load necessary R packages

#library(vcfR)
#library(vegan)
#library(ggplot2)
#library(ggpubr)

Confirm your working directory and location of files

getwd()
## [1] "/Users/victorsyi/Desktop/Project"
list.files(pattern = "vcf")
## [1] "3.29164237-29404237.ALL.chr3_GRCh38.genotypes.20170504.vcf.gz"
## [2] "vcf_num_df.csv"                                               
## [3] "vcf_num_df2.csv"                                              
## [4] "vcf_num.csv"                                                  
## [5] "vcf_scaled.csv"

Load the vcf file

my_vcf <- "3.29164237-29404237.ALL.chr3_GRCh38.genotypes.20170504.vcf.gz"

vcf <- vcfR::read.vcfR(my_vcf,
                       convertNA = T)
## Scanning file to determine attributes.
## File attributes:
##   meta lines: 130
##   header_line: 131
##   variant count: 7509
##   column count: 2513
## 
Meta line 130 read in.
## All meta lines processed.
## gt matrix initialized.
## Character matrix gt created.
##   Character matrix gt rows: 7509
##   Character matrix gt cols: 2513
##   skip: 0
##   nrows: 7509
##   row_num: 0
## 
Processed variant 1000
Processed variant 2000
Processed variant 3000
Processed variant 4000
Processed variant 5000
Processed variant 6000
Processed variant 7000
Processed variant: 7509
## All variants processed

Convert raw VCF file to genotype scores

vcf_num <- vcfR::extract.gt(vcf,
           element = "GT",
           IDtoRowNames = F,
           as.numeric = T,
           convertNA = T)

write.csv(vcf_num, file = "vcf_num.csv", row.names = F)

list.files()
##  [1] "1000genomes_people_info2-1.csv"                               
##  [2] "3.29164237-29404237.ALL.chr3_GRCh38.genotypes.20170504.vcf.gz"
##  [3] "begin.html"                                                   
##  [4] "begin.Rmd"                                                    
##  [5] "curious.Rmd"                                                  
##  [6] "final_report_template.docx"                                   
##  [7] "final_report_template.html"                                   
##  [8] "final_report_template.Rmd"                                    
##  [9] "gwas_pheno_env.csv"                                           
## [10] "pheno.csv"                                                    
## [11] "Project.Rproj"                                                
## [12] "rsconnect"                                                    
## [13] "vcf_num_df.csv"                                               
## [14] "vcf_num_df2.csv"                                              
## [15] "vcf_num.csv"                                                  
## [16] "vcf_scaled.csv"

Transpose original VCF orientation to R dataframe orientation

vcf_num_t <- t(vcf_num)

Make into a dataframe

vcf_num_df <- data.frame(vcf_num_t)

Get person (sample) names

sample <- row.names(vcf_num_df)

Add sample info to dataframe

vcf_num_df <- data.frame(sample,
                         vcf_num_df)

Check working directory

getwd()
## [1] "/Users/victorsyi/Desktop/Project"

Save the csv

write.csv(vcf_num_df,
          file = "vcf_num_df.csv",
          row.names = F)

Confirm presence of file

list.files()
##  [1] "1000genomes_people_info2-1.csv"                               
##  [2] "3.29164237-29404237.ALL.chr3_GRCh38.genotypes.20170504.vcf.gz"
##  [3] "begin.html"                                                   
##  [4] "begin.Rmd"                                                    
##  [5] "curious.Rmd"                                                  
##  [6] "final_report_template.docx"                                   
##  [7] "final_report_template.html"                                   
##  [8] "final_report_template.Rmd"                                    
##  [9] "gwas_pheno_env.csv"                                           
## [10] "pheno.csv"                                                    
## [11] "Project.Rproj"                                                
## [12] "rsconnect"                                                    
## [13] "vcf_num_df.csv"                                               
## [14] "vcf_num_df2.csv"                                              
## [15] "vcf_num.csv"                                                  
## [16] "vcf_scaled.csv"

Clean data Load population meta data

pop_meta <- read.csv(file = "1000genomes_people_info2-1.csv")

