library(funModeling)
## Loading required package: Hmisc
## Loading required package: lattice
## Loading required package: survival
## Loading required package: Formula
## Loading required package: ggplot2
##
## Attaching package: 'Hmisc'
## The following objects are masked from 'package:base':
##
## format.pval, units
## funModeling v.1.9.4 :)
## Examples and tutorials at livebook.datascienceheroes.com
## / Now in Spanish: librovivodecienciadedatos.ai
library(tidyverse)
## ── Attaching packages
## ───────────────────────────────────────
## tidyverse 1.3.2 ──
## ✔ tibble 3.1.7 ✔ dplyr 1.0.9
## ✔ tidyr 1.2.0 ✔ stringr 1.4.0
## ✔ readr 2.1.2 ✔ forcats 0.5.1
## ✔ purrr 0.3.4
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag() masks stats::lag()
## ✖ dplyr::src() masks Hmisc::src()
## ✖ dplyr::summarize() masks Hmisc::summarize()
library(Hmisc)
library(tidyverse)
library(ggpubr)
library(gtable)
library(gt)
##
## Attaching package: 'gt'
##
## The following object is masked from 'package:Hmisc':
##
## html
library(survival)
library(ggpubr)
library(survminer)
##
## Attaching package: 'survminer'
##
## The following object is masked from 'package:survival':
##
## myeloma
library(readr)
library(gtsummary)
dbcovid <- read_delim("C:/Users/fidel/OneDrive - CINVESTAV/Proyecto colaboración SSA/base de datos/SISVER/dbcovid.txt",
delim = "|", escape_double = FALSE, trim_ws = TRUE)
## Rows: 429902 Columns: 130
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: "|"
## chr (106): ORIGEN, SECTOR, CVEMUNUNI, ENTIDAD, DELEGA, UNIDAD, FECHREG, CLUE...
## dbl (12): ID_REGISTRO, CVEENTUNI, CVENTINE, CVELOCAL, LATLOCA, LONGLOCA, SE...
## lgl (12): RESDEFIN2, PAISORI, FINGMEX, PAISTRAN1, PAISTRAN2, PAISTRAN3, PAI...
##
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
covidsin<-dbcovid
covidsinfilt <- covidsin %>% filter(RESDEFIN == "SARS-CoV-2" & CLASCOVID19 =="CONF LAB")
covidsinfilt$FECINISI <- strptime(as.character(covidsinfilt$FECINISI), "%d/%m/%Y")
covidsinfilt$FECINISI = as.Date(covidsinfilt$FECINISI)
freq(covidsinfilt$RESDEFIN)
## Warning: `guides(<scale> = FALSE)` is deprecated. Please use `guides(<scale> =
## "none")` instead.
library(lubridate)
##
## Attaching package: 'lubridate'
## The following objects are masked from 'package:base':
##
## date, intersect, setdiff, union
library(epiR); library(ggplot2); library(scales); library(zoo)
## Warning: package 'epiR' was built under R version 4.2.2
## Package epiR 2.0.53 is loaded
## Type help(epi.about) for summary information
## Type browseVignettes(package = 'epiR') to learn how to use epiR for applied epidemiological analyses
##
##
## Attaching package: 'scales'
## The following object is masked from 'package:purrr':
##
## discard
## The following object is masked from 'package:readr':
##
## col_factor
##
## Attaching package: 'zoo'
## The following objects are masked from 'package:base':
##
## as.Date, as.Date.numeric
library(plotly)
##
## Attaching package: 'plotly'
## The following object is masked from 'package:Hmisc':
##
## subplot
## The following object is masked from 'package:ggplot2':
##
## last_plot
## The following object is masked from 'package:stats':
##
## filter
## The following object is masked from 'package:graphics':
##
## layout
epiplot <-ggplot(data = covidsinfilt, aes(x = as.Date(FECINISI))) +
theme_bw() +
geom_histogram(binwidth = 7, colour = "black", fill = "#3e78d6", size = 0.1) +
geom_density(aes(y = ..density.. * (nrow(covidsinfilt) * 10)), colour = "red", size=0.8) +
scale_x_date( labels = date_format("%d/%m/%Y"),
name = "Date") +
scale_y_continuous(breaks = seq(from = 0, to =1500, by = 100), name = "Number of cases") + theme_classic()+
theme(axis.text.x = element_text(angle = 90, hjust = 1))
ggplotly(epiplot)
library(gt)
#crear columna de estatus
covidsinfilt <- covidsinfilt %>% mutate(estatus = case_when(is.na(FECDEF) ~ "Sobrevivió"))
covidsinfilt <- covidsinfilt %>% replace_na(list(estatus = "No sobrevivió")) #con la función "remplace_na"
library(lubridate)
covidsinfilt$FECDEF <- strptime(as.character(covidsinfilt$FECDEF), "%d/%m/%Y")
covidsinfilt$FECDEF = as.Date(covidsinfilt$FECDEF)
str(covidsinfilt$FECDEF)
## Date[1:51921], format: NA NA NA NA "2020-05-17" NA NA "2020-09-09" NA "2020-05-03" NA NA NA ...
covidsinfilt <- covidsinfilt %>% mutate(deftime = as.double(FECDEF-FECINISI))
covidsinfilt %>% select(FECDEF,FECINISI, deftime, estatus)
covidsinfilt <- covidsinfilt %>% mutate(evento = ifelse(is.na(estatus) | estatus == "No sobrevivió", 1, 0))
covidsinfilt %>% select(evento, estatus,deftime)
covidsinfilt %>% select(RESDEFIN,CLASCOVID19,SEXO,EDAD,ESINDIGE,OCUPACIO,TIPACIEN,EVOLUCI,INTUBADO,DIGCLINE,DIAGPROB,FIEBRE:TXANTIVI,ANTIVIRA,
ANTIPIRETICOS,VACUNADO,TIPO_VAC_COV,estatus) %>% freq()
