library(funModeling) 
## Loading required package: Hmisc
## Loading required package: lattice
## Loading required package: survival
## Loading required package: Formula
## Loading required package: ggplot2
## 
## Attaching package: 'Hmisc'
## The following objects are masked from 'package:base':
## 
##     format.pval, units
## funModeling v.1.9.4 :)
## Examples and tutorials at livebook.datascienceheroes.com
##  / Now in Spanish: librovivodecienciadedatos.ai
library(tidyverse) 
## ── Attaching packages
## ───────────────────────────────────────
## tidyverse 1.3.2 ──
## ✔ tibble  3.1.7     ✔ dplyr   1.0.9
## ✔ tidyr   1.2.0     ✔ stringr 1.4.0
## ✔ readr   2.1.2     ✔ forcats 0.5.1
## ✔ purrr   0.3.4     
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter()    masks stats::filter()
## ✖ dplyr::lag()       masks stats::lag()
## ✖ dplyr::src()       masks Hmisc::src()
## ✖ dplyr::summarize() masks Hmisc::summarize()
library(Hmisc)
library(tidyverse)
library(ggpubr)
library(gtable)
library(gt)
## 
## Attaching package: 'gt'
## 
## The following object is masked from 'package:Hmisc':
## 
##     html
library(survival)
library(ggpubr)
library(survminer)
## 
## Attaching package: 'survminer'
## 
## The following object is masked from 'package:survival':
## 
##     myeloma
library(readr)
library(gtsummary)

dbcovid <- read_delim("C:/Users/fidel/OneDrive - CINVESTAV/Proyecto colaboración SSA/base de datos/SISVER/dbcovid.txt", 
                      delim = "|", escape_double = FALSE, trim_ws = TRUE)
## Rows: 429902 Columns: 130
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: "|"
## chr (106): ORIGEN, SECTOR, CVEMUNUNI, ENTIDAD, DELEGA, UNIDAD, FECHREG, CLUE...
## dbl  (12): ID_REGISTRO, CVEENTUNI, CVENTINE, CVELOCAL, LATLOCA, LONGLOCA, SE...
## lgl  (12): RESDEFIN2, PAISORI, FINGMEX, PAISTRAN1, PAISTRAN2, PAISTRAN3, PAI...
## 
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
covidsin<-dbcovid 

covidsinfilt <-  covidsin %>% filter(RESDEFIN == "SARS-CoV-2" & CLASCOVID19 =="CONF LAB")

covidsinfilt$FECINISI <- strptime(as.character(covidsinfilt$FECINISI), "%d/%m/%Y")

covidsinfilt$FECINISI = as.Date(covidsinfilt$FECINISI)

TOTAL DE CASOS CONFIRMADOS Y POSITIVOS A SARS-CoV-2 de enero 2020 a diciembre 2022

freq(covidsinfilt$RESDEFIN)
## Warning: `guides(<scale> = FALSE)` is deprecated. Please use `guides(<scale> =
## "none")` instead.

CURVA EPIDEMIOLOGICA

library(lubridate)
## 
## Attaching package: 'lubridate'
## The following objects are masked from 'package:base':
## 
##     date, intersect, setdiff, union
library(epiR); library(ggplot2); library(scales); library(zoo)
## Warning: package 'epiR' was built under R version 4.2.2
## Package epiR 2.0.53 is loaded
## Type help(epi.about) for summary information
## Type browseVignettes(package = 'epiR') to learn how to use epiR for applied epidemiological analyses
## 
## 
## Attaching package: 'scales'
## The following object is masked from 'package:purrr':
## 
##     discard
## The following object is masked from 'package:readr':
## 
##     col_factor
## 
## Attaching package: 'zoo'
## The following objects are masked from 'package:base':
## 
##     as.Date, as.Date.numeric
library(plotly)
## 
## Attaching package: 'plotly'
## The following object is masked from 'package:Hmisc':
## 
##     subplot
## The following object is masked from 'package:ggplot2':
## 
##     last_plot
## The following object is masked from 'package:stats':
## 
##     filter
## The following object is masked from 'package:graphics':
## 
##     layout
epiplot <-ggplot(data = covidsinfilt, aes(x = as.Date(FECINISI))) +
  theme_bw() +
  geom_histogram(binwidth = 7, colour = "black", fill = "#3e78d6", size = 0.1) +
  geom_density(aes(y = ..density.. * (nrow(covidsinfilt) * 10)), colour = "red", size=0.8) +
  scale_x_date( labels = date_format("%d/%m/%Y"), 
     name = "Date") +
  scale_y_continuous(breaks = seq(from = 0, to =1500, by = 100), name = "Number of cases") + theme_classic()+
  theme(axis.text.x = element_text(angle = 90, hjust = 1))

  ggplotly(epiplot)

