library(vcfR)
## Warning: package 'vcfR' was built under R version 4.1.2
##
## ***** *** vcfR *** *****
## This is vcfR 1.13.0
## browseVignettes('vcfR') # Documentation
## citation('vcfR') # Citation
## ***** ***** ***** *****
library(vegan)
## Warning: package 'vegan' was built under R version 4.1.2
## Loading required package: permute
## Warning: package 'permute' was built under R version 4.1.2
## Loading required package: lattice
## This is vegan 2.6-4
my_vcf1 <- "5.24000-264000.ALL.chr5_GRCh38.genotypes.20170504.vcf.gz"
Chrom20 <- vcfR::read.vcfR(my_vcf1, convertNA = T)
## Scanning file to determine attributes.
## File attributes:
## meta lines: 130
## header_line: 131
## variant count: 8412
## column count: 2513
##
Meta line 130 read in.
## All meta lines processed.
## gt matrix initialized.
## Character matrix gt created.
## Character matrix gt rows: 8412
## Character matrix gt cols: 2513
## skip: 0
## nrows: 8412
## row_num: 0
##
Processed variant 1000
Processed variant 2000
Processed variant 3000
Processed variant 4000
Processed variant 5000
Processed variant 6000
Processed variant 7000
Processed variant 8000
Processed variant: 8412
## All variants processed
snp_gt <- vcfR::extract.gt(Chrom20, # TODO
element = "GT",
IDtoRowNames = F,
as.numeric = T,
convertNA = T)
#Transpose VCF orientation into R dataframe orientation
snp_gt_t <- t(snp_gt)
#Create dataframe
snp_gt_df <- data.frame(snp_gt_t)
#Get person (sample) name
sample <- row.names(snp_gt_df)
#Add sample infor into dataframe
snp_sample_df <- data.frame(sample, snp_gt_df)
pop_meta <- read.csv("1000genomes_people_info2.csv")
names(pop_meta)
## [1] "pop" "super_pop" "sample" "sex" "lat" "lng"
names(snp_sample_df)[1:10]
## [1] "sample" "X1" "X2" "X3" "X4" "X5" "X6" "X7"
## [9] "X8" "X9"
vcf_df2 <- merge(pop_meta, snp_sample_df, by = "sample")
nrow(vcf_df2) == nrow(snp_sample_df)
## [1] TRUE
invar_omit <- function(x){
cat("Dataframe of dim",dim(x), "processed...\n")
sds <- apply(x, 2, sd, na.rm = TRUE)
i_var0 <- which(sds == 0)
cat(length(i_var0),"columns removed\n")
if(length(i_var0) > 0){
x <- x[, -i_var0]
}
## add return() with x in it
return(x)
}
#Check names of df
names(vcf_df2)[1:10]
## [1] "sample" "pop" "super_pop" "sex" "lat" "lng"
## [7] "X1" "X2" "X3" "X4"
vcf_noinvar <- vcf_df2
vcf_noinvar[, -c(1:6)] <- invar_omit(vcf_noinvar[, -c(1:6)])
## Dataframe of dim 2504 8412 processed...
## 2037 columns removed
my_meta_N_invar_cols <- 2037
find_NAs <- function(x){
NAs_TF <- is.na(x)
i_NA <- which(NAs_TF == TRUE)
N_NA <- length(i_NA)
return(i_NA)
}
N_rows <- nrow(vcf_noinvar)
N_NA <- rep(x = 0, times = N_rows)
N_SNPs <- ncol(vcf_noinvar)
for(i in 1:N_rows){
i_NA <- find_NAs(vcf_noinvar[i,])
N_NA_i <- length(i_NA)
N_NA[i] <- N_NA_i
}
Check if any row has greater than 50% NAs
cutoff50 <- N_SNPs*0.5
percent_NA <- N_NA/N_SNPs*100
any(percent_NA > 50)
## [1] FALSE
mean_imputation <- function(df){
n_cols <- ncol(df)
for(i in 1:n_cols){
#get the current column
column_i <- df[, i]
#get the mean of the current column
mean_i <- mean(column_i, na.rm = TRUE)
#get the NAs in the current column
NAs_i <- which(is.na(column_i))
#report the number of NAs
N_NAs <- length(NAs_i)
#replace the NAs in the current column
column_i[NAs_i] <- mean_i
#replace the original column with the updated columns
df[, i] <- column_i
}
return(df)
}
vcf_noNA <- vcf_noinvar
vcf_noNA[, -c(1:6)] <- mean_imputation(vcf_noinvar[, -c(1:6)])
#New Copy
vcf_scaled <- vcf_noNA
#Scale the data
vcf_scaled[,-c(1:6)] <- scale(vcf_noNA[, -c(1:6)])
write.csv(vcf_scaled, file = "vcf_scaled.csv", row.names = F)