Preliminaries

Load the vcfR package and other packages with library().

library(vcfR)    
## 
##    *****       ***   vcfR   ***       *****
##    This is vcfR 1.13.0 
##      browseVignettes('vcfR') # Documentation
##      citation('vcfR') # Citation
##    *****       *****      *****       *****
library(vegan)
## Loading required package: permute
## Loading required package: lattice
## This is vegan 2.6-4
library(ggplot2)
library(ggpubr)

Make sure that your working directory is set to the location of the file.

setwd("/Users/ethanfrank/Desktop/R/Final Project")
getwd()
## [1] "/Users/ethanfrank/Desktop/R/Final Project"
list.files()
##  [1] "09-PCA_worked_example-SNPs-part1.Rmd"                           
##  [2] "10-PCA_worked_example-SNPs-part2.Rmd"                           
##  [3] "1000genomes_people_info2-1.csv"                                 
##  [4] "1540_final_project_Final_Report_template.pdf"                   
##  [5] "1540_final_report_flowchart (1).pdf"                            
##  [6] "1540_week14_PCA_SNP_workflow.pdf"                               
##  [7] "17.20809577-21049577.ALL.chr17_GRCh38.genotypes.20170504.vcf.gz"
##  [8] "Final Project Report.Rmd"                                       
##  [9] "Final Project Workflow.Rmd"                                     
## [10] "final_report_template.Rmd"                                      
## [11] "Final-Project-Workflow.docx"                                    
## [12] "Final-Project-Workflow.Rmd"                                     
## [13] "vcf_num_df.csv"                                                 
## [14] "vcf_num_df2.csv"                                                
## [15] "vcf_num.csv"                                                    
## [16] "vcf_scaled.csv"
list.files(pattern = "vcf")
## [1] "17.20809577-21049577.ALL.chr17_GRCh38.genotypes.20170504.vcf.gz"
## [2] "vcf_num_df.csv"                                                 
## [3] "vcf_num_df2.csv"                                                
## [4] "vcf_num.csv"                                                    
## [5] "vcf_scaled.csv"

Extract Data from .vcf

Reads metadata and data from .vcf file and argument to convert “.” in data to NA. Creates R object out of .vcf data.

vcf <- vcfR::read.vcfR("17.20809577-21049577.ALL.chr17_GRCh38.genotypes.20170504.vcf.gz", convertNA = TRUE)
## Scanning file to determine attributes.
## File attributes:
##   meta lines: 130
##   header_line: 131
##   variant count: 8483
##   column count: 2513
## 
Meta line 130 read in.
## All meta lines processed.
## gt matrix initialized.
## Character matrix gt created.
##   Character matrix gt rows: 8483
##   Character matrix gt cols: 2513
##   skip: 0
##   nrows: 8483
##   row_num: 0
## 
Processed variant 1000
Processed variant 2000
Processed variant 3000
Processed variant 4000
Processed variant 5000
Processed variant 6000
Processed variant 7000
Processed variant 8000
Processed variant: 8483
## All variants processed

Extract Genotype Scores

Extracts genotype data from R object and converts to numeric values. Stores numeric values into another R object.

vcf_num <- vcfR::extract.gt(vcf, 
           element = "GT",
           IDtoRowNames  = F,
           as.numeric = T,
           convertNA = T)

Save New Data

Save the new data to .csv

write.csv(vcf_num, file="vcf_num.csv", row.names = F)
list.files(pattern = "vcf")
## [1] "17.20809577-21049577.ALL.chr17_GRCh38.genotypes.20170504.vcf.gz"
## [2] "vcf_num_df.csv"                                                 
## [3] "vcf_num_df2.csv"                                                
## [4] "vcf_num.csv"                                                    
## [5] "vcf_scaled.csv"

Transpose Data

Flips rows and columns of data and stores into R object.

vcf_num_t <- t(vcf_num) 

Converts R object data into data frame.

vcf_num_df <- data.frame(vcf_num_t) 

Store row names into object.

sample <- row.names(vcf_num_df)

Rewrite data frame with row names.

vcf_num_df <- data.frame(sample, vcf_num_df)

Save vcf_num_df into .csv file.

write.csv(vcf_num_df, file = "vcf_num_df.csv", row.names = F)
list.files(pattern = "csv")
## [1] "1000genomes_people_info2-1.csv" "vcf_num_df.csv"                
## [3] "vcf_num_df2.csv"                "vcf_num.csv"                   
## [5] "vcf_scaled.csv"

