library(vegan)
## Loading required package: permute
## Loading required package: lattice
## This is vegan 2.6-2
library(ggplot2)
library(ggpubr)
getwd()
## [1] "C:/Users/afhar/Desktop/cb_project"
list.files(pattern="vcf")
## [1] "3.39417505-39657505.ALL.chr3_GRCh38.genotypes.20170504.vcf.gz"
## [2] "numvcf.csv"
## [3] "vcf_df.csv"
## [4] "vcf_num.csv"
## [5] "vcf_num_df.csv"
## [6] "vcf_num_df2.csv"
my_vcf<-"3.39417505-39657505.ALL.chr3_GRCh38.genotypes.20170504.vcf.gz"
vcf<-vcfR::read.vcfR(my_vcf, convertNA=T)
## Scanning file to determine attributes.
## File attributes:
## meta lines: 130
## header_line: 131
## variant count: 6889
## column count: 2513
##
Meta line 130 read in.
## All meta lines processed.
## gt matrix initialized.
## Character matrix gt created.
## Character matrix gt rows: 6889
## Character matrix gt cols: 2513
## skip: 0
## nrows: 6889
## row_num: 0
##
Processed variant 1000
Processed variant 2000
Processed variant 3000
Processed variant 4000
Processed variant 5000
Processed variant 6000
Processed variant: 6889
## All variants processed
vcf_num<-vcfR::extract.gt(vcf, element="GT",
IDtoRowNames= F,
as.numeric=T,
convertNA=T)
write.csv(vcf_num, file="vcf_num.csv", row.names= F)
list.files()
## [1] "1000genomes_people_info2-1.csv"
## [2] "3.39417505-39657505.ALL.chr3_GRCh38.genotypes.20170504.vcf.gz"
## [3] "cb_project.Rproj"
## [4] "cleaned_data.csv"
## [5] "final_report_template.Rmd"
## [6] "FinalProject.Rmd"
## [7] "Harvill-final_report.docx"
## [8] "Harvill-final_report.html"
## [9] "Harvill final_report.Rmd"
## [10] "Harvill_Project_Workflow.html"
## [11] "Harvill_Project_Workflow.Rmd"
## [12] "loaded-snp-data.html"
## [13] "loaded data screenshot.png"
## [14] "loaded snp data.R"
## [15] "loaded snp data.Rmd"
## [16] "my_snps"
## [17] "numvcf.csv"
## [18] "rsconnect"
## [19] "vcf_df.csv"
## [20] "vcf_num.csv"
## [21] "vcf_num_df.csv"
## [22] "vcf_num_df2.csv"
vcf_num_t<-t(vcf_num)
vcf_num_df<-data.frame(vcf_num_t)
sample<-row.names(vcf_num_df)
vcf_num_df<-data.frame(sample, vcf_num_df)
getwd()
## [1] "C:/Users/afhar/Desktop/cb_project"
write.csv(vcf_num_df, file="vcf_num_df.csv",
row.names=F)
list.files(pattern="csv")
## [1] "1000genomes_people_info2-1.csv" "cleaned_data.csv"
## [3] "numvcf.csv" "vcf_df.csv"
## [5] "vcf_num.csv" "vcf_num_df.csv"
## [7] "vcf_num_df2.csv"
pop_meta<-read.csv(file="1000genomes_people_info2-1.csv")
Make sure column “sample” appears in meta data and SNP data
names(pop_meta)
## [1] "pop" "super_pop" "sample" "sex" "lat" "lng"
names(vcf_num_df)[1:10]
## [1] "sample" "X1" "X2" "X3" "X4" "X5" "X6" "X7"
## [9] "X8" "X9"
vcf_num_df2<-merge(pop_meta, vcf_num_df, by="sample")
nrow(vcf_num_df) == nrow(vcf_num_df2)
## [1] TRUE
names(vcf_num_df2)[1:15]
## [1] "sample" "pop" "super_pop" "sex" "lat" "lng"
## [7] "X1" "X2" "X3" "X4" "X5" "X6"
## [13] "X7" "X8" "X9"
getwd()
## [1] "C:/Users/afhar/Desktop/cb_project"
write.csv(vcf_num_df2, file="vcf_num_df2.csv", row.names=F)
Confirm file
list.files(pattern="csv")
## [1] "1000genomes_people_info2-1.csv" "cleaned_data.csv"
## [3] "numvcf.csv" "vcf_df.csv"
## [5] "vcf_num.csv" "vcf_num_df.csv"
## [7] "vcf_num_df2.csv"
invar_omit <- function(x){
cat("Dataframe of dim",dim(x), "processed...\n")
sds <- apply(x, 2, sd, na.rm = TRUE)
i_var0 <- which(sds == 0)
cat(length(i_var0),"columns removed\n")
if(length(i_var0) > 0){
x <- x[, -i_var0]
}
return(x)
}
Check which columns have character data
names(vcf_num_df2)[1:10]
## [1] "sample" "pop" "super_pop" "sex" "lat" "lng"
## [7] "X1" "X2" "X3" "X4"
Skip character columns with negative indexing
vcf_noinvar <- vcf_num_df2
#dim(vcf_noinvar)
vcf_noinvar[,-c(1:6)] <- invar_omit(vcf_noinvar[, -c(1:6)])
## Dataframe of dim 2504 6889 processed...
## 1564 columns removed
#dim(vcf_noinvar)
Create an object of number of columns removed
my_meta_N_invar_cols<-1564
find_NAs<-function(x){
NAs_TF<-is.na(x)
i_NA<-which(NAs_TF == TRUE)
N_NA<-length(i_NA)
return(i_NA)
}
N_rows <- nrow(vcf_noinvar)
# N_NA
# vector to hold output (number of NAs)
N_NA <- rep(x = 0, times = N_rows)
# N_SNPs
# total number of columns (SNPs)
N_SNPs <- ncol(vcf_noinvar)
# the for() loop
for(i in 1:N_rows){
# for each row, find the location of
## NAs with vcf_noinvar()
i_NA <- find_NAs(vcf_noinvar[i,])
# then determine how many NAs
## with length()
N_NA_i <- length(i_NA)
# then save the output to
## our storage vector
N_NA[i] <- N_NA_i
}
cutoff50 <- N_SNPs*0.5
percent_NA <- N_NA/N_SNPs*100
any(percent_NA > 50)
## [1] FALSE
Find average number of NAs per row
my_meta_N_meanNA_rows <- mean(percent_NA)
Mean imputation on any NAs present
mean_imputation<-function(df){
cat("This may take some time...")
n_cols<-ncol(df)
for(i in 1:n_cols){
column_i<-df[,i]
mean_i<-mean(column_i, na.rm=TRUE)
NAs_i<-which(is.na(column_i))
N_NAs<-length(NAs_i)
column_i[NAs_i]<-mean_i
df[, i]<-column_i
}
return(df)
}
Run function on numeric values
names(vcf_noinvar)[1:10]
## [1] "sample" "pop" "super_pop" "sex" "lat" "lng"
## [7] "X1" "X2" "X3" "X4"
vcf_noNA<-vcf_noinvar
vcf_noNA[,-c(1:6)]<-mean_imputation(vcf_noinvar[,-c(1:6)])
## This may take some time...
Only run on SNP columns (use negative indexing to skip character data)
vcf_scaled<-vcf_noNA
vcf_scaled[,-c(1:6)]<-scale(vcf_noNA[,-c(1:6)])
write.csv(vcf_scaled, file = "cleaned_data.csv", row.names = F)