## Warning: `guides(<scale> = FALSE)` is deprecated. Please use `guides(<scale> =
## "none")` instead.
## RESDEFIN frequency percentage cumulative_perc
## 1 SARS-CoV-2 51921 100 100
## Warning: `guides(<scale> = FALSE)` is deprecated. Please use `guides(<scale> =
## "none")` instead.
## CLASCOVID19 frequency percentage cumulative_perc
## 1 CONF LAB 51921 100 100
## Warning: `guides(<scale> = FALSE)` is deprecated. Please use `guides(<scale> =
## "none")` instead.
## SEXO frequency percentage cumulative_perc
## 1 FEMENINO 27082 52.16 52.16
## 2 MASCULINO 24839 47.84 100.00
## Warning: `guides(<scale> = FALSE)` is deprecated. Please use `guides(<scale> =
## "none")` instead.
## ESINDIGE frequency percentage cumulative_perc
## 1 NO 49789 95.89 95.89
## 2 <NA> 1982 3.82 99.71
## 3 SI 150 0.29 100.00
## Warning: `guides(<scale> = FALSE)` is deprecated. Please use `guides(<scale> =
## "none")` instead.
## OCUPACIO frequency percentage
## 1 EMPLEADOS 15861 30.55
## 2 OTROS 8517 16.40
## 3 HOGAR 7207 13.88
## 4 JUBILADO / PENSIONADO 3418 6.58
## 5 ENFERMERAS 2852 5.49
## 6 ESTUDIANTES 2615 5.04
## 7 DESEMPLEADOS 2489 4.79
## 8 OTROS TRABAJADORES DE LA SALUD 2294 4.42
## 9 MEDICOS 2037 3.92
## 10 MAESTROS 1116 2.15
## 11 OTROS PROFESIONISTAS 1102 2.12
## 12 COMERCIANTES DE MERCADOS FIJOS O AMBULANTES 707 1.36
## 13 CAMPESINOS 511 0.98
## 14 CHOFERES 383 0.74
## 15 OBREROS 316 0.61
## 16 LABORATORISTAS 187 0.36
## 17 GERENTES O PROPIETARIOS DE EMPRESAS O NEGOCIOS 186 0.36
## 18 DENTISTAS 123 0.24
## cumulative_perc
## 1 30.55
## 2 46.95
## 3 60.83
## 4 67.41
## 5 72.90
## 6 77.94
## 7 82.73
## 8 87.15
## 9 91.07
## 10 93.22
## 11 95.34
## 12 96.70
## 13 97.68
## 14 98.42
## 15 99.03
## 16 99.39
## 17 99.75
## 18 100.00
## Warning: `guides(<scale> = FALSE)` is deprecated. Please use `guides(<scale> =
## "none")` instead.
## TIPACIEN frequency percentage cumulative_perc
## 1 AMBULATORIO 36345 70 70
## 2 HOSPITALIZADO 15576 30 100
## Warning: `guides(<scale> = FALSE)` is deprecated. Please use `guides(<scale> =
## "none")` instead.
## EVOLUCI frequency percentage cumulative_perc
## 1 SEGUIMIENTO TERMINADO 36726 70.73 70.73
## 2 DEFUNCION 7627 14.69 85.42
## 3 ALTA - MEJORIA 6720 12.94 98.36
## 4 ALTA - VOLUNTARIA 329 0.63 98.99
## 5 ALTA - TRASLADO 200 0.39 99.38
## 6 ALTA - CURACION 152 0.29 99.67
## 7 SEGUIMIENTO DOMICILIARIO 78 0.15 99.82
## 8 EN TRATAMIENTO 45 0.09 99.91
## 9 CASO GRAVE - 16 0.03 99.94
## 10 CASO NO GRAVE 16 0.03 99.97
## 11 REFERENCIA 11 0.02 99.99
## 12 CASO GRAVE - TRASLADO 1 0.00 100.00
## Warning: `guides(<scale> = FALSE)` is deprecated. Please use `guides(<scale> =
## "none")` instead.
## INTUBADO frequency percentage cumulative_perc
## 1 <NA> 37155 71.56 71.56
## 2 NO 12772 24.60 96.16
## 3 SI 1994 3.84 100.00
## Warning: `guides(<scale> = FALSE)` is deprecated. Please use `guides(<scale> =
## "none")` instead.
## DIGCLINE frequency percentage cumulative_perc
## 1 NO 40832 78.64 78.64
## 2 SI 11089 21.36 100.00
## Warning: `guides(<scale> = FALSE)` is deprecated. Please use `guides(<scale> =
## "none")` instead.
## DIAGPROB frequency percentage
## 1 ENFERMEDAD TIPO INFLUENZA (ETI) 37331 71.9
## 2 INFECCION RESPIRATORIA AGUDA GRAVE (IRAG) 14590 28.1
## cumulative_perc
## 1 71.9
## 2 100.0
## Warning: `guides(<scale> = FALSE)` is deprecated. Please use `guides(<scale> =
## "none")` instead.
## FIEBRE frequency percentage cumulative_perc
## 1 SI 38433 74.02 74.02
## 2 NO 13467 25.94 99.96
## 3 SE IGNORA 21 0.04 100.00
## Warning: `guides(<scale> = FALSE)` is deprecated. Please use `guides(<scale> =
## "none")` instead.
## TOS frequency percentage cumulative_perc
## 1 SI 40651 78.29 78.29
## 2 NO 11253 21.67 99.96
## 3 SE IGNORA 17 0.03 100.00
## Warning: `guides(<scale> = FALSE)` is deprecated. Please use `guides(<scale> =
## "none")` instead.
## ODINOGIA frequency percentage cumulative_perc
## 1 NO 29052 55.95 55.95
## 2 SI 22762 43.84 99.79
## 3 SE IGNORA 107 0.21 100.00
## Warning: `guides(<scale> = FALSE)` is deprecated. Please use `guides(<scale> =
## "none")` instead.
## DISNEA frequency percentage cumulative_perc
## 1 NO 34258 65.98 65.98
## 2 SI 17653 34.00 99.98
## 3 SE IGNORA 10 0.02 100.00
## Warning: `guides(<scale> = FALSE)` is deprecated. Please use `guides(<scale> =
## "none")` instead.
## IRRITABI frequency percentage cumulative_perc
## 1 NO 35195 67.79 67.79
## 2 SI 16688 32.14 99.93
## 3 SE IGNORA 38 0.07 100.00
## Warning: `guides(<scale> = FALSE)` is deprecated. Please use `guides(<scale> =
## "none")` instead.
## DIARREA frequency percentage cumulative_perc
## 1 NO 42489 81.83 81.83
## 2 SI 9395 18.09 99.92
## 3 SE IGNORA 37 0.07 100.00
## Warning: `guides(<scale> = FALSE)` is deprecated. Please use `guides(<scale> =
## "none")` instead.
## DOTORACI frequency percentage cumulative_perc
## 1 NO 37627 72.47 72.47
## 2 SI 14190 27.33 99.80
## 3 SE IGNORA 104 0.20 100.00
## Warning: `guides(<scale> = FALSE)` is deprecated. Please use `guides(<scale> =
## "none")` instead.
## CALOFRIOS frequency percentage cumulative_perc
## 1 NO 35428 68.23 68.23
## 2 SI 16399 31.58 99.81
## 3 SE IGNORA 94 0.18 100.00
## Warning: `guides(<scale> = FALSE)` is deprecated. Please use `guides(<scale> =
## "none")` instead.
## CEFALEA frequency percentage cumulative_perc
## 1 SI 40789 78.56 78.56
## 2 NO 11094 21.37 99.93
## 3 SE IGNORA 38 0.07 100.00
## Warning: `guides(<scale> = FALSE)` is deprecated. Please use `guides(<scale> =
## "none")` instead.
## MIALGIAS frequency percentage cumulative_perc
## 1 SI 31037 59.78 59.78
## 2 NO 20777 40.02 99.80
## 3 SE IGNORA 107 0.21 100.00
## Warning: `guides(<scale> = FALSE)` is deprecated. Please use `guides(<scale> =
## "none")` instead.
## ARTRAL frequency percentage cumulative_perc
## 1 SI 28609 55.10 55.10
## 2 NO 23199 44.68 99.78
## 3 SE IGNORA 113 0.22 100.00
## Warning: `guides(<scale> = FALSE)` is deprecated. Please use `guides(<scale> =
## "none")` instead.
## ATAEDOGE frequency percentage cumulative_perc
## 1 NO 29458 56.74 56.74
## 2 SI 22340 43.03 99.77
## 3 SE IGNORA 123 0.24 100.00
## Warning: `guides(<scale> = FALSE)` is deprecated. Please use `guides(<scale> =
## "none")` instead.
## RINORREA frequency percentage cumulative_perc
## 1 NO 33149 63.85 63.85
## 2 SI 18649 35.92 99.77
## 3 SE IGNORA 123 0.24 100.00
## Warning: `guides(<scale> = FALSE)` is deprecated. Please use `guides(<scale> =
## "none")` instead.
## POLIPNEA frequency percentage cumulative_perc
## 1 NO 46594 89.74 89.74
## 2 SI 5194 10.00 99.74
## 3 SE IGNORA 133 0.26 100.00
## Warning: `guides(<scale> = FALSE)` is deprecated. Please use `guides(<scale> =
## "none")` instead.
## VOMITO frequency percentage cumulative_perc
## 1 NO 48088 92.62 92.62
## 2 SI 3695 7.12 99.74
## 3 SE IGNORA 138 0.27 100.00
## Warning: `guides(<scale> = FALSE)` is deprecated. Please use `guides(<scale> =
## "none")` instead.
## DOLABDO frequency percentage cumulative_perc
## 1 NO 46229 89.04 89.04
## 2 SI 5545 10.68 99.72
## 3 SE IGNORA 147 0.28 100.00
## Warning: `guides(<scale> = FALSE)` is deprecated. Please use `guides(<scale> =
## "none")` instead.
## CONJUN frequency percentage cumulative_perc
## 1 NO 46816 90.17 90.17
## 2 SI 4951 9.54 99.71
## 3 SE IGNORA 154 0.30 100.00
## Warning: `guides(<scale> = FALSE)` is deprecated. Please use `guides(<scale> =
## "none")` instead.
## CIANOSIS frequency percentage cumulative_perc
## 1 NO 50714 97.68 97.68
## 2 SI 1058 2.04 99.72
## 3 SE IGNORA 149 0.29 100.00
## Warning: `guides(<scale> = FALSE)` is deprecated. Please use `guides(<scale> =
## "none")` instead.
## INISUBIS frequency percentage cumulative_perc
## 1 NO 38524 74.20 74.20
## 2 SI 13197 25.42 99.62
## 3 SE IGNORA 200 0.39 100.00
## Warning: `guides(<scale> = FALSE)` is deprecated. Please use `guides(<scale> =
## "none")` instead.
