R Markdown

This is an R Markdown document. Markdown is a simple formatting syntax for authoring HTML, PDF, and MS Word documents. For more details on using R Markdown see http://rmarkdown.rstudio.com.

When you click the Knit button a document will be generated that includes both content as well as the output of any embedded R code chunks within the document. You can embed an R code chunk like this:

#loading R packages needed

library(vcfR)
## Warning: package 'vcfR' was built under R version 4.2.2
## 
##    *****       ***   vcfR   ***       *****
##    This is vcfR 1.13.0 
##      browseVignettes('vcfR') # Documentation
##      citation('vcfR') # Citation
##    *****       *****      *****       *****
library(vegan)
## Loading required package: permute
## Loading required package: lattice
## This is vegan 2.6-2
library(ggplot2)
library(ggpubr)

#Confirming working directory and location of files

getwd()
## [1] "C:/Users/arhat/Desktop/Computatational Biology/Final Project"
list.files()
## [1] "1000genomes_people_info2-1.csv"                           
## [2] "5.360294-600294.ALL.chr5_GRCh38.genotypes.20170504.vcf.gz"
## [3] "Final Project.Rproj"                                      
## [4] "final_report_template.Rmd"                                
## [5] "Pradhan_Arhat_Final_Project.Rmd"                          
## [6] "vcf_num.csv"                                              
## [7] "vcf_num_df.csv"                                           
## [8] "vcf_num_df2.csv"                                          
## [9] "vcf_scaled.csv"

#Loading my SNP data

my_vcf <-"5.360294-600294.ALL.chr5_GRCh38.genotypes.20170504.vcf.gz"

vcf <- vcfR::read.vcfR(my_vcf,
                    convertNA = T)
## Scanning file to determine attributes.
## File attributes:
##   meta lines: 130
##   header_line: 131
##   variant count: 8669
##   column count: 2513
## 
Meta line 130 read in.
## All meta lines processed.
## gt matrix initialized.
## Character matrix gt created.
##   Character matrix gt rows: 8669
##   Character matrix gt cols: 2513
##   skip: 0
##   nrows: 8669
##   row_num: 0
## 
Processed variant 1000
Processed variant 2000
Processed variant 3000
Processed variant 4000
Processed variant 5000
Processed variant 6000
Processed variant 7000
Processed variant 8000
Processed variant: 8669
## All variants processed

#Converting raw VCF to genotype scores

vcf_num <- vcfR::extract.gt(vcf,
                            element = "GT",
                            IDtoRowNames = F,
                            as.numeric = T,
                            convertNA = T)

#Saving as a CSV

write.csv(vcf_num, file = "vcf_num.csv", row.names = F)

#checking if file was made

list.files(pattern = "csv")
## [1] "1000genomes_people_info2-1.csv" "vcf_num.csv"                   
## [3] "vcf_num_df.csv"                 "vcf_num_df2.csv"               
## [5] "vcf_scaled.csv"

#Transpose VCF for R

vcf_num_t <- t(vcf_num)

#make into data frame
vcf_num_df <- data.frame(vcf_num_t)

#Get sample names

sample <- row.names(vcf_num_df)

#add sample into df
vcf_num_df <- data.frame(sample, vcf_num_df)

#check wd and then save as csv

getwd()
## [1] "C:/Users/arhat/Desktop/Computatational Biology/Final Project"
write.csv(vcf_num_df,
          file = "vcf_num_df.csv",
          row.names = F)

#check for df csv file

list.files()
## [1] "1000genomes_people_info2-1.csv"                           
## [2] "5.360294-600294.ALL.chr5_GRCh38.genotypes.20170504.vcf.gz"
## [3] "Final Project.Rproj"                                      
## [4] "final_report_template.Rmd"                                
## [5] "Pradhan_Arhat_Final_Project.Rmd"                          
## [6] "vcf_num.csv"                                              
## [7] "vcf_num_df.csv"                                           
## [8] "vcf_num_df2.csv"                                          
## [9] "vcf_scaled.csv"