Merge meta data with SNP data

names(pop_meta)
## [1] "pop"       "super_pop" "sample"    "sex"       "lat"       "lng"
names(vcf_num_df)[1:10]
##  [1] "sample" "X1"     "X2"     "X3"     "X4"     "X5"     "X6"     "X7"    
##  [9] "X8"     "X9"

Merge the two sets of data

vcf_num_df2 <- merge(pop_meta,
                     vcf_num_df,
                     by = "sample")

Check the dimensions before and after merge

nrow(vcf_num_df) == nrow(vcf_num_df2)
## [1] TRUE

Check the names of the new dataframe

names(vcf_num_df2)[1:15]
##  [1] "sample"    "pop"       "super_pop" "sex"       "lat"       "lng"      
##  [7] "X1"        "X2"        "X3"        "X4"        "X5"        "X6"       
## [13] "X7"        "X8"        "X9"

Check working directory

getwd()
## [1] "/Users/victorsyi/Desktop/Project"

save the csv

write.csv(vcf_num_df2, file = "vcf_num_df2.csv", row.names = F)

Confirm the presense of the files

list.files()
##  [1] "1000genomes_people_info2-1.csv"                               
##  [2] "3.29164237-29404237.ALL.chr3_GRCh38.genotypes.20170504.vcf.gz"
##  [3] "begin.html"                                                   
##  [4] "begin.Rmd"                                                    
##  [5] "curious.Rmd"                                                  
##  [6] "final_report_template.docx"                                   
##  [7] "final_report_template.html"                                   
##  [8] "final_report_template.Rmd"                                    
##  [9] "gwas_pheno_env.csv"                                           
## [10] "pheno.csv"                                                    
## [11] "Project.Rproj"                                                
## [12] "rsconnect"                                                    
## [13] "vcf_num_df.csv"                                               
## [14] "vcf_num_df2.csv"                                              
## [15] "vcf_num.csv"                                                  
## [16] "vcf_scaled.csv"

Omit invariant features

invar_omit <- function(x){
  cat("Dataframe of dim", dim(x),"processed...\n")
  sds <- apply(x, 2, sd, na.rm = TRUE)
  i_var0 <- which(sds == 0)
  
  cat(length(i_var0), "columns removed\n")
  
  if(length(i_var0) > 0){
    x <- x[, -i_var0]
  }
  return(x)
}

Omit invariants Check which colums have character data

names(vcf_num_df2)[1:10]
##  [1] "sample"    "pop"       "super_pop" "sex"       "lat"       "lng"      
##  [7] "X1"        "X2"        "X3"        "X4"

New dataframe to store output

vcf_noinvar <- vcf_num_df2
vcf_noinvar[, -c(1:6)] <- invar_omit(vcf_noinvar[, -c(1:6)])
## Dataframe of dim 2504 7509 processed...
## 1920 columns removed

create an object to store the number of invariant columns removed

my_meta_N_invar_cols <- 1920

Remove low quality data Load find_NAs()

find_NAs <- function(x){
  NAs_TF <- is.na(x)
  i_NA <- which(NAs_TF == TRUE)
  N_NA <- length(i_NA)
  
  return(i_NA)
}
N_rows <- nrow(vcf_noinvar)
N_NA <- rep(x = 0, times = N_rows)
N_SNPs <- ncol(vcf_noinvar)

cat("This may take a minute...")
## This may take a minute...
for(i in 1:N_rows){
  i_NA <- find_NAs(vcf_noinvar[i,])
  N_NA_i <- length(i_NA)
  N_NA[i] <- N_NA_i
}

Check if any row has >50% NAs

cutoff50 <- N_SNPs*0.5
percent_NA <- N_NA/N_SNPs*100
any(percent_NA > 50)
## [1] FALSE

What is the average number of NAs per row?

mean(percent_NA)
## [1] 0

Save the mean percent of NAs per row

my_meta_N_meanNA_rows <- mean(percent_NA)

Imputation of NAs Mean imputation

mean_imputation <- function(df){
  cat("This make take some time...")
  n_cols <- ncol(df)
  
  for(i in 1:n_cols){
    column_i <- df[,i]
    mean_i <- mean(column_i, na.rm = TRUE)
    NAs_i <- which(is.na(column_i))
    N_NAs <- length(NAs_i)
    column_i[NAs_i] <- mean_i
    df[, i] <- column_i
  }
  return(df)
}
names(vcf_noinvar)[1:10]
##  [1] "sample"    "pop"       "super_pop" "sex"       "lat"       "lng"      
##  [7] "X1"        "X2"        "X3"        "X4"
vcf_noNA <- vcf_noinvar
vcf_noNA[,-c(1:6)] <- mean_imputation(vcf_noinvar[,-c(1:6)])
## This make take some time...