## ANOSMIA frequency percentage cumulative_perc
## 1 NO 37419 72.07 72.07
## 2 SI 8782 16.91 88.98
## 3 SE IGNORA 5720 11.02 100.00
## Warning: `guides(<scale> = FALSE)` is deprecated. Please use `guides(<scale> =
## "none")` instead.
## DISGEUSIA frequency percentage cumulative_perc
## 1 NO 38385 73.93 73.93
## 2 SI 7721 14.87 88.80
## 3 SE IGNORA 5815 11.20 100.00
## Warning: `guides(<scale> = FALSE)` is deprecated. Please use `guides(<scale> =
## "none")` instead.
## ASINTOMATICO frequency percentage cumulative_perc
## 1 NO 51391 98.98 98.98
## 2 SI 496 0.96 99.94
## 3 SE IGNORA 34 0.07 100.00
## Warning: `guides(<scale> = FALSE)` is deprecated. Please use `guides(<scale> =
## "none")` instead.
## DIABETES frequency percentage cumulative_perc
## 1 NO 44610 85.92 85.92
## 2 SI 7195 13.86 99.78
## 3 SE IGNORA 116 0.22 100.00
## Warning: `guides(<scale> = FALSE)` is deprecated. Please use `guides(<scale> =
## "none")` instead.
## EPOC frequency percentage cumulative_perc
## 1 NO 51138 98.49 98.49
## 2 SI 704 1.36 99.85
## 3 SE IGNORA 79 0.15 100.00
## Warning: `guides(<scale> = FALSE)` is deprecated. Please use `guides(<scale> =
## "none")` instead.
## ASMA frequency percentage cumulative_perc
## 1 NO 50696 97.64 97.64
## 2 SI 1139 2.19 99.83
## 3 SE IGNORA 86 0.17 100.00
## Warning: `guides(<scale> = FALSE)` is deprecated. Please use `guides(<scale> =
## "none")` instead.
## INMUSUPR frequency percentage cumulative_perc
## 1 NO 51270 98.75 98.75
## 2 SI 553 1.07 99.82
## 3 SE IGNORA 98 0.19 100.00
## Warning: `guides(<scale> = FALSE)` is deprecated. Please use `guides(<scale> =
## "none")` instead.
## HIPERTEN frequency percentage cumulative_perc
## 1 NO 40685 78.36 78.36
## 2 SI 11129 21.43 99.79
## 3 SE IGNORA 107 0.21 100.00
## Warning: `guides(<scale> = FALSE)` is deprecated. Please use `guides(<scale> =
## "none")` instead.
## VIH.SIDA frequency percentage cumulative_perc
## 1 NO 51658 99.49 99.49
## 2 SI 167 0.32 99.81
## 3 SE IGNORA 96 0.18 100.00
## Warning: `guides(<scale> = FALSE)` is deprecated. Please use `guides(<scale> =
## "none")` instead.
## OTRACON frequency percentage cumulative_perc
## 1 NO 50306 96.89 96.89
## 2 SI 1489 2.87 99.76
## 3 SE IGNORA 126 0.24 100.00
## Warning: `guides(<scale> = FALSE)` is deprecated. Please use `guides(<scale> =
## "none")` instead.
## ENFCARDI frequency percentage cumulative_perc
## 1 NO 50544 97.35 97.35
## 2 SI 1279 2.46 99.81
## 3 SE IGNORA 98 0.19 100.00
## Warning: `guides(<scale> = FALSE)` is deprecated. Please use `guides(<scale> =
## "none")` instead.
## OBESIDAD frequency percentage cumulative_perc
## 1 NO 43706 84.18 84.18
## 2 SI 8118 15.64 99.82
## 3 SE IGNORA 97 0.19 100.00
## Warning: `guides(<scale> = FALSE)` is deprecated. Please use `guides(<scale> =
## "none")` instead.
## INSRENCR frequency percentage cumulative_perc
## 1 NO 50897 98.03 98.03
## 2 SI 932 1.80 99.83
## 3 SE IGNORA 92 0.18 100.00
## Warning: `guides(<scale> = FALSE)` is deprecated. Please use `guides(<scale> =
## "none")` instead.
## TABAQUIS frequency percentage cumulative_perc
## 1 NO 48985 94.35 94.35
## 2 SI 2827 5.44 99.79
## 3 SE IGNORA 109 0.21 100.00
## Warning: `guides(<scale> = FALSE)` is deprecated. Please use `guides(<scale> =
## "none")` instead.
## RECTRATA frequency percentage cumulative_perc
## 1 NO 47724 91.92 91.92
## 2 SI 3961 7.63 99.55
## 3 <NA> 236 0.45 100.00
## Warning: `guides(<scale> = FALSE)` is deprecated. Please use `guides(<scale> =
## "none")` instead.
## TXCROBIA frequency percentage cumulative_perc
## 1 <NA> 24225 46.66 46.66
## 2 NO 18279 35.21 81.87
## 3 SI 9417 18.14 100.00
## Warning: `guides(<scale> = FALSE)` is deprecated. Please use `guides(<scale> =
## "none")` instead.
## TXANTIVI frequency percentage cumulative_perc
## 1 NO 44617 85.93 85.93
## 2 SI 6020 11.59 97.52
## 3 <NA> 1284 2.47 100.00
## Warning: `guides(<scale> = FALSE)` is deprecated. Please use `guides(<scale> =
## "none")` instead.
## ANTIVIRA frequency percentage cumulative_perc
## 1 <NA> 45896 88.40 88.40
## 2 OSELTAMIVIR 5828 11.22 99.62
## 3 AMANTADINA 128 0.25 99.87
## 4 ZAVAMIVIR 21 0.04 99.91
## 5 RIMNTADINA 9 0.02 99.93
## 6 AZITROMICINA 5 0.01 99.94
## 7 RIBAVIRINA 5 0.01 99.95
## 8 IVERMECTINA 4 0.01 99.96
## 9 CLOROQUINA 3 0.01 99.97
## 10 LORATADINA 3 0.01 99.98
## 11 KALETRA 2 0.00 99.98
## 12 REMDESIVIR 2 0.00 99.98
## 13 VIRAZIDE 2 0.00 99.98
## 14 AMPICILINA 1 0.00 99.98
## 15 ANTIFLUD D 1 0.00 99.98
## 16 azitromicina 1 0.00 99.98
## 17 CLARITROMICINA 1 0.00 99.98
## 18 cloroquina 1 0.00 99.98
## 19 cloroquina, azitrominicina 1 0.00 99.98
## 20 INVAZ, FLUCONAZOL, 1 0.00 99.98
## 21 IVERMECTIN 1 0.00 99.98
## 22 IVERTMENTINA 1 0.00 99.98
## 23 LEVOFLOXACINO 1 0.00 99.98
## 24 rivabarina 1 0.00 99.98
## 25 VIBRAMICINA 1 0.00 99.98
## 26 XX 1 0.00 100.00
## Warning: `guides(<scale> = FALSE)` is deprecated. Please use `guides(<scale> =
## "none")` instead.
## ANTIPIRETICOS frequency percentage cumulative_perc
## 1 SI 28225 54.36 54.36
## 2 NO 23603 45.46 99.82
## 3 <NA> 93 0.18 100.00
## Warning: `guides(<scale> = FALSE)` is deprecated. Please use `guides(<scale> =
## "none")` instead.
## VACUNADO frequency percentage cumulative_perc
## 1 NO 44097 84.93 84.93
## 2 SI 7700 14.83 99.76
## 3 SE IGNORA 80 0.15 99.91
## 4 <NA> 44 0.08 100.00
## Warning: `guides(<scale> = FALSE)` is deprecated. Please use `guides(<scale> =
## "none")` instead.
## TIPO_VAC_COV frequency percentage cumulative_perc
## 1 <NA> 43344 83.48 83.48
## 2 AstraZeneca 3329 6.41 89.89
## 3 Pfizer BioNTech 2125 4.09 93.98
## 4 Sinovac 1992 3.84 97.82
## 5 CanSino 533 1.03 98.85
## 6 Se desconoce 243 0.47 99.32
## 7 Moderna 240 0.46 99.78
## 8 Janssen (Johnson & Johnson) 85 0.16 99.94
## 9 Sinopharma 26 0.05 99.99
## 10 Novavax 3 0.01 100.00
## 11 Gamaleya 1 0.00 100.00
## Warning: `guides(<scale> = FALSE)` is deprecated. Please use `guides(<scale> =
## "none")` instead.
## estatus frequency percentage cumulative_perc
## 1 Sobrevivió 44294 85.31 85.31
## 2 No sobrevivió 7627 14.69 100.00
## [1] "Variables processed: RESDEFIN, CLASCOVID19, SEXO, ESINDIGE, OCUPACIO, TIPACIEN, EVOLUCI, INTUBADO, DIGCLINE, DIAGPROB, FIEBRE, TOS, ODINOGIA, DISNEA, IRRITABI, DIARREA, DOTORACI, CALOFRIOS, CEFALEA, MIALGIAS, ARTRAL, ATAEDOGE, RINORREA, POLIPNEA, VOMITO, DOLABDO, CONJUN, CIANOSIS, INISUBIS, ANOSMIA, DISGEUSIA, ASINTOMATICO, DIABETES, EPOC, ASMA, INMUSUPR, HIPERTEN, VIH.SIDA, OTRACON, ENFCARDI, OBESIDAD, INSRENCR, TABAQUIS, RECTRATA, TXCROBIA, TXANTIVI, ANTIVIRA, ANTIPIRETICOS, VACUNADO, TIPO_VAC_COV, estatus"
tabla1covisin<-covidsinfilt %>% select(RESDEFIN,CLASCOVID19,SEXO,EDAD,ESINDIGE,OCUPACIO,TIPACIEN,EVOLUCI,INTUBADO,DIGCLINE,DIAGPROB,FIEBRE:TXANTIVI,ANTIVIRA,
ANTIPIRETICOS,VACUNADO,TIPO_VAC_COV,estatus) %>% tbl_summary(by=estatus) %>% add_p() %>% add_overall()
## There was an error in 'add_p()/add_difference()' for variable 'RESDEFIN', p-value omitted:
## Error in stats::chisq.test(x = c("SARS-CoV-2", "SARS-CoV-2", "SARS-CoV-2", : 'x' and 'y' must have at least 2 levels
## There was an error in 'add_p()/add_difference()' for variable 'CLASCOVID19', p-value omitted:
## Error in stats::chisq.test(x = c("CONF LAB", "CONF LAB", "CONF LAB", "CONF LAB", : 'x' and 'y' must have at least 2 levels
## There was an error in 'add_p()/add_difference()' for variable 'EVOLUCI', p-value omitted:
## Error in stats::fisher.test(c("SEGUIMIENTO TERMINADO", "SEGUIMIENTO TERMINADO", : FEXACT error 6. LDKEY=295 is too small for this problem,
## (ii := key2[itp=545] = 333427243, ldstp=8850)
## Try increasing the size of the workspace and possibly 'mult'
## There was an error in 'add_p()/add_difference()' for variable 'ANTIVIRA', p-value omitted:
## Error in stats::fisher.test(c("OSELTAMIVIR", NA, NA, NA, "OSELTAMIVIR", : FEXACT error 7(location). LDSTP=17460 is too small for this problem,