Clean Data

Read .csv file from 1000genomes.

pop_meta <- read.csv(file = "1000genomes_people_info2-1.csv")

List names of pop_meta.

names(pop_meta)
## [1] "pop"       "super_pop" "sample"    "sex"       "lat"       "lng"

List names of columns 1-10 of vcf_num_df.

names(vcf_num_df[1:10])
##  [1] "sample" "X1"     "X2"     "X3"     "X4"     "X5"     "X6"     "X7"    
##  [9] "X8"     "X9"

Merge pop_meta and vcf_num_df by “sample” and store in vcf_num_df2.

vcf_num_df2 <- merge(pop_meta, vcf_num_df, by = "sample")

Check if row lengths are equal.

nrow(vcf_num_df) == nrow(vcf_num_df2)
## [1] TRUE

List names of columns 1-15 of vcf_num_df2.

names(vcf_num_df2[1:15])
##  [1] "sample"    "pop"       "super_pop" "sex"       "lat"       "lng"      
##  [7] "X1"        "X2"        "X3"        "X4"        "X5"        "X6"       
## [13] "X7"        "X8"        "X9"

Save the new data to .csv

write.csv(vcf_num_df2, file="vcf_num_df2.csv", row.names = F)
list.files(pattern = "csv")
## [1] "1000genomes_people_info2-1.csv" "vcf_num_df.csv"                
## [3] "vcf_num_df2.csv"                "vcf_num.csv"                   
## [5] "vcf_scaled.csv"

Omit Invariant Features

Create invar_omit function which takes a data frame object argument. Calculates standard deviation of each column. Stores each column which sd is 0 into i_var0 object. Removes columns which sd is 0. Returns manipulated data frame.

invar_omit <- function(x) {
  cat("Dataframe of dim", dim(x), "processed...\n")
  sds <- apply(x, 2, sd, na.rm = TRUE)
  i_var0 <- which(sds == 0)
  cat(length(i_var0), "columns removed\n")
  if (length(i_var0) > 0) {
     x <- x[, -i_var0]
  }
  return(x)                      
} 

Run invar_omit function on vcf_num_df2 and store into vcf_noinvar.

vcf_noinvar <- vcf_num_df2
vcf_noinvar <- vcf_noinvar[, -c(1:6)]
vcf_noinvar <- invar_omit(vcf_noinvar)
## Dataframe of dim 2504 8483 processed...
## 2041 columns removed

Rewrite data frame object with first 6 columns from vcf_num_df2.

vcf_noinvar <- data.frame(vcf_num_df2[, c(1:6)], vcf_noinvar)

Store number of invariant columns in object.

N_of_invar_cols <- 2041

Remove NAs

Creates a function with a data frame object as an argument that returns the number of NAs present in the data frame object.

find_NAs <- function(x) {
  NAs_TF <- is.na(x)
  i_NA <- which(NAs_TF == TRUE)
  N_NA <- length(i_NA)
  cat("Results:", N_NA, "NAs present\n.")
  return(i_NA)
}

Creates multiple objects. N_rows is the number of rows in vcf_noinvar. N_NA is a vector to hold the number of NAs. N_SNPs is the number of columns in vcf_noinvar.

N_rows <- nrow(vcf_noinvar)
N_NA   <- rep(x = 0, times = N_rows)
N_SNPs <- ncol(vcf_noinvar)

For loop loops through each row and finds location of NAs and stores them into i_NA. Finds the number of NAs and stores them in N_NA_i. Save output to our original vector N_NA.

# for (i in 1:N_rows) {
#  i_NA <- find_NAs(vcf_noinvar[i,])
#  N_NA_i <- length(i_NA)
#  N_NA[i] <- N_NA_i
# }

0 NAs were found so code was commented out for performance.

Cut the number of columns in half and store them in cutoff50. Stores percentage of NAs in percent_NA. Finds which NAs are above 50% threshhold.