#merge data with population meta data

pop_meta <- read.csv(file = "1000genomes_people_info2-1.csv")
names(pop_meta)
## [1] "pop"       "super_pop" "sample"    "sex"       "lat"       "lng"
names(vcf_num_df)[1:10]
##  [1] "sample" "X1"     "X2"     "X3"     "X4"     "X5"     "X6"     "X7"    
##  [9] "X8"     "X9"

#Merging the 2 sets of data

vcf_num_df2 <- merge(pop_meta,
                     vcf_num_df,
                     by = "sample")

#check the number of rows and col

nrow(vcf_num_df) == nrow(vcf_num_df2)
## [1] TRUE

#Checking the names of the new df

names(vcf_num_df2)[1:15]
##  [1] "sample"    "pop"       "super_pop" "sex"       "lat"       "lng"      
##  [7] "X1"        "X2"        "X3"        "X4"        "X5"        "X6"       
## [13] "X7"        "X8"        "X9"

#Checking wd

getwd()
## [1] "C:/Users/arhat/Desktop/Computatational Biology/Final Project"

#save the CSV

write.csv(vcf_num_df2, file = "vcf_num_df2.csv", row.names = F)

#Omiting invariants

invar_omit <- function(x){
  cat("Dataframe of dim",dim(x), "processed...\n")
  sds <- apply(x, 2, sd, na.rm = TRUE)
  i_var0 <- which(sds == 0)
 
  
  cat(length(i_var0),"columns removed\n")
  
  if(length(i_var0) > 0){
     x <- x[, -i_var0]
  }
  
  ## add return()  with x in it
  return(x)                      
}

#Check which cols have char data

names(vcf_num_df2)[1:10]
##  [1] "sample"    "pop"       "super_pop" "sex"       "lat"       "lng"      
##  [7] "X1"        "X2"        "X3"        "X4"

#creating the invar df

vcf_noinvar <- vcf_num_df2

vcf_noinvar[, -c(1:6)] <- invar_omit(vcf_noinvar[, -c(1:6)])
## Dataframe of dim 2504 8669 processed...
## 2252 columns removed
#store all invar col removed 
my_meta_N_invar_cols <- 2252

#Remove low-quality data

#Creating function to find NA's
find_NAs <- function(x){
  NAs_TF <- is.na(x)
  i_NA <- which(NAs_TF == TRUE)
  N_NA <- length(i_NA)
  
  return(i_NA)
}
N_rows <- nrow(vcf_noinvar)

N_NA <- rep(x =0, times = N_rows)

N_SNPs <- ncol(vcf_noinvar)
for(i in 1:N_rows){
  #finds the NAs in each row
  i_NA <- find_NAs(vcf_noinvar[i,])
  #determine how many NAs
  N_NA_i <- length(i_NA)
  #save the output
  N_NA[i] <- N_NA_i
}

#Checking if any row has >50% of NA’s

cutoff50 <- N_SNPs * 0.5
percent_NA <- N_NA/N_SNPs*100
any(percent_NA > 50)
## [1] FALSE
my_meta_N_meanNA_rows<- mean(percent_NA)

#Imputation of NA’s

mean_imputation <- function(df){
  
  n_cols <- ncol(df)
  
  for(i in 1:n_cols){
    #get the current col
    column_i <- df[,i]
    
    #get the mean of the current col 
    mean_i <- mean(column_i, na.rm = TRUE)
    
    #get the Nas in the current col
    NAs_i <- which(is.na(column_i))
    
    #report num of Nas
    N_NAs <- length(NAs_i)
    
    #replace the Nas in the current col 
    column_i[NAs_i] <-mean_i
    
    #replce the original column with the means
    df[,i] <- column_i
    
  }
  return(df)
}
names(vcf_noinvar)[1:10]
##  [1] "sample"    "pop"       "super_pop" "sex"       "lat"       "lng"      
##  [7] "X1"        "X2"        "X3"        "X4"