## (pastp=9.24648, ipn_0:=ipoin[itp=94]=8061, stp[ipn_0]=15.1783).
## Increase workspace or consider using 'simulate.p.value=TRUE'
## There was an error in 'add_p()/add_difference()' for variable 'TIPO_VAC_COV', p-value omitted:
## Error in stats::fisher.test(c(NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, : FEXACT error 7(location). LDSTP=17040 is too small for this problem,
## (pastp=65.5472, ipn_0:=ipoin[itp=388]=1331, stp[ipn_0]=91.525).
## Increase workspace or consider using 'simulate.p.value=TRUE'
tabla1covisin
| Characteristic | Overall, N = 51,9211 | No sobrevivió, N = 7,6271 | Sobrevivió, N = 44,2941 | p-value2 |
|---|---|---|---|---|
| RESDEFIN | ||||
| SARS-CoV-2 | 51,921 (100%) | 7,627 (100%) | 44,294 (100%) | |
| CLASCOVID19 | ||||
| CONF LAB | 51,921 (100%) | 7,627 (100%) | 44,294 (100%) | |
| SEXO | <0.001 | |||
| FEMENINO | 27,082 (52%) | 3,171 (42%) | 23,911 (54%) | |
| MASCULINO | 24,839 (48%) | 4,456 (58%) | 20,383 (46%) | |
| EDAD | 43 (31, 58) | 67 (56, 76) | 40 (29, 52) | <0.001 |
| ESINDIGE | 0.10 | |||
| NO | 49,789 (100%) | 7,232 (100%) | 42,557 (100%) | |
| SI | 150 (0.3%) | 29 (0.4%) | 121 (0.3%) | |
| Unknown | 1,982 | 366 | 1,616 | |
| OCUPACIO | <0.001 | |||
| CAMPESINOS | 511 (1.0%) | 177 (2.3%) | 334 (0.8%) | |
| CHOFERES | 383 (0.7%) | 74 (1.0%) | 309 (0.7%) | |
| COMERCIANTES DE MERCADOS FIJOS O AMBULANTES | 707 (1.4%) | 128 (1.7%) | 579 (1.3%) | |
| DENTISTAS | 123 (0.2%) | 3 (<0.1%) | 120 (0.3%) | |
| DESEMPLEADOS | 2,489 (4.8%) | 860 (11%) | 1,629 (3.7%) | |
| EMPLEADOS | 15,861 (31%) | 1,003 (13%) | 14,858 (34%) | |
| ENFERMERAS | 2,852 (5.5%) | 16 (0.2%) | 2,836 (6.4%) | |
| ESTUDIANTES | 2,615 (5.0%) | 37 (0.5%) | 2,578 (5.8%) | |
| GERENTES O PROPIETARIOS DE EMPRESAS O NEGOCIOS | 186 (0.4%) | 37 (0.5%) | 149 (0.3%) | |
| HOGAR | 7,207 (14%) | 2,274 (30%) | 4,933 (11%) | |
| JUBILADO / PENSIONADO | 3,418 (6.6%) | 1,769 (23%) | 1,649 (3.7%) | |
| LABORATORISTAS | 187 (0.4%) | 2 (<0.1%) | 185 (0.4%) | |
| MAESTROS | 1,116 (2.1%) | 97 (1.3%) | 1,019 (2.3%) | |
| MEDICOS | 2,037 (3.9%) | 59 (0.8%) | 1,978 (4.5%) | |
| OBREROS | 316 (0.6%) | 66 (0.9%) | 250 (0.6%) | |
| OTROS | 8,517 (16%) | 946 (12%) | 7,571 (17%) | |
| OTROS PROFESIONISTAS | 1,102 (2.1%) | 58 (0.8%) | 1,044 (2.4%) | |
| OTROS TRABAJADORES DE LA SALUD | 2,294 (4.4%) | 21 (0.3%) | 2,273 (5.1%) | |
| TIPACIEN | <0.001 | |||
| AMBULATORIO | 36,345 (70%) | 51 (0.7%) | 36,294 (82%) | |
| HOSPITALIZADO | 15,576 (30%) | 7,576 (99%) | 8,000 (18%) | |
| EVOLUCI | ||||
| ALTA - CURACION | 152 (0.3%) | 0 (0%) | 152 (0.3%) | |
| ALTA - MEJORIA | 6,720 (13%) | 0 (0%) | 6,720 (15%) | |
| ALTA - TRASLADO | 200 (0.4%) | 0 (0%) | 200 (0.5%) | |
| ALTA - VOLUNTARIA | 329 (0.6%) | 0 (0%) | 329 (0.7%) | |
| CASO GRAVE - | 16 (<0.1%) | 0 (0%) | 16 (<0.1%) | |
| CASO GRAVE - TRASLADO | 1 (<0.1%) | 0 (0%) | 1 (<0.1%) | |
| CASO NO GRAVE | 16 (<0.1%) | 0 (0%) | 16 (<0.1%) | |
| DEFUNCION | 7,627 (15%) | 7,627 (100%) | 0 (0%) | |
| EN TRATAMIENTO | 45 (<0.1%) | 0 (0%) | 45 (0.1%) | |
| REFERENCIA | 11 (<0.1%) | 0 (0%) | 11 (<0.1%) | |
| SEGUIMIENTO DOMICILIARIO | 78 (0.2%) | 0 (0%) | 78 (0.2%) | |
| SEGUIMIENTO TERMINADO | 36,726 (71%) | 0 (0%) | 36,726 (83%) | |
| INTUBADO | <0.001 | |||
| NO | 12,772 (86%) | 5,670 (77%) | 7,102 (96%) | |
| SI | 1,994 (14%) | 1,662 (23%) | 332 (4.5%) | |
| Unknown | 37,155 | 295 | 36,860 | |
| DIGCLINE | <0.001 | |||
| NO | 40,832 (79%) | 1,974 (26%) | 38,858 (88%) | |
| SI | 11,089 (21%) | 5,653 (74%) | 5,436 (12%) | |
| DIAGPROB | <0.001 | |||
| ENFERMEDAD TIPO INFLUENZA (ETI) | 37,331 (72%) | 69 (0.9%) | 37,262 (84%) | |
| INFECCION RESPIRATORIA AGUDA GRAVE (IRAG) | 14,590 (28%) | 7,558 (99%) | 7,032 (16%) | |
| FIEBRE | 0.2 | |||
| NO | 13,467 (26%) | 1,934 (25%) | 11,533 (26%) | |
| SE IGNORA | 21 (<0.1%) | 5 (<0.1%) | 16 (<0.1%) | |
| SI | 38,433 (74%) | 5,688 (75%) | 32,745 (74%) | |
| TOS | 0.5 | |||
| NO | 11,253 (22%) | 1,643 (22%) | 9,610 (22%) | |
| SE IGNORA | 17 (<0.1%) | 4 (<0.1%) | 13 (<0.1%) | |
| SI | 40,651 (78%) | 5,980 (78%) | 34,671 (78%) | |
| ODINOGIA | <0.001 | |||
| NO | 29,052 (56%) | 5,395 (71%) | 23,657 (53%) | |
| SE IGNORA | 107 (0.2%) | 18 (0.2%) | 89 (0.2%) | |
| SI | 22,762 (44%) | 2,214 (29%) | 20,548 (46%) | |
| DISNEA | <0.001 | |||
| NO | 34,258 (66%) | 646 (8.5%) | 33,612 (76%) | |
| SE IGNORA | 10 (<0.1%) | 0 (0%) | 10 (<0.1%) | |
| SI | 17,653 (34%) | 6,981 (92%) | 10,672 (24%) | |
| IRRITABI | <0.001 | |||
| NO | 35,195 (68%) | 5,393 (71%) | 29,802 (67%) | |
| SE IGNORA | 38 (<0.1%) | 8 (0.1%) | 30 (<0.1%) | |
| SI | 16,688 (32%) | 2,226 (29%) | 14,462 (33%) | |
| DIARREA | <0.001 | |||
| NO | 42,489 (82%) | 6,031 (79%) | 36,458 (82%) | |
| SE IGNORA | 37 (<0.1%) | 11 (0.1%) | 26 (<0.1%) | |
| SI | 9,395 (18%) | 1,585 (21%) | 7,810 (18%) | |
| DOTORACI | <0.001 | |||
| NO | 37,627 (72%) | 4,232 (55%) | 33,395 (75%) | |
| SE IGNORA | 104 (0.2%) | 12 (0.2%) | 92 (0.2%) | |
| SI | 14,190 (27%) | 3,383 (44%) | 10,807 (24%) | |
| CALOFRIOS | <0.001 | |||
| NO | 35,428 (68%) | 5,450 (71%) | 29,978 (68%) | |
| SE IGNORA | 94 (0.2%) | 12 (0.2%) | 82 (0.2%) | |
| SI | 16,399 (32%) | 2,165 (28%) | 14,234 (32%) | |
| CEFALEA | <0.001 | |||
| NO | 11,094 (21%) | 2,755 (36%) | 8,339 (19%) | |
| SE IGNORA | 38 (<0.1%) | 9 (0.1%) | 29 (<0.1%) | |
| SI | 40,789 (79%) | 4,863 (64%) | 35,926 (81%) | |
| MIALGIAS | 0.012 | |||
| NO | 20,777 (40%) | 2,943 (39%) | 17,834 (40%) | |
| SE IGNORA | 107 (0.2%) | 12 (0.2%) | 95 (0.2%) | |
| SI | 31,037 (60%) | 4,672 (61%) | 26,365 (60%) | |
| ARTRAL | <0.001 | |||
| NO | 23,199 (45%) | 3,198 (42%) | 20,001 (45%) | |
| SE IGNORA | 113 (0.2%) | 14 (0.2%) | 99 (0.2%) | |
| SI | 28,609 (55%) | 4,415 (58%) | 24,194 (55%) | |
| ATAEDOGE | <0.001 | |||
| NO | 29,458 (57%) | 2,824 (37%) | 26,634 (60%) | |
| SE IGNORA | 123 (0.2%) | 15 (0.2%) | 108 (0.2%) | |
