [13] "all_loci.vcf"
## [14] "bird_snps_remove_NAs.Rmd"
## [15] "cover letter.pdf"
## [16] "desktop.ini"
## [17] "Dolphin Emulator"
## [18] "Final-Project.Rmd"
## [19] "Final Project.Rmd"
## [20] "final_report_template.Rmd"
## [21] "FPSMonitor.txt"
## [22] "GitHub"
## [23] "gpm23_Lab9"
## [24] "gwas_pheno_env.csv"
## [25] "IEF essay 2.txt"
## [26] "League of Legends"
## [27] "My Games"
## [28] "My Music"
## [29] "My Pictures"
## [30] "My Videos"
## [31] "my_snps"
## [32] "NetBeansProjects"
## [33] "pheno.csv"
## [34] "Quiz8_Spring2014_solutions.doc"
## [35] "R files"
## [36] "removing_fixed_alleles.html"
## [37] "removing_fixed_alleles.Rmd"
## [38] "rsconnect"
## [39] "SNPs_cleaned.csv"
## [40] "transpose_VCF_data.html"
## [41] "transpose_VCF_data.Rmd"
## [42] "untitled.Rmd"
## [43] "vcf_num.csv"
## [44] "vcf_num_df.csv"
## [45] "vcf_num_df2.csv"
## [46] "vcf_scaled.csv"
## [47] "vcfR_test.vcf"
## [48] "vcfR_test.vcf.gz"
## [49] "walsh2017morphology.csv"
## [50] "working_directory_practice.html"
## [51] "working_directory_practice.Rmd"
## [52] "Zoom"
vcf_num_t <- t(vcf_num)
vcf_num_df <- data.frame(vcf_num_t)
sample <- row.names(vcf_num_df)
vcf_num_df <- data.frame(sample, vcf_num_df)
getwd()
## [1] "C:/Users/Grief Mage/Documents"
write.csv(vcf_num_df,
file = "vcf_num_df.csv",
row.names = F)
list.files(pattern = "csv")
## [1] "1000genomes_people_info2-1.csv" "gwas_pheno_env.csv"
## [3] "pheno.csv" "SNPs_cleaned.csv"
## [5] "vcf_num.csv" "vcf_num_df.csv"
## [7] "vcf_num_df2.csv" "vcf_scaled.csv"
## [9] "walsh2017morphology.csv"
pop_meta <- read.csv(file = "1000genomes_people_info2-1.csv")
names(pop_meta)
## [1] "pop" "super_pop" "sample" "sex" "lat" "lng"
names(vcf_num_df)[1:10]
## [1] "sample" "X1" "X2" "X3" "X4" "X5" "X6" "X7"
## [9] "X8" "X9"
vcf_num_df2 <- merge(pop_meta,
vcf_num_df,
by = "sample")
nrow(vcf_num_df) == nrow(vcf_num_df2)
## [1] TRUE
names(vcf_num_df2)[1:15]
## [1] "sample" "pop" "super_pop" "sex" "lat" "lng"
## [7] "X1" "X2" "X3" "X4" "X5" "X6"
## [13] "X7" "X8" "X9"
getwd()
## [1] "C:/Users/Grief Mage/Documents"
write.csv(vcf_num_df2, file = "vcf_num_df2.csv", row.names = F)
list.files(pattern = "csv")
## [1] "1000genomes_people_info2-1.csv" "gwas_pheno_env.csv"
## [3] "pheno.csv" "SNPs_cleaned.csv"
## [5] "vcf_num.csv" "vcf_num_df.csv"
## [7] "vcf_num_df2.csv" "vcf_scaled.csv"
## [9] "walsh2017morphology.csv"
invar_omit <- function(x){
cat("Dataframe of dim", dim(x), "processed...\n")
sds <- apply(x, 2, sd, na.rm = TRUE)
i_var0 <- which(sds == 0)
cat(length(i_var0), "columns removed\n")
if(length(i_var0) > 0){
x <- x[, -i_var0]
}
return(x)
}
names(vcf_num_df2)[1:10]
## [1] "sample" "pop" "super_pop" "sex" "lat" "lng"
## [7] "X1" "X2" "X3" "X4"
vcf_noinvar <- vcf_num_df2
vcf_noinvar[, -c(1:6)] <- invar_omit(vcf_noinvar[, -c(1:6)])
## Dataframe of dim 2504 7212 processed...
## 1921 columns removed
my_meta_N_invar_cols <- 1921
find_NAs <- function(x){
NAs_TF <- is.na(x)
i_NA <- which(NAs_TF == TRUE)
N_NA <- length(i_NA)
return(i_NA)
}
#number of rows (indivisuals)
N_rows <- nrow(vcf_noinvar)
# vector to hold output (number of NAs)
N_NA <- rep(x = 0, times = N_rows)
# total number of columns (SNPs)
N_SNPs <- ncol(vcf_noinvar)
cat("This may take a minute...")