#Runing the Imputation function

vcf_noNA <- vcf_noinvar

vcf_noNA[,-c(1:6)] <- mean_imputation(vcf_noinvar[,-c(1:6)])

#Prepping for PCA

#new copy of data 
vcf_scaled <- vcf_noNA

#scale 
vcf_scaled[,-c(1:6)] <- scale(vcf_noNA[,-c(1:6)])

write.csv(vcf_scaled, file = "vcf_scaled.csv", row.names = F) 

#Run PCA

# vcf_pca <- prcomp(vcf_scaled[,-c(1:6)])

#Examine the results

# screeplot(vcf_pca)

#Calculate explained variation

#pca varation function 
# PCA_variation <- function(pca_summary, PCs = 2){
#   var_explained <- pca_summary$importance[2,1:PCs] * 100
#   var_explained <- round(var_explained, 3)
#   
#   return(var_explained)
# }

#Get PCA summary info

# vcf_pca_summary <- summary(vcf_pca)

#Extract raw variation data

# var_out <- PCA_variation(vcf_pca_summary, PCs = 500)

#calculate the cut off for the rule of thumb

# N_columns <- ncol(vcf_scaled)
# 
# cut_off <- 1/N_columns * 100
# 
# i_cut_off <- which(var_out < cut_off)
# 
# i_cut_off <- min(i_cut_off)
# 
# my_meta_N_meanNA_rowsPCs <- i_cut_off
# my_meta_var_PC123 <- var_out[c(1,2,3)]

#Plot percentage variation

# barplot(var_out,
#         main = "Percent variation (%) Scree Plot",
#         ylab = "Percent variation (%) explained",
#         names.arg = 1:length(var_out))
# 
# abline(h = cut_off, col =2, lwd = 2)
# abline(v = i_cut_off)
# legend("topright",
#        col = c(2,1),
#        lty = c(1,1),
#        legend = c("Vertical line: cutoff",
#                   "Horizontal line: 1st value below cut off"))

#Plot cumulative percentage variation

# cumulative_variation <- cumsum(var_out)
# plot(cumulative_variation, type = "l")

#Plot PCA results

# vcf_pca_scores <- vegan::scores(vcf_pca)
# 
# vcf_pca_scores2 <- data.frame(super_pop = vcf_noNA$super_pop,
#                               vcf_pca_scores)
# my_meta_var_PC123[1]
# my_meta_var_PC123[2]
# my_meta_var_PC123[3]
# ```
#Plot the PC results 
#Plot PC1 vs PC2 
# ggpubr::ggscatter(data = vcf_pca_scores2,
#                   y = "PC2",
#                   x = "PC1",
#                   color = "super_pop",
#                   shape = "super_pop",
#                   main = "PCA Scatterplot",
#                   xlab = "PC1 (3.1% of variation)",
#                   ylab = "PC2 (1.8% of variation)")

#Plot PC2 vs PC3

# ggpubr::ggscatter(data = vcf_pca_scores2,
#                   y = "PC3",
#                   x = "PC2",
#                   color = "super_pop",
#                   shape = "super_pop",
#                   main = "PCA Scatterplot",
#                   xlab = "PC2 (1.8% of variation)",
#                   ylab = "PC3 (1.5% of variation)")

#Plotting PC1 vs PC3

##ggpubr::ggscatter(data = vcf_pca_scores2,
                  # y = "PC1",
                  # x = "PC3",
                  # color = "super_pop",
                  # shape = "super_pop",
                  # main = "PCA Scatterplot",
                  # xlab = "PC1 (3.1% of variation)",
                  # ylab = "PC3 (1.5% of variation)")
##

#K-means cluster analysis

#my_meta_N_meanNA_rowsPCs