| SI | 22,340 (43%) | 4,788 (63%) | 17,552 (40%) | |
| RINORREA | <0.001 | |||
| NO | 33,149 (64%) | 5,826 (76%) | 27,323 (62%) | |
| SE IGNORA | 123 (0.2%) | 18 (0.2%) | 105 (0.2%) | |
| SI | 18,649 (36%) | 1,783 (23%) | 16,866 (38%) | |
| POLIPNEA | <0.001 | |||
| NO | 46,594 (90%) | 5,437 (71%) | 41,157 (93%) | |
| SE IGNORA | 133 (0.3%) | 14 (0.2%) | 119 (0.3%) | |
| SI | 5,194 (10%) | 2,176 (29%) | 3,018 (6.8%) | |
| VOMITO | <0.001 | |||
| NO | 48,088 (93%) | 6,881 (90%) | 41,207 (93%) | |
| SE IGNORA | 138 (0.3%) | 19 (0.2%) | 119 (0.3%) | |
| SI | 3,695 (7.1%) | 727 (9.5%) | 2,968 (6.7%) | |
| DOLABDO | <0.001 | |||
| NO | 46,229 (89%) | 6,558 (86%) | 39,671 (90%) | |
| SE IGNORA | 147 (0.3%) | 20 (0.3%) | 127 (0.3%) | |
| SI | 5,545 (11%) | 1,049 (14%) | 4,496 (10%) | |
| CONJUN | <0.001 | |||
| NO | 46,816 (90%) | 7,133 (94%) | 39,683 (90%) | |
| SE IGNORA | 154 (0.3%) | 22 (0.3%) | 132 (0.3%) | |
| SI | 4,951 (9.5%) | 472 (6.2%) | 4,479 (10%) | |
| CIANOSIS | <0.001 | |||
| NO | 50,714 (98%) | 7,124 (93%) | 43,590 (98%) | |
| SE IGNORA | 149 (0.3%) | 21 (0.3%) | 128 (0.3%) | |
| SI | 1,058 (2.0%) | 482 (6.3%) | 576 (1.3%) | |
| INISUBIS | <0.001 | |||
| NO | 38,524 (74%) | 5,200 (68%) | 33,324 (75%) | |
| SE IGNORA | 200 (0.4%) | 40 (0.5%) | 160 (0.4%) | |
| SI | 13,197 (25%) | 2,387 (31%) | 10,810 (24%) | |
| ANOSMIA | <0.001 | |||
| NO | 37,419 (72%) | 5,552 (73%) | 31,867 (72%) | |
| SE IGNORA | 5,720 (11%) | 1,195 (16%) | 4,525 (10%) | |
| SI | 8,782 (17%) | 880 (12%) | 7,902 (18%) | |
| DISGEUSIA | <0.001 | |||
| NO | 38,385 (74%) | 5,636 (74%) | 32,749 (74%) | |
| SE IGNORA | 5,815 (11%) | 1,196 (16%) | 4,619 (10%) | |
| SI | 7,721 (15%) | 795 (10%) | 6,926 (16%) | |
| ASINTOMATICO | <0.001 | |||
| NO | 51,391 (99%) | 7,620 (100%) | 43,771 (99%) | |
| SE IGNORA | 34 (<0.1%) | 1 (<0.1%) | 33 (<0.1%) | |
| SI | 496 (1.0%) | 6 (<0.1%) | 490 (1.1%) | |
| DIABETES | <0.001 | |||
| NO | 44,610 (86%) | 4,896 (64%) | 39,714 (90%) | |
| SE IGNORA | 116 (0.2%) | 46 (0.6%) | 70 (0.2%) | |
| SI | 7,195 (14%) | 2,685 (35%) | 4,510 (10%) | |
| EPOC | <0.001 | |||
| NO | 51,138 (98%) | 7,314 (96%) | 43,824 (99%) | |
| SE IGNORA | 79 (0.2%) | 30 (0.4%) | 49 (0.1%) | |
| SI | 704 (1.4%) | 283 (3.7%) | 421 (1.0%) | |
| ASMA | <0.001 | |||
| NO | 50,696 (98%) | 7,419 (97%) | 43,277 (98%) | |
| SE IGNORA | 86 (0.2%) | 32 (0.4%) | 54 (0.1%) | |
| SI | 1,139 (2.2%) | 176 (2.3%) | 963 (2.2%) | |
| INMUSUPR | <0.001 | |||
| NO | 51,270 (99%) | 7,400 (97%) | 43,870 (99%) | |
| SE IGNORA | 98 (0.2%) | 38 (0.5%) | 60 (0.1%) | |
| SI | 553 (1.1%) | 189 (2.5%) | 364 (0.8%) | |
| HIPERTEN | <0.001 | |||
| NO | 40,685 (78%) | 3,581 (47%) | 37,104 (84%) | |
| SE IGNORA | 107 (0.2%) | 43 (0.6%) | 64 (0.1%) | |
| SI | 11,129 (21%) | 4,003 (52%) | 7,126 (16%) | |
| VIH/SIDA | <0.001 | |||
| NO | 51,658 (99%) | 7,549 (99%) | 44,109 (100%) | |
| SE IGNORA | 96 (0.2%) | 34 (0.4%) | 62 (0.1%) | |
| SI | 167 (0.3%) | 44 (0.6%) | 123 (0.3%) | |
| OTRACON | <0.001 | |||
| NO | 50,306 (97%) | 7,169 (94%) | 43,137 (97%) | |
| SE IGNORA | 126 (0.2%) | 41 (0.5%) | 85 (0.2%) | |
| SI | 1,489 (2.9%) | 417 (5.5%) | 1,072 (2.4%) | |
| ENFCARDI | <0.001 | |||
| NO | 50,544 (97%) | 7,063 (93%) | 43,481 (98%) | |
| SE IGNORA | 98 (0.2%) | 37 (0.5%) | 61 (0.1%) | |
| SI | 1,279 (2.5%) | 527 (6.9%) | 752 (1.7%) | |
| OBESIDAD | <0.001 | |||
| NO | 43,706 (84%) | 5,793 (76%) | 37,913 (86%) | |
| SE IGNORA | 97 (0.2%) | 38 (0.5%) | 59 (0.1%) | |
| SI | 8,118 (16%) | 1,796 (24%) | 6,322 (14%) | |
| INSRENCR | <0.001 | |||
| NO | 50,897 (98%) | 7,135 (94%) | 43,762 (99%) | |
| SE IGNORA | 92 (0.2%) | 35 (0.5%) | 57 (0.1%) | |
| SI | 932 (1.8%) | 457 (6.0%) | 475 (1.1%) | |
| TABAQUIS | <0.001 | |||
| NO | 48,985 (94%) | 6,936 (91%) | 42,049 (95%) | |
| SE IGNORA | 109 (0.2%) | 43 (0.6%) | 66 (0.1%) | |
| SI | 2,827 (5.4%) | 648 (8.5%) | 2,179 (4.9%) | |
| RECTRATA | <0.001 | |||
| NO | 47,724 (92%) | 6,730 (89%) | 40,994 (93%) | |
| SI | 3,961 (7.7%) | 815 (11%) | 3,146 (7.1%) | |
| Unknown | 236 | 82 | 154 | |
| TXCROBIA | <0.001 | |||
| NO | 18,279 (66%) | 1,152 (34%) | 17,127 (70%) | |
| SI | 9,417 (34%) | 2,209 (66%) | 7,208 (30%) | |
| Unknown | 24,225 | 4,266 | 19,959 | |
| TXANTIVI | <0.001 | |||
| NO | 44,617 (88%) | 5,716 (77%) | 38,901 (90%) | |
| SI | 6,020 (12%) | 1,661 (23%) | 4,359 (10%) | |
| Unknown | 1,284 | 250 | 1,034 | |
| ANTIVIRA | ||||
| AMANTADINA | 128 (2.1%) | 5 (0.3%) | 123 (2.8%) | |
| AMPICILINA | 1 (<0.1%) | 0 (0%) | 1 (<0.1%) | |
| ANTIFLUD D | 1 (<0.1%) | 1 (<0.1%) | 0 (0%) | |
| azitromicina | 1 (<0.1%) | 0 (0%) | 1 (<0.1%) | |
| AZITROMICINA | 5 (<0.1%) | 0 (0%) | 5 (0.1%) | |
| CLARITROMICINA | 1 (<0.1%) | 0 (0%) | 1 (<0.1%) | |
| cloroquina | 1 (<0.1%) | 0 (0%) | 1 (<0.1%) | |
| CLOROQUINA | 3 (<0.1%) | 0 (0%) | 3 (<0.1%) | |
| cloroquina, azitrominicina | 1 (<0.1%) | 0 (0%) | 1 (<0.1%) | |
| INVAZ, FLUCONAZOL, | 1 (<0.1%) | 1 (<0.1%) | 0 (0%) | |
| IVERMECTIN | 1 (<0.1%) | 0 (0%) | 1 (<0.1%) | |
| IVERMECTINA | 4 (<0.1%) | 2 (0.1%) | 2 (<0.1%) | |
| IVERTMENTINA | 1 (<0.1%) | 0 (0%) | 1 (<0.1%) | |
| KALETRA | 2 (<0.1%) | 0 (0%) | 2 (<0.1%) | |
| LEVOFLOXACINO | 1 (<0.1%) | 0 (0%) | 1 (<0.1%) | |
| LORATADINA | 3 (<0.1%) | 0 (0%) | 3 (<0.1%) | |
| OSELTAMIVIR | 5,828 (97%) | 1,643 (99%) | 4,185 (96%) | |
| REMDESIVIR | 2 (<0.1%) | 1 (<0.1%) | 1 (<0.1%) | |
| RIBAVIRINA | 5 (<0.1%) | 3 (0.2%) | 2 (<0.1%) | |
| RIMNTADINA | 9 (0.1%) | 2 (0.1%) | 7 (0.2%) | |
| rivabarina | 1 (<0.1%) | 0 (0%) | 1 (<0.1%) | |
| VIBRAMICINA | 1 (<0.1%) | 0 (0%) | 1 (<0.1%) | |
| VIRAZIDE | 2 (<0.1%) | 0 (0%) | 2 (<0.1%) | |
| XX | 1 (<0.1%) | 0 (0%) | 1 (<0.1%) | |
| ZAVAMIVIR | 21 (0.3%) | 4 (0.2%) | 17 (0.4%) | |
| Unknown | 45,896 | 5,965 | 39,931 | |
| ANTIPIRETICOS | <0.001 | |||
| NO | 23,603 (46%) | 3,147 (41%) | 20,456 (46%) | |
| SI | 28,225 (54%) | 4,444 (59%) | 23,781 (54%) | |
