library(readxl)
data = read_excel(path = "C:/Users/63966/Downloads/data (1).xlsx",
col_names = TRUE)
head(data)
## # A tibble: 6 × 4
## Row Column Varieties Yield
## <dbl> <dbl> <chr> <dbl>
## 1 1 1 B 1.64
## 2 1 2 D 1.21
## 3 1 3 C 1.42
## 4 1 4 A 1.34
## 5 2 1 C 1.48
## 6 2 2 A 1.18
str(data)
## tibble [16 × 4] (S3: tbl_df/tbl/data.frame)
## $ Row : num [1:16] 1 1 1 1 2 2 2 2 3 3 ...
## $ Column : num [1:16] 1 2 3 4 1 2 3 4 1 2 ...
## $ Varieties: chr [1:16] "B" "D" "C" "A" ...
## $ Yield : num [1:16] 1.64 1.21 1.42 1.34 1.48 ...
Changing variables structure into factors
data$Row <- as.factor(data$Row)
data$Column <- as.factor(data$Column)
data$Varieties <- as.factor(data$Varieties)
str(data)
## tibble [16 × 4] (S3: tbl_df/tbl/data.frame)
## $ Row : Factor w/ 4 levels "1","2","3","4": 1 1 1 1 2 2 2 2 3 3 ...
## $ Column : Factor w/ 4 levels "1","2","3","4": 1 2 3 4 1 2 3 4 1 2 ...
## $ Varieties: Factor w/ 4 levels "A","B","C","D": 2 4 3 1 3 1 4 2 1 3 ...
## $ Yield : num [1:16] 1.64 1.21 1.42 1.34 1.48 ...
attach(data)
Applying analysis of variance model
model <- lm(Yield ~ Row+Column+Varieties)
anova(model)
## Analysis of Variance Table
##
## Response: Yield
## Df Sum Sq Mean Sq F value Pr(>F)
## Row 3 0.03015 0.010052 0.4654 0.716972
## Column 3 0.82734 0.275781 12.7692 0.005148 **
## Varieties 3 0.42684 0.142281 6.5879 0.025092 *
## Residuals 6 0.12958 0.021597
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Mean comparison test
library(agricolae)
LSD test
LSD.test(y = model,
trt = "Varieties",
DFerror = model$df.residual,
MSerror = deviance(model)/model$df.residual,
alpha = 0.05,
group = TRUE,
console = TRUE)
##
## Study: model ~ "Varieties"
##
## LSD t Test for Yield
##
## Mean Square Error: 0.0215974
##
## Varieties, means and individual ( 95 %) CI
##
## Yield std r LCL UCL Min Max
## A 1.46375 0.2386900 4 1.2839503 1.64355 1.185 1.670
## B 1.47125 0.2095382 4 1.2914503 1.65105 1.290 1.665
## C 1.06750 0.4426153 4 0.8877003 1.24730 0.660 1.475
## D 1.33875 0.1795538 4 1.1589503 1.51855 1.180 1.565
##
## Alpha: 0.05 ; DF Error: 6
## Critical Value of t: 2.446912
##
## least Significant Difference: 0.2542752
##
## Treatments with the same letter are not significantly different.
##
## Yield groups
## B 1.47125 a
## A 1.46375 a
## D 1.33875 a
## C 1.06750 b
SNK test
SNK.test(y = Yield,
trt = Varieties,
DFerror = model$df.residual,
MSerror = deviance(model)/model$df.residual,
alpha = 0.05,
group = TRUE,
console = TRUE)
##
## Study: Yield ~ Varieties
##
## Student Newman Keuls Test
## for Yield
##
## Mean Square Error: 0.0215974
##
## Varieties, means
##
## Yield std r Min Max
## A 1.46375 0.2386900 4 1.185 1.670
## B 1.47125 0.2095382 4 1.290 1.665
## C 1.06750 0.4426153 4 0.660 1.475
## D 1.33875 0.1795538 4 1.180 1.565
##
## Alpha: 0.05 ; DF Error: 6
##
## Critical Range
## 2 3 4
## 0.2542752 0.3188452 0.3597299
##
## Means with the same letter are not significantly different.
##
## Yield groups
## B 1.47125 a
## A 1.46375 a
## D 1.33875 a
## C 1.06750 b