# cutoff50 <- N_SNPs*0.5
# percent_NA <- N_NA/N_SNPs*100
# any(percent_NA > 50)
# mean(percent_NA)
# n_meanNA_rows <- mean(percent_NA)

0 NAs were found so code was commented out for performance.

Mean Imputation

Create mean imputation function which takes a data frame object argument and replaces NAs with mean value from column.

mean_imputation <- function(x) {
  cat("This may take some time...")
  n_cols <- ncol(x)
  for (i in 1:n_cols) {
    column_i <- x[, i]
    mean_i <- mean(column_i, na.rm = TRUE)
    NAs_i <- which(is.na(column_i))
    N_NAs <- length(NAs_i)
    column_i[NAs_i] <- mean_i
    x[, i] <- column_i
  }
  return(x)
}

Run mean_imputation() on vcf_noinvar.

vcf_noNA <- vcf_noinvar
vcf_noNA[, -c(1:6)] <- mean_imputation(vcf_noinvar[, -c(1:6)])
## This may take some time...

Scale Data for PCA

Scale data to prepare for PCA

vcf_noNA <- vcf_noinvar
vcf_scaled <- vcf_noNA
vcf_scaled[, -c(1:6)] <- scale(vcf_noNA[, -c(1:6)])

Save scaled data to .csv.

write.csv(vcf_scaled, file = "vcf_scaled.csv", row.names = F)
list.files(pattern = "csv")
## [1] "1000genomes_people_info2-1.csv" "vcf_num_df.csv"                
## [3] "vcf_num_df2.csv"                "vcf_num.csv"                   
## [5] "vcf_scaled.csv"

Run PCA

Run prcomp() on scaled data and store in vcf_pca.

vcf_pca <- prcomp(vcf_scaled[, -c(1:6)])

Run screeplot() on vcf_pca.

screeplot(vcf_pca)

PCA Variation

Create PCA_Variation function to return % variation.

PCA_variation <- function(pca_summary, PCs = 2) {
  var_explained <- pca_summary$importance[2, 1:PCs]*100
  var_explained <- round(var_explained, 3)
  return(var_explained)
}
vcf_pca_summary <- summary(vcf_pca)
var_out <- PCA_variation(vcf_pca_summary, PCs=500)
N_columns <- ncol(vcf_scaled)
cut_off <- 1/N_columns*100
i_cut_off <- which(var_out < cut_off)
i_cut_off <- min(i_cut_off)
## Warning in min(i_cut_off): no non-missing arguments to min; returning Inf

Plot PCA percent variation on screeplot.

N_meanNA_rowsPCs <- i_cut_off
var_PC123 <- var_out[c(1, 2, 3)]
barplot(var_out, 
        main = "Percent Variation",
        ylab = "Percent Variation explained",
        names.arg = 1:length(var_out))
abline(h = cut_off, col = 4, lwd = 2)
abline(v = i_cut_off)
legend("topright", col = c(1, 4), lty = c(1, 1),
       legend = c("Vertical line: cutoff", "Horizontal line: 1st value below cutoff"))

Plot cumulative variation of var_out.

cumulative_variation <- cumsum(var_out)
plot(cumulative_variation, type = "l")

PCA Results

Extract scores from vcf_pca and store into vcf_pca_scores. Create data frame from vcf_pca_scores.

vcf_pca_scores <- vegan::scores(vcf_pca)
vcf_pca_scores2 <- data.frame(super_pop = vcf_noNA$super_pop, vcf_pca_scores)

PC1 Variation

var_PC123[1]
##   PC1 
## 3.417

PC2 Variation

var_PC123[2]
##  PC2 
## 2.55

PC3 Variation

var_PC123[3]
##   PC3 
## 1.928

Plot PCA Results on Scatterplot

PC1 v PC2

ggpubr::ggscatter(data = vcf_pca_scores2,
                  x = "PC1",
                  y = "PC2",
                  color = "super_pop",
                  shape = "super_pop",
                  main = "PC1 v PC2 Scatterplot",
                  xlab = "PC1 3.417% variation",
                  ylab = "PC2 2.55% variation")

PC1 v PC3

ggpubr::ggscatter(data = vcf_pca_scores2,
                  x = "PC1",
                  y = "PC3",
                  color = "super_pop",
                  shape = "super_pop",
                  main = "PC1 v PC3 Scatterplot",
                  xlab = "PC1 3.417% variation",
                  ylab = "PC3 1.928% variation")

PC2 v PC3

ggpubr::ggscatter(data = vcf_pca_scores2,
                  x = "PC2",
                  y = "PC3",
                  color = "super_pop",
                  shape = "super_pop",
                  main = "PC2 v PC3 Scatterplot",
                  xlab = "PC2 2.55% variation",
                  ylab = "PC3 1.928% variation")