| Unknown | 93 | 36 | 57 | |
| VACUNADO | <0.001 | |||
| NO | 44,097 (85%) | 7,003 (92%) | 37,094 (84%) | |
| SE IGNORA | 80 (0.2%) | 23 (0.3%) | 57 (0.1%) | |
| SI | 7,700 (15%) | 590 (7.7%) | 7,110 (16%) | |
| Unknown | 44 | 11 | 33 | |
| TIPO_VAC_COV | ||||
| AstraZeneca | 3,329 (39%) | 264 (44%) | 3,065 (38%) | |
| CanSino | 533 (6.2%) | 46 (7.7%) | 487 (6.1%) | |
| Gamaleya | 1 (<0.1%) | 1 (0.2%) | 0 (0%) | |
| Janssen (Johnson & Johnson) | 85 (1.0%) | 2 (0.3%) | 83 (1.0%) | |
| Moderna | 240 (2.8%) | 1 (0.2%) | 239 (3.0%) | |
| Novavax | 3 (<0.1%) | 0 (0%) | 3 (<0.1%) | |
| Pfizer BioNTech | 2,125 (25%) | 127 (21%) | 1,998 (25%) | |
| Se desconoce | 243 (2.8%) | 60 (10%) | 183 (2.3%) | |
| Sinopharma | 26 (0.3%) | 4 (0.7%) | 22 (0.3%) | |
| Sinovac | 1,992 (23%) | 93 (16%) | 1,899 (24%) | |
| Unknown | 43,344 | 7,029 | 36,315 | |
| 1 n (%); Median (IQR) | ||||
| 2 Pearson's Chi-squared test; Wilcoxon rank sum test; Fisher's exact test | ||||
#Podemos definir que probabilidad existion a no sobrevivir si los pacientes se encontraban con diferentes condiciones
library(gtsummary)
clinicm <- coxph(Surv(deftime, evento) ~ SEXO+EDAD+TOS+ODINOGIA+DISNEA+IRRITABI+DIARREA+DOTORACI+CALOFRIOS+CEFALEA+ARTRAL+RINORREA+POLIPNEA+CONJUN+CIANOSIS+INISUBIS+ANOSMIA+DISGEUSIA, data = covidsinfilt)
cm_table <- tbl_regression(clinicm, exponentiate = TRUE)
cm_table
## Warning: The `fmt_missing()` function is deprecated and will soon be removed
## * Use the `sub_missing()` function instead
## Warning: The `fmt_missing()` function is deprecated and will soon be removed
## * Use the `sub_missing()` function instead
## Warning: The `fmt_missing()` function is deprecated and will soon be removed
## * Use the `sub_missing()` function instead
| Characteristic | HR1 | 95% CI1 | p-value |
|---|---|---|---|
| SEXO | |||
| FEMENINO | — | — | |
| MASCULINO | 1.02 | 0.97, 1.07 | 0.4 |
| EDAD | 1.01 | 1.01, 1.01 | <0.001 |
| TOS | |||
| NO | — | — | |
| SE IGNORA | 0.04 | 0.01, 0.21 | <0.001 |
| SI | 0.96 | 0.91, 1.01 | 0.14 |
| ODINOGIA | |||
| NO | — | — | |
| SE IGNORA | 0.99 | 0.43, 2.28 | >0.9 |
| SI | 0.99 | 0.94, 1.04 | 0.7 |
| DISNEA | |||
| NO | — | — | |
| SI | 1.00 | 0.92, 1.08 | >0.9 |
| IRRITABI | |||
| NO | — | — | |
| SE IGNORA | 0.52 | 0.16, 1.71 | 0.3 |
| SI | 1.03 | 0.98, 1.09 | 0.3 |
| DIARREA | |||
| NO | — | — | |
| SE IGNORA | 1.83 | 0.41, 8.20 | 0.4 |
| SI | 0.97 | 0.92, 1.03 | 0.3 |
| DOTORACI | |||
| NO | — | — | |
| SE IGNORA | 0.74 | 0.30, 1.87 | 0.5 |
| SI | 1.06 | 1.01, 1.11 | 0.020 |
| CALOFRIOS | |||
| NO | — | — | |
| SE IGNORA | 2.85 | 0.68, 12.0 | 0.2 |
| SI | 0.99 | 0.94, 1.05 | 0.9 |
| CEFALEA | |||
| NO | — | — | |
| SE IGNORA | 3.70 | 0.92, 14.8 | 0.065 |
| SI | 0.94 | 0.90, 0.99 | 0.019 |
| ARTRAL | |||
| NO | — | — | |
| SE IGNORA | 0.86 | 0.39, 1.90 | 0.7 |
| SI | 0.97 | 0.92, 1.02 | 0.2 |
| RINORREA | |||
| NO | — | — | |
| SE IGNORA | 2.37 | 0.59, 9.51 | 0.2 |
| SI | 0.92 | 0.87, 0.97 | 0.003 |
| POLIPNEA | |||
| NO | — | — | |
| SE IGNORA | 0.72 | 0.36, 1.42 | 0.3 |
| SI | 1.05 | 1.00, 1.11 | 0.053 |
| CONJUN | |||
| NO | — | — | |
| SE IGNORA | 0.46 | 0.17, 1.22 | 0.12 |
| SI | 0.97 | 0.88, 1.07 | 0.6 |
| CIANOSIS | |||
| NO | — | — | |
| SE IGNORA | 1.29 | 0.43, 3.93 | 0.6 |
| SI | 1.08 | 0.98, 1.19 | 0.11 |
| INISUBIS | |||
| NO | — | — | |
| SE IGNORA | 1.07 | 0.77, 1.47 | 0.7 |
| SI | 1.02 | 0.97, 1.08 | 0.3 |
| ANOSMIA | |||
| NO | — | — | |
| SE IGNORA | 1.14 | 0.79, 1.64 | 0.5 |
| SI | 0.87 | 0.79, 0.96 | 0.005 |
| DISGEUSIA | |||
| NO | — | — | |
| SE IGNORA | 0.96 | 0.67, 1.38 | 0.8 |
| SI | 0.92 | 0.83, 1.02 | 0.10 |
| 1 HR = Hazard Ratio, CI = Confidence Interval | |||
#sinfiltro
coxph(Surv(deftime, evento) ~DIABETES+EPOC+ASMA+INMUSUPR+HIPERTEN+ENFCARDI+OBESIDAD+INSRENCR+TABAQUIS+RECTRATA+TXCROBIA+TIPACIEN+VACUNADO, data = covidsinfilt)
## Call:
## coxph(formula = Surv(deftime, evento) ~ DIABETES + EPOC + ASMA +
## INMUSUPR + HIPERTEN + ENFCARDI + OBESIDAD + INSRENCR + TABAQUIS +
## RECTRATA + TXCROBIA + TIPACIEN + VACUNADO, data = covidsinfilt)
##
## coef exp(coef) se(coef) z p
## DIABETESSE IGNORA 1.146387 3.146804 0.364145 3.148 0.00164
## DIABETESSI 0.095667 1.100393 0.038645 2.476 0.01330
## EPOCSE IGNORA -1.035340 0.355106 1.033234 -1.002 0.31633
## EPOCSI 0.241843 1.273594 0.106991 2.260 0.02380
## ASMASE IGNORA -2.599773 0.074290 1.464112 -1.776 0.07579
## ASMASI 0.064475 1.066599 0.117929 0.547 0.58457
## INMUSUPRSE IGNORA 0.371861 1.450431 0.610118 0.609 0.54220
## INMUSUPRSI -0.049718 0.951498 0.115539 -0.430 0.66697
## HIPERTENSE IGNORA 0.389513 1.476262 0.418170 0.931 0.35161
## HIPERTENSI 0.076544 1.079550 0.037282 2.053 0.04006
## ENFCARDISE IGNORA 0.662666 1.939958 0.465427 1.424 0.15451
## ENFCARDISI 0.083379 1.086954 0.072130 1.156 0.24770
## OBESIDADSE IGNORA 0.640214 1.896887 0.415831 1.540 0.12366
## OBESIDADSI -0.012988 0.987096 0.040758 -0.319 0.74998
## INSRENCRSE IGNORA 1.015707 2.761316 0.579607 1.752 0.07970
## INSRENCRSI 0.356799 1.428749 0.087146 4.094 4.23e-05
## TABAQUISSE IGNORA -0.117538 0.889107 0.334301 -0.352 0.72514
## TABAQUISSI -0.087471 0.916245 0.062014 -1.410 0.15839
## RECTRATASI 0.045472 1.046521 0.050894 0.893 0.37161
## TXCROBIASI -0.087650 0.916081 0.037941 -2.310 0.02088
## TIPACIENHOSPITALIZADO 0.508555 1.662887 0.310109 1.640 0.10102
## VACUNADOSI -0.002949 0.997055 0.054811 -0.054 0.95709
##
## Likelihood ratio test=86.7 on 22 df, p=1.24e-09
## n= 3294, number of events= 3294
## (48627 observations deleted due to missingness)
comorbcm <- coxph(Surv(deftime, evento) ~DIABETES+EPOC+ASMA+INMUSUPR+HIPERTEN+ENFCARDI+OBESIDAD+INSRENCR+TABAQUIS+RECTRATA+TXCROBIA+TIPACIEN+VACUNADO, data = covidsinfilt)
cm_table <- tbl_regression(comorbcm, exponentiate = TRUE)
cm_table