## This may take a minute...
for(i in 1:N_rows){
i_NA <- find_NAs(vcf_noinvar[i,])
N_NA_i <- length(i_NA)
N_NA[i] <- N_NA_i
}
cutoff50 <- N_SNPs*0.5
percent_NA <- N_NA/N_SNPs*100
any(percent_NA > 50)
## [1] FALSE
my_meta_N_meanNA_rows <-mean(percent_NA)
mean_imputation <- function(df){
cat("This may take some time...")
n_cols <- ncol(df)
for (i in 1:n_cols) {
# get the current column
column_i <- df[, i]
# get the mean of the current column
mean_i <- mean(column_i, na.rm = TRUE)
# get the NAs in the current column
NAs_i <- which(is.na(column_i))
# report the number of NAs
N_NAs <- length(NAs_i)
# replace the NAs in the current column
column_i[NAs_i] <- mean_i
# replace the original column with the updated columns
df[, i] <- column_i
}
return(df)
}
names(vcf_noinvar)[1:10]
## [1] "sample" "pop" "super_pop" "sex" "lat" "lng"
## [7] "X1" "X2" "X3" "X4"
# new copy of the data
vcf_noNA <- vcf_noinvar
vcf_noNA[, -c(1:6)] <- mean_imputation(vcf_noinvar[, -c(1:6)])
## This may take some time...
# new copy of the data
vcf_scaled <- vcf_noNA
vcf_scaled[, -c(1:6)] <- scale(vcf_noNA[, -c(1:6)])
write.csv(vcf_scaled, file = "vcf_scaled.csv", row.names = F)
#vcf_pca <- prcomp(vcf_scaled[, -c(1:6)])
#screeplot(vcf_pca)
#PCA_variation <- function(pca_summary, PCs = 2){
# var_explained <- pca_summary$importance[2,1:PCs]*100
#var_explained <- round(var_explained, 3)
#return(var_explained)
#}
#vcf_pca_summary <- summary(vcf_pca)
#var_out <- PCA_variation(vcf_pca_summary, PCs = 500)
# number of dimensions in the data
#N_columns <- ncol(vcf_scaled)
# The value of the cutoff
#cut_off <- 1/N_columns*100
#i_cut_off <- which(var_out < cut_off)
#i_cut_off <- min(i_cut_off)
#my_meta_N_meanNA_rowsPCs <- i_cut_off
#my_meta_N_var_PC123 <- var_out[c(1,2,3)]
# Make the biplot
#barplot(var_out,
# main = "Percent variation (%) Scree plot",
# ylab = "Percent variation (%) explained",
# names.arg = 1:length(var_out))
#abline(h = cut_off, col = 2, lwd = 2)
#abline(v = i_cut_off)
#legend("topright",
# col = c(2,1),
# lty = c(1,1),
# legend = c("Vertical line: cutoff",
# "Horizontal line: 1st value below cut off"))
#cumulative_variation <- cumsum(var_out)
#plot(cumulative_variation, type = "l")
# call vegan::scores()
#vcf_pca_scores <- vegan::scores(vcf_pca)
#Combine scores with species information into a dataframe
#vcf_pca_scores2 <- data.frame(super_pop = vcf_noNA$super_pop,
# vcf_pca_scores)
#ggpubr::ggscatter(data = vcf_pca_scores2,
# y = "PC2",
# x = "PC1",
# color = "super_pop",
# shape = "super_pop",
# main = "PCA Scatterplot",
# xlab = "PC1 (1.9% of variation)",
# ylab = "PC2 (1.1% of variation)")
#ggpubr::ggscatter(data = vcf_pca_scores2,
# y = "PC3",
# x = "PC2",
# color = "super_pop",
# shape = "super_pop",
# main = "PCA Scatterplot",
# xlab = "PC2 (1.1% of variation)",
# ylab = "PC3 (1.0% of variation)")
#ggpubr::ggscatter(data = vcf_pca_scores2,
# y = "PC3",
# x = "PC1",
# color = "super_pop",
# shape = "super_pop",
# main = "PCA Scatterplot",
# xlab = "PC1 (1.9% of variation)",
# ylab = "PC3 (1.0% of variation)")
#vcf_pca_scores3 <- vcf_pca_scores2[, c(1:6)]
#vcf_pca_scores_best <- vcf_pca_scores3[, c(1:my_meta_N_meanNA_rowsPCs)]