ANALISIS DE SUPERVIVENCIA

PREPARACIÓN DE LOS DATO: LIMPIEZA, FILTRADO

library(gt)
#crear columna de estatus
covidsinfilt <- covidsinfilt %>% mutate(estatus = case_when(is.na(FECDEF) ~ "Sobrevivió"))

covidsinfilt <- covidsinfilt %>% replace_na(list(estatus = "No sobrevivió")) #con la función "remplace_na"

library(lubridate)

covidsinfilt$FECDEF <- strptime(as.character(covidsinfilt$FECDEF), "%d/%m/%Y")

covidsinfilt$FECDEF = as.Date(covidsinfilt$FECDEF)

str(covidsinfilt$FECDEF)
##  Date[1:51921], format: NA NA NA NA "2020-05-17" NA NA "2020-09-09" NA "2020-05-03" NA NA NA ...
covidsinfilt <- covidsinfilt %>% mutate(deftime = as.double(FECDEF-FECINISI)) 

covidsinfilt %>% select(FECDEF,FECINISI, deftime, estatus)
covidsinfilt <- covidsinfilt %>% mutate(evento = ifelse(is.na(estatus) | estatus == "No sobrevivió", 1, 0)) 

covidsinfilt %>% select(evento, estatus,deftime)

ANALISIS DE FRECUENCIAS OVERALL VARIABLES

covidsinfilt %>% select(RESDEFIN,CLASCOVID19,SEXO,EDAD,ESINDIGE,OCUPACIO,TIPACIEN,EVOLUCI,INTUBADO,DIGCLINE,DIAGPROB,FIEBRE:TXANTIVI,ANTIVIRA,
                                     ANTIPIRETICOS,VACUNADO,TIPO_VAC_COV,estatus) %>% freq()
## Warning: `guides(<scale> = FALSE)` is deprecated. Please use `guides(<scale> =
## "none")` instead.
##     RESDEFIN frequency percentage cumulative_perc
## 1 SARS-CoV-2     51921        100             100
## Warning: `guides(<scale> = FALSE)` is deprecated. Please use `guides(<scale> =
## "none")` instead.

##   CLASCOVID19 frequency percentage cumulative_perc
## 1    CONF LAB     51921        100             100
## Warning: `guides(<scale> = FALSE)` is deprecated. Please use `guides(<scale> =
## "none")` instead.

##        SEXO frequency percentage cumulative_perc
## 1  FEMENINO     27082      52.16           52.16
## 2 MASCULINO     24839      47.84          100.00
## Warning: `guides(<scale> = FALSE)` is deprecated. Please use `guides(<scale> =
## "none")` instead.

##   ESINDIGE frequency percentage cumulative_perc
## 1       NO     49789      95.89           95.89
## 2     <NA>      1982       3.82           99.71
## 3       SI       150       0.29          100.00
## Warning: `guides(<scale> = FALSE)` is deprecated. Please use `guides(<scale> =
## "none")` instead.

##                                          OCUPACIO frequency percentage
## 1                                       EMPLEADOS     15861      30.55
## 2                                           OTROS      8517      16.40
## 3                                           HOGAR      7207      13.88
## 4                           JUBILADO / PENSIONADO      3418       6.58
## 5                                      ENFERMERAS      2852       5.49
## 6                                     ESTUDIANTES      2615       5.04
## 7                                    DESEMPLEADOS      2489       4.79
## 8                  OTROS TRABAJADORES DE LA SALUD      2294       4.42
## 9                                         MEDICOS      2037       3.92
## 10                                       MAESTROS      1116       2.15
## 11                           OTROS PROFESIONISTAS      1102       2.12
## 12    COMERCIANTES DE MERCADOS FIJOS O AMBULANTES       707       1.36
## 13                                     CAMPESINOS       511       0.98
## 14                                       CHOFERES       383       0.74
## 15                                        OBREROS       316       0.61
## 16                                 LABORATORISTAS       187       0.36
## 17 GERENTES O PROPIETARIOS DE EMPRESAS O NEGOCIOS       186       0.36
## 18                                      DENTISTAS       123       0.24
##    cumulative_perc
## 1            30.55
## 2            46.95
## 3            60.83
## 4            67.41
## 5            72.90
## 6            77.94
## 7            82.73
## 8            87.15
## 9            91.07
## 10           93.22
## 11           95.34
## 12           96.70
## 13           97.68
## 14           98.42
## 15           99.03
## 16           99.39
## 17           99.75
## 18          100.00
## Warning: `guides(<scale> = FALSE)` is deprecated. Please use `guides(<scale> =
## "none")` instead.