## Warning: The `fmt_missing()` function is deprecated and will soon be removed
## * Use the `sub_missing()` function instead
## Warning: The `fmt_missing()` function is deprecated and will soon be removed
## * Use the `sub_missing()` function instead
## Warning: The `fmt_missing()` function is deprecated and will soon be removed
## * Use the `sub_missing()` function instead
| Characteristic | HR1 | 95% CI1 | p-value |
|---|---|---|---|
| DIABETES | |||
| NO | — | — | |
| SE IGNORA | 3.15 | 1.54, 6.42 | 0.002 |
| SI | 1.10 | 1.02, 1.19 | 0.013 |
| EPOC | |||
| NO | — | — | |
| SE IGNORA | 0.36 | 0.05, 2.69 | 0.3 |
| SI | 1.27 | 1.03, 1.57 | 0.024 |
| ASMA | |||
| NO | — | — | |
| SE IGNORA | 0.07 | 0.00, 1.31 | 0.076 |
| SI | 1.07 | 0.85, 1.34 | 0.6 |
| INMUSUPR | |||
| NO | — | — | |
| SE IGNORA | 1.45 | 0.44, 4.80 | 0.5 |
| SI | 0.95 | 0.76, 1.19 | 0.7 |
| HIPERTEN | |||
| NO | — | — | |
| SE IGNORA | 1.48 | 0.65, 3.35 | 0.4 |
| SI | 1.08 | 1.00, 1.16 | 0.040 |
| ENFCARDI | |||
| NO | — | — | |
| SE IGNORA | 1.94 | 0.78, 4.83 | 0.2 |
| SI | 1.09 | 0.94, 1.25 | 0.2 |
| OBESIDAD | |||
| NO | — | — | |
| SE IGNORA | 1.90 | 0.84, 4.29 | 0.12 |
| SI | 0.99 | 0.91, 1.07 | 0.7 |
| INSRENCR | |||
| NO | — | — | |
| SE IGNORA | 2.76 | 0.89, 8.60 | 0.080 |
| SI | 1.43 | 1.20, 1.69 | <0.001 |
| TABAQUIS | |||
| NO | — | — | |
| SE IGNORA | 0.89 | 0.46, 1.71 | 0.7 |
| SI | 0.92 | 0.81, 1.03 | 0.2 |
| RECTRATA | |||
| NO | — | — | |
| SI | 1.05 | 0.95, 1.16 | 0.4 |
| TXCROBIA | |||
| NO | — | — | |
| SI | 0.92 | 0.85, 0.99 | 0.021 |
| TIPACIEN | |||
| AMBULATORIO | — | — | |
| HOSPITALIZADO | 1.66 | 0.91, 3.05 | 0.10 |
| VACUNADO | |||
| NO | — | — | |
| SI | 1.00 | 0.90, 1.11 | >0.9 |
| 1 HR = Hazard Ratio, CI = Confidence Interval | |||
library(ggthemes)
sexo<-survfit(Surv(deftime, evento) ~SEXO, data = covidsinfilt)
sexkmplot<-ggsurvplot(sexo,
xlab = "Days",
ylab = "Survival Probability", xlim = c(0, 120),conf.int=T, risk.table = T,
pval= TRUE, pval.coord = c(100, 0.25),fontsize = 5, break.time.by = 20, legend.title = "Sex", legend.labs = c("Female", "Male"))
sexkmplot
sexhr <- coxph(Surv(deftime, evento) ~SEXO, data = covidsinfilt)
sexhr_table <- tbl_regression(sexhr, exponentiate = TRUE)
sexhr_table
## Warning: The `fmt_missing()` function is deprecated and will soon be removed
## * Use the `sub_missing()` function instead
## Warning: The `fmt_missing()` function is deprecated and will soon be removed
## * Use the `sub_missing()` function instead
## Warning: The `fmt_missing()` function is deprecated and will soon be removed
## * Use the `sub_missing()` function instead
| Characteristic | HR1 | 95% CI1 | p-value |
|---|---|---|---|
| SEXO | |||
| FEMENINO | — | — | |
| MASCULINO | 1.03 | 0.98, 1.08 | 0.2 |
| 1 HR = Hazard Ratio, CI = Confidence Interval | |||
#stratificar edad
covidsinfilt<-covidsinfilt %>%
mutate(
# para crear las categorias requeridas
age_group = dplyr::case_when(
EDAD <= 18 ~ "<18",
EDAD >= 18 & EDAD <= 40 ~ "18-40",
EDAD >= 40 & EDAD <= 60 ~ "40-60",
EDAD >= 60 & EDAD <= 80 ~ "60-80",
EDAD > 80 ~ ">80"
),
# Convertimos a factor
age_group = factor(
age_group,
level = c("<18","60-80","18-40", "40-60",">80")))
covidsinfilt %>% select(age_group,EDAD,estatus) %>% tbl_summary(by=estatus) %>% add_p() %>% add_overall()
## Warning: The `fmt_missing()` function is deprecated and will soon be removed
## * Use the `sub_missing()` function instead
| Characteristic | Overall, N = 51,9211 | No sobrevivió, N = 7,6271 | Sobrevivió, N = 44,2941 | p-value2 |
|---|---|---|---|---|
| age_group | <0.001 | |||
| <18 | 2,028 (3.9%) | 23 (0.3%) | 2,005 (4.5%) | |
| 60-80 | 9,100 (18%) | 3,841 (50%) | 5,259 (12%) | |
| 18-40 | 21,377 (41%) | 457 (6.0%) | 20,920 (47%) | |
| 40-60 | 17,461 (34%) | 2,157 (28%) | 15,304 (35%) | |
| >80 | 1,955 (3.8%) | 1,149 (15%) | 806 (1.8%) | |
| EDAD | 43 (31, 58) | 67 (56, 76) | 40 (29, 52) | <0.001 |
| 1 n (%); Median (IQR) | ||||
| 2 Pearson's Chi-squared test; Wilcoxon rank sum test | ||||
agegr <- survfit(Surv(deftime, evento) ~age_group, data = covidsinfilt)
tbl_survfit(
covidsinfilt, y = Surv(deftime, evento),
include = c(age_group),
probs = 0.5,
label_header = "**Median Survival**"
) %>%
add_p()
## Warning: The `fmt_missing()` function is deprecated and will soon be removed
## * Use the `sub_missing()` function instead
| Characteristic | Median Survival | p-value1 |
|---|---|---|
| age_group | <0.001 | |
| <18 | 8.0 (5.0, 18) | |
| 60-80 | 14 (14, 15) | |
| 18-40 | 15 (15, 17) | |
| 40-60 | 15 (15, 16) | |
| >80 | 12 (11, 12) | |
| 1 Log-rank test | ||
agegrkmplot<-ggsurvplot(agegr,
xlab = "Days",
ylab = "Survival Probability", xlim = c(0, 120),conf.int=T, risk.table = T,
pval= TRUE, pval.coord = c(100, 0.25),fontsize = 5, break.time.by = 20, legend.title = "Age Group")
agegrkmplot
agestrat<-covidsinfilt %>% filter(age_group == "<18" | age_group == "60-80")
agestrata<- survfit(Surv(deftime, evento) ~ age_group, data = agestrat)
ggsurvplot(agestrata,
xlab = "Days",
ylab = "Survival Probability", xlim = c(0, 120), conf.int=T, risk.table = T,
pval= TRUE, pval.coord = c(100, 0.25),fontsize = 5, break.time.by = 20, legend.title = "Age Group")
agerh <- coxph(Surv(deftime, evento) ~age_group, data = agestrat)
tbl_regression(agerh, exponentiate = TRUE)
## Warning: The `fmt_missing()` function is deprecated and will soon be removed
## * Use the `sub_missing()` function instead
## Warning: The `fmt_missing()` function is deprecated and will soon be removed
## * Use the `sub_missing()` function instead
## Warning: The `fmt_missing()` function is deprecated and will soon be removed
## * Use the `sub_missing()` function instead
| Characteristic | HR1 | 95% CI1 | p-value |
|---|---|---|---|
| age_group | |||
| <18 | — | — | |
| 60-80 | 0.63 | 0.42, 0.95 | 0.028 |
| 18-40 | |||
| 40-60 | |||
| >80 | |||
| 1 HR = Hazard Ratio, CI = Confidence Interval | |||
#TIPO DE PACIENTE