Prepare for PCA Scale my data

#new copy of data
vcf_scaled <- vcf_noNA

#scale
vcf_scaled[,-c(1:6)] <- scale(vcf_noNA[,-c(1:6)])

Run the PCA

vcf_pca <- prcomp(vcf_scaled[,-c(1:6)])
write.csv(vcf_scaled, file = "vcf_scaled.csv")

PCA diagnostics Examine the default screeplot

screeplot(vcf_pca)

Calculate explained variation

#Load PCA variation function
PCA_variation <- function(pca_summary, PCs = 2){
  var_explained <- pca_summary$importance[2,1:PCs]*100
  var_explained <- round(var_explained,3)
  return(var_explained)
}

Extract PCA variation data and calculate percentage variation

#Get summary information
vcf_pca_summary <- summary(vcf_pca)
#Extract raw variation data
var_out <- PCA_variation(vcf_pca_summary,
                         PCs = 1500)

Calculate the cut off for the rule of thumb

#number of dimensions in the data
N_columns <- ncol(vcf_scaled)
#The value of the cutoff
cut_off <- 1/N_columns*100

Calculate the number PCs which exceed the cut off

#which values below the cutoff
i_cut_off <- which(var_out < cut_off)
#what is first value below cutoff
i_cut_off <- min(i_cut_off)

Save the first value below the cutoff

my_meta_N_meanNA_rowsPCs <- i_cut_off

Extract the amount of variation explained by the first 3 PCs

my_meta_var_PC123 <- var_out[c(1,2,3)]

Plot percent variation

#make barplot
barplot(var_out,
        main = "Percent variation (%) Scree plot",
        ylab = "Percent variation (%) explained",
        names.arg = 1:length(var_out))
abline(h = cut_off, col = 2, lwd = 2)
abline(v = i_cut_off)
legend("topright",
       col = c(2,1),
       lty = c(1,1),
       legend = c("Vertical line: cutoff",
                  "Horizontal line: 1st value below cur off"))

Plot cumulative percentage variation

cumulative_variation <- cumsum(var_out)
plot(cumulative_variation, type = "l")

Plot PCA results calculate scores

#Get the scores
#call veggan::scores()
vcf_pca_scores <- vegan::scores(vcf_pca)

Combine the scores with the species information into the dataframe

#call data.frames()
vcf_pca_scores2 <- data.frame(super_pop = vcf_noNA$super_pop,
                              vcf_pca_scores)
my_meta_var_PC123
##   PC1   PC2   PC3 
## 1.861 1.442 1.251

Plot the results

ggpubr::ggscatter(data = vcf_pca_scores2,
                  y = "PC2",
                  x = "PC1",
                  color = "super_pop",
                  shape = "super_pop",
                  main = "PCA Scatterplot",
                  xlab = "PC1 (1.861% of variation)",
                  ylab = "PC2 (1.442% of variation)")

ggpubr::ggscatter(data = vcf_pca_scores2,
                  y = "PC3",
                  x = "PC2",
                  color = "super_pop",
                  shape = "super_pop",
                  main = "PCA Scatterplot",
                  xlab = "PC2 (1.442% of variation)",
                  ylab = "PC3 (1.251% of variation)")

ggpubr::ggscatter(data = vcf_pca_scores2,
                  y = "PC3",
                  x = "PC1",
                  color = "super_pop",
                  shape = "super_pop",
                  main = "PCA Scatterplot",
                  xlab = "PC1 (1.861% of variation)",
                  ylab = "PC3 (1.251% of variation)")