##        TIPACIEN frequency percentage cumulative_perc
## 1   AMBULATORIO     36345         70              70
## 2 HOSPITALIZADO     15576         30             100
## Warning: `guides(<scale> = FALSE)` is deprecated. Please use `guides(<scale> =
## "none")` instead.

##                     EVOLUCI frequency percentage cumulative_perc
## 1     SEGUIMIENTO TERMINADO     36726      70.73           70.73
## 2                 DEFUNCION      7627      14.69           85.42
## 3            ALTA - MEJORIA      6720      12.94           98.36
## 4         ALTA - VOLUNTARIA       329       0.63           98.99
## 5           ALTA - TRASLADO       200       0.39           99.38
## 6           ALTA - CURACION       152       0.29           99.67
## 7  SEGUIMIENTO DOMICILIARIO        78       0.15           99.82
## 8            EN TRATAMIENTO        45       0.09           99.91
## 9              CASO GRAVE -        16       0.03           99.94
## 10            CASO NO GRAVE        16       0.03           99.97
## 11               REFERENCIA        11       0.02           99.99
## 12    CASO GRAVE - TRASLADO         1       0.00          100.00
## Warning: `guides(<scale> = FALSE)` is deprecated. Please use `guides(<scale> =
## "none")` instead.

##   INTUBADO frequency percentage cumulative_perc
## 1     <NA>     37155      71.56           71.56
## 2       NO     12772      24.60           96.16
## 3       SI      1994       3.84          100.00
## Warning: `guides(<scale> = FALSE)` is deprecated. Please use `guides(<scale> =
## "none")` instead.

##   DIGCLINE frequency percentage cumulative_perc
## 1       NO     40832      78.64           78.64
## 2       SI     11089      21.36          100.00
## Warning: `guides(<scale> = FALSE)` is deprecated. Please use `guides(<scale> =
## "none")` instead.

##                                    DIAGPROB frequency percentage
## 1           ENFERMEDAD TIPO INFLUENZA (ETI)     37331       71.9
## 2 INFECCION RESPIRATORIA AGUDA GRAVE (IRAG)     14590       28.1
##   cumulative_perc
## 1            71.9
## 2           100.0
## Warning: `guides(<scale> = FALSE)` is deprecated. Please use `guides(<scale> =
## "none")` instead.

##      FIEBRE frequency percentage cumulative_perc
## 1        SI     38433      74.02           74.02
## 2        NO     13467      25.94           99.96
## 3 SE IGNORA        21       0.04          100.00
## Warning: `guides(<scale> = FALSE)` is deprecated. Please use `guides(<scale> =
## "none")` instead.

##         TOS frequency percentage cumulative_perc
## 1        SI     40651      78.29           78.29
## 2        NO     11253      21.67           99.96
## 3 SE IGNORA        17       0.03          100.00
## Warning: `guides(<scale> = FALSE)` is deprecated. Please use `guides(<scale> =
## "none")` instead.

##    ODINOGIA frequency percentage cumulative_perc
## 1        NO     29052      55.95           55.95
## 2        SI     22762      43.84           99.79
## 3 SE IGNORA       107       0.21          100.00
## Warning: `guides(<scale> = FALSE)` is deprecated. Please use `guides(<scale> =
## "none")` instead.

##      DISNEA frequency percentage cumulative_perc
## 1        NO     34258      65.98           65.98
## 2        SI     17653      34.00           99.98
## 3 SE IGNORA        10       0.02          100.00
## Warning: `guides(<scale> = FALSE)` is deprecated. Please use `guides(<scale> =
## "none")` instead.

##    IRRITABI frequency percentage cumulative_perc
## 1        NO     35195      67.79           67.79
## 2        SI     16688      32.14           99.93
## 3 SE IGNORA        38       0.07          100.00
## Warning: `guides(<scale> = FALSE)` is deprecated. Please use `guides(<scale> =
## "none")` instead.