tippax <- survfit(Surv(deftime, evento) ~ TIPACIEN, data = covidsinfilt)
tbl_survfit(
covidsinfilt, y = Surv(deftime, evento),
include = c(TIPACIEN),
probs = 0.5,
label_header = "**Median Survival**"
) %>% add_p()
## Warning: The `fmt_missing()` function is deprecated and will soon be removed
## * Use the `sub_missing()` function instead
| Characteristic | Median Survival | p-value1 |
|---|---|---|
| TIPACIEN | 0.001 | |
| AMBULATORIO | 16 (12, 22) | |
| HOSPITALIZADO | 14 (14, 15) | |
| 1 Log-rank test | ||
tippaxkmplot<-ggsurvplot(tippax,
xlab = "Days",
ylab = "Survival Probability", xlim = c(0, 120),conf.int=T, risk.table = T,
pval= TRUE, pval.coord = c(100, 0.25),fontsize = 5, break.time.by = 20, legend.title = "Patient:",
legend.labs = c("Outpatient", "Hospitalized"))
tippaxkmplot
tippaxcox <- coxph(Surv(deftime, evento) ~TIPACIEN, data = agestrat)
tbl_regression(tippaxcox, exponentiate = TRUE)
## Warning: The `fmt_missing()` function is deprecated and will soon be removed
## * Use the `sub_missing()` function instead
## Warning: The `fmt_missing()` function is deprecated and will soon be removed
## * Use the `sub_missing()` function instead
## Warning: The `fmt_missing()` function is deprecated and will soon be removed
## * Use the `sub_missing()` function instead
| Characteristic | HR1 | 95% CI1 | p-value |
|---|---|---|---|
| TIPACIEN | |||
| AMBULATORIO | — | — | |
| HOSPITALIZADO | 1.28 | 0.84, 1.95 | 0.2 |
| 1 HR = Hazard Ratio, CI = Confidence Interval | |||
#INTUBADO
intub <- survfit(Surv(deftime, evento) ~INTUBADO, data = covidsinfilt)
tbl_survfit(
covidsinfilt, y = Surv(deftime, evento),
include = c(INTUBADO),
probs = 0.5,
label_header = "**Median Survival**"
) %>%
add_p()
## Warning: The `fmt_missing()` function is deprecated and will soon be removed
## * Use the `sub_missing()` function instead
| Characteristic | Median Survival | p-value1 |
|---|---|---|
| INTUBADO | <0.001 | |
| NO | 14 (14, 14) | |
| SI | 16 (15, 16) | |
| 1 Log-rank test | ||
intubkmplot<-ggsurvplot(intub,
xlab = "Days",
ylab = "Survival Probability", xlim = c(0, 120),conf.int=T, risk.table = T,
pval= TRUE, pval.coord = c(100, 0.25),fontsize = 5, break.time.by = 20, legend.title = "Intubated:",
legend.labs = c("Not", "Yes"))
intubkmplot
intubcox <- coxph(Surv(deftime, evento) ~INTUBADO, data = agestrat)
tbl_regression(intubcox, exponentiate = TRUE)
## Warning: The `fmt_missing()` function is deprecated and will soon be removed
## * Use the `sub_missing()` function instead
## Warning: The `fmt_missing()` function is deprecated and will soon be removed
## * Use the `sub_missing()` function instead
## Warning: The `fmt_missing()` function is deprecated and will soon be removed
## * Use the `sub_missing()` function instead
| Characteristic | HR1 | 95% CI1 | p-value |
|---|---|---|---|
| INTUBADO | |||
| NO | — | — | |
| SI | 0.88 | 0.81, 0.95 | <0.001 |
| 1 HR = Hazard Ratio, CI = Confidence Interval | |||
#DIAGPROB
sev <- survfit(Surv(deftime, evento) ~DIAGPROB, data = covidsinfilt)
tbl_survfit(
covidsinfilt, y = Surv(deftime, evento),
include = c(DIAGPROB),
probs = 0.5,
label_header = "**Median Survival**"
) %>%
add_p()
## Warning: The `fmt_missing()` function is deprecated and will soon be removed
## * Use the `sub_missing()` function instead
| Characteristic | Median Survival | p-value1 |
|---|---|---|
| DIAGPROB | 0.008 | |
| ENFERMEDAD TIPO INFLUENZA (ETI) | 14 (12, 19) | |
| INFECCION RESPIRATORIA AGUDA GRAVE (IRAG) | 14 (14, 15) | |
| 1 Log-rank test | ||
sevkmplot<-ggsurvplot(sev,
xlab = "Days",
ylab = "Survival Probability", xlim = c(0, 120),conf.int=T, risk.table = T,
pval= TRUE, pval.coord = c(100, 0.25),fontsize = 5, break.time.by = 20, legend.title = "Severity",
legend.labs = c("ETI", "SARI"))
sevkmplot
clasicox <- coxph(Surv(deftime, evento) ~DIAGPROB, data = agestrat)
tbl_regression(clasicox, exponentiate = TRUE)
## Warning: The `fmt_missing()` function is deprecated and will soon be removed
## * Use the `sub_missing()` function instead
## Warning: The `fmt_missing()` function is deprecated and will soon be removed
## * Use the `sub_missing()` function instead
## Warning: The `fmt_missing()` function is deprecated and will soon be removed
## * Use the `sub_missing()` function instead
| Characteristic | HR1 | 95% CI1 | p-value |
|---|---|---|---|
| DIAGPROB | |||
| ENFERMEDAD TIPO INFLUENZA (ETI) | — | — | |
| INFECCION RESPIRATORIA AGUDA GRAVE (IRAG) | 1.26 | 0.89, 1.77 | 0.2 |
| 1 HR = Hazard Ratio, CI = Confidence Interval | |||
library(survminer)
library(survival)
covidsincox <-covidsinfilt %>% filter(if_all(c(SEXO, TIPACIEN, INTUBADO, DIAGPROB), ~ .x != "SE IGNORA"))
DEMO <- coxph(Surv(deftime, evento) ~ SEXO + INTUBADO + DIAGPROB , data = covidsincox)
cm_table <- tbl_regression(DEMO, exponentiate = TRUE)
cm_table
## Warning: The `fmt_missing()` function is deprecated and will soon be removed
## * Use the `sub_missing()` function instead
## Warning: The `fmt_missing()` function is deprecated and will soon be removed
## * Use the `sub_missing()` function instead
## Warning: The `fmt_missing()` function is deprecated and will soon be removed
## * Use the `sub_missing()` function instead
| Characteristic | HR1 | 95% CI1 | p-value |
|---|---|---|---|
| SEXO | |||
| FEMENINO | — | — | |
| MASCULINO | 1.03 | 0.99, 1.08 | 0.15 |
| INTUBADO | |||
| NO | — | — | |
| SI | 0.89 | 0.84, 0.94 | <0.001 |
| DIAGPROB | |||
| ENFERMEDAD TIPO INFLUENZA (ETI) | — | — | |
| INFECCION RESPIRATORIA AGUDA GRAVE (IRAG) | 0.88 | 0.55, 1.40 | 0.6 |
| 1 HR = Hazard Ratio, CI = Confidence Interval | |||
library(forestmodel)
print(forest_model(coxph(Surv(deftime, evento) ~ SEXO + INTUBADO + DIAGPROB , data = covidsincox)))
## Warning in recalculate_width_panels(panel_positions, mapped_text =
## mapped_text, : Unable to resize forest panel to be smaller than its heading;
## consider a smaller text size