##     DIARREA frequency percentage cumulative_perc
## 1        NO     42489      81.83           81.83
## 2        SI      9395      18.09           99.92
## 3 SE IGNORA        37       0.07          100.00
## Warning: `guides(<scale> = FALSE)` is deprecated. Please use `guides(<scale> =
## "none")` instead.

##    DOTORACI frequency percentage cumulative_perc
## 1        NO     37627      72.47           72.47
## 2        SI     14190      27.33           99.80
## 3 SE IGNORA       104       0.20          100.00
## Warning: `guides(<scale> = FALSE)` is deprecated. Please use `guides(<scale> =
## "none")` instead.

##   CALOFRIOS frequency percentage cumulative_perc
## 1        NO     35428      68.23           68.23
## 2        SI     16399      31.58           99.81
## 3 SE IGNORA        94       0.18          100.00
## Warning: `guides(<scale> = FALSE)` is deprecated. Please use `guides(<scale> =
## "none")` instead.

##     CEFALEA frequency percentage cumulative_perc
## 1        SI     40789      78.56           78.56
## 2        NO     11094      21.37           99.93
## 3 SE IGNORA        38       0.07          100.00
## Warning: `guides(<scale> = FALSE)` is deprecated. Please use `guides(<scale> =
## "none")` instead.

##    MIALGIAS frequency percentage cumulative_perc
## 1        SI     31037      59.78           59.78
## 2        NO     20777      40.02           99.80
## 3 SE IGNORA       107       0.21          100.00
## Warning: `guides(<scale> = FALSE)` is deprecated. Please use `guides(<scale> =
## "none")` instead.

##      ARTRAL frequency percentage cumulative_perc
## 1        SI     28609      55.10           55.10
## 2        NO     23199      44.68           99.78
## 3 SE IGNORA       113       0.22          100.00
## Warning: `guides(<scale> = FALSE)` is deprecated. Please use `guides(<scale> =
## "none")` instead.

##    ATAEDOGE frequency percentage cumulative_perc
## 1        NO     29458      56.74           56.74
## 2        SI     22340      43.03           99.77
## 3 SE IGNORA       123       0.24          100.00
## Warning: `guides(<scale> = FALSE)` is deprecated. Please use `guides(<scale> =
## "none")` instead.

##    RINORREA frequency percentage cumulative_perc
## 1        NO     33149      63.85           63.85
## 2        SI     18649      35.92           99.77
## 3 SE IGNORA       123       0.24          100.00
## Warning: `guides(<scale> = FALSE)` is deprecated. Please use `guides(<scale> =
## "none")` instead.

##    POLIPNEA frequency percentage cumulative_perc
## 1        NO     46594      89.74           89.74
## 2        SI      5194      10.00           99.74
## 3 SE IGNORA       133       0.26          100.00
## Warning: `guides(<scale> = FALSE)` is deprecated. Please use `guides(<scale> =
## "none")` instead.

##      VOMITO frequency percentage cumulative_perc
## 1        NO     48088      92.62           92.62
## 2        SI      3695       7.12           99.74
## 3 SE IGNORA       138       0.27          100.00
## Warning: `guides(<scale> = FALSE)` is deprecated. Please use `guides(<scale> =
## "none")` instead.

##     DOLABDO frequency percentage cumulative_perc
## 1        NO     46229      89.04           89.04
## 2        SI      5545      10.68           99.72
## 3 SE IGNORA       147       0.28          100.00
## Warning: `guides(<scale> = FALSE)` is deprecated. Please use `guides(<scale> =
## "none")` instead.

##      CONJUN frequency percentage cumulative_perc
## 1        NO     46816      90.17           90.17
## 2        SI      4951       9.54           99.71
## 3 SE IGNORA       154       0.30          100.00
## Warning: `guides(<scale> = FALSE)` is deprecated. Please use `guides(<scale> =
## "none")` instead.

##    CIANOSIS frequency percentage cumulative_perc
## 1        NO     50714      97.68           97.68
## 2        SI      1058       2.04           99.72
## 3 SE IGNORA       149       0.29          100.00
## Warning: `guides(<scale> = FALSE)` is deprecated. Please use `guides(<scale> =
## "none")` instead.

##    INISUBIS frequency percentage cumulative_perc
## 1        NO     38524      74.20           74.20
## 2        SI     13197      25.42           99.62
## 3 SE IGNORA       200       0.39          100.00
## Warning: `guides(<scale> = FALSE)` is deprecated. Please use `guides(<scale> =
## "none")` instead.

##     ANOSMIA frequency percentage cumulative_perc
## 1        NO     37419      72.07           72.07
## 2        SI      8782      16.91           88.98
## 3 SE IGNORA      5720      11.02          100.00
## Warning: `guides(<scale> = FALSE)` is deprecated. Please use `guides(<scale> =
## "none")` instead.

##   DISGEUSIA frequency percentage cumulative_perc
## 1        NO     38385      73.93           73.93
## 2        SI      7721      14.87           88.80
## 3 SE IGNORA      5815      11.20          100.00
## Warning: `guides(<scale> = FALSE)` is deprecated. Please use `guides(<scale> =
## "none")` instead.

##   ASINTOMATICO frequency percentage cumulative_perc
## 1           NO     51391      98.98           98.98
## 2           SI       496       0.96           99.94
## 3    SE IGNORA        34       0.07          100.00
## Warning: `guides(<scale> = FALSE)` is deprecated. Please use `guides(<scale> =
## "none")` instead.

##    DIABETES frequency percentage cumulative_perc
## 1        NO     44610      85.92           85.92
## 2        SI      7195      13.86           99.78
## 3 SE IGNORA       116       0.22          100.00
## Warning: `guides(<scale> = FALSE)` is deprecated. Please use `guides(<scale> =
## "none")` instead.

##        EPOC frequency percentage cumulative_perc
## 1        NO     51138      98.49           98.49
## 2        SI       704       1.36           99.85
## 3 SE IGNORA        79       0.15          100.00
## Warning: `guides(<scale> = FALSE)` is deprecated. Please use `guides(<scale> =
## "none")` instead.

##        ASMA frequency percentage cumulative_perc
## 1        NO     50696      97.64           97.64
## 2        SI      1139       2.19           99.83
## 3 SE IGNORA        86       0.17          100.00
## Warning: `guides(<scale> = FALSE)` is deprecated. Please use `guides(<scale> =
## "none")` instead.

##    INMUSUPR frequency percentage cumulative_perc
## 1        NO     51270      98.75           98.75
## 2        SI       553       1.07           99.82
## 3 SE IGNORA        98       0.19          100.00
## Warning: `guides(<scale> = FALSE)` is deprecated. Please use `guides(<scale> =
## "none")` instead.

##    HIPERTEN frequency percentage cumulative_perc
## 1        NO     40685      78.36           78.36
## 2        SI     11129      21.43           99.79
## 3 SE IGNORA       107       0.21          100.00
## Warning: `guides(<scale> = FALSE)` is deprecated. Please use `guides(<scale> =
## "none")` instead.

##    VIH.SIDA frequency percentage cumulative_perc
## 1        NO     51658      99.49           99.49
## 2        SI       167       0.32           99.81
## 3 SE IGNORA        96       0.18          100.00
## Warning: `guides(<scale> = FALSE)` is deprecated. Please use `guides(<scale> =
## "none")` instead.

##     OTRACON frequency percentage cumulative_perc
## 1        NO     50306      96.89           96.89
## 2        SI      1489       2.87           99.76
## 3 SE IGNORA       126       0.24          100.00
## Warning: `guides(<scale> = FALSE)` is deprecated. Please use `guides(<scale> =
## "none")` instead.

##    ENFCARDI frequency percentage cumulative_perc
## 1        NO     50544      97.35           97.35
## 2        SI      1279       2.46           99.81
## 3 SE IGNORA        98       0.19          100.00
## Warning: `guides(<scale> = FALSE)` is deprecated. Please use `guides(<scale> =
## "none")` instead.

##    OBESIDAD frequency percentage cumulative_perc
## 1        NO     43706      84.18           84.18
## 2        SI      8118      15.64           99.82
## 3 SE IGNORA        97       0.19          100.00
## Warning: `guides(<scale> = FALSE)` is deprecated. Please use `guides(<scale> =
## "none")` instead.

##    INSRENCR frequency percentage cumulative_perc
## 1        NO     50897      98.03           98.03
## 2        SI       932       1.80           99.83
## 3 SE IGNORA        92       0.18          100.00
## Warning: `guides(<scale> = FALSE)` is deprecated. Please use `guides(<scale> =
## "none")` instead.

##    TABAQUIS frequency percentage cumulative_perc
## 1        NO     48985      94.35           94.35
## 2        SI      2827       5.44           99.79
## 3 SE IGNORA       109       0.21          100.00
## Warning: `guides(<scale> = FALSE)` is deprecated. Please use `guides(<scale> =
## "none")` instead.

##   RECTRATA frequency percentage cumulative_perc
## 1       NO     47724      91.92           91.92
## 2       SI      3961       7.63           99.55
## 3     <NA>       236       0.45          100.00
## Warning: `guides(<scale> = FALSE)` is deprecated. Please use `guides(<scale> =
## "none")` instead.

##   TXCROBIA frequency percentage cumulative_perc
## 1     <NA>     24225      46.66           46.66
## 2       NO     18279      35.21           81.87
## 3       SI      9417      18.14          100.00
## Warning: `guides(<scale> = FALSE)` is deprecated. Please use `guides(<scale> =
## "none")` instead.

##   TXANTIVI frequency percentage cumulative_perc
## 1       NO     44617      85.93           85.93
## 2       SI      6020      11.59           97.52
## 3     <NA>      1284       2.47          100.00
## Warning: `guides(<scale> = FALSE)` is deprecated. Please use `guides(<scale> =
## "none")` instead.

##                      ANTIVIRA frequency percentage cumulative_perc
## 1                        <NA>     45896      88.40           88.40
## 2                 OSELTAMIVIR      5828      11.22           99.62
## 3                  AMANTADINA       128       0.25           99.87
## 4                   ZAVAMIVIR        21       0.04           99.91
## 5                  RIMNTADINA         9       0.02           99.93
## 6                AZITROMICINA         5       0.01           99.94
## 7                  RIBAVIRINA         5       0.01           99.95
## 8                 IVERMECTINA         4       0.01           99.96
## 9                  CLOROQUINA         3       0.01           99.97
## 10                 LORATADINA         3       0.01           99.98
## 11                    KALETRA         2       0.00           99.98
## 12                 REMDESIVIR         2       0.00           99.98
## 13                   VIRAZIDE         2       0.00           99.98
## 14                 AMPICILINA         1       0.00           99.98
## 15                 ANTIFLUD D         1       0.00           99.98
## 16               azitromicina         1       0.00           99.98
## 17             CLARITROMICINA         1       0.00           99.98
## 18                 cloroquina         1       0.00           99.98
## 19 cloroquina, azitrominicina         1       0.00           99.98
## 20         INVAZ, FLUCONAZOL,         1       0.00           99.98
## 21                 IVERMECTIN         1       0.00           99.98
## 22               IVERTMENTINA         1       0.00           99.98
## 23              LEVOFLOXACINO         1       0.00           99.98
## 24                 rivabarina         1       0.00           99.98
## 25                VIBRAMICINA         1       0.00           99.98
## 26                         XX         1       0.00          100.00
## Warning: `guides(<scale> = FALSE)` is deprecated. Please use `guides(<scale> =
## "none")` instead.

##   ANTIPIRETICOS frequency percentage cumulative_perc
## 1            SI     28225      54.36           54.36
## 2            NO     23603      45.46           99.82
## 3          <NA>        93       0.18          100.00
## Warning: `guides(<scale> = FALSE)` is deprecated. Please use `guides(<scale> =
## "none")` instead.

##    VACUNADO frequency percentage cumulative_perc
## 1        NO     44097      84.93           84.93
## 2        SI      7700      14.83           99.76
## 3 SE IGNORA        80       0.15           99.91
## 4      <NA>        44       0.08          100.00
## Warning: `guides(<scale> = FALSE)` is deprecated. Please use `guides(<scale> =
## "none")` instead.

##                   TIPO_VAC_COV frequency percentage cumulative_perc
## 1                         <NA>     43344      83.48           83.48
## 2                  AstraZeneca      3329       6.41           89.89
## 3              Pfizer BioNTech      2125       4.09           93.98
## 4                      Sinovac      1992       3.84           97.82
## 5                      CanSino       533       1.03           98.85
## 6                 Se desconoce       243       0.47           99.32
## 7                      Moderna       240       0.46           99.78
## 8  Janssen (Johnson & Johnson)        85       0.16           99.94
## 9                   Sinopharma        26       0.05           99.99
## 10                     Novavax         3       0.01          100.00
## 11                    Gamaleya         1       0.00          100.00
## Warning: `guides(<scale> = FALSE)` is deprecated. Please use `guides(<scale> =
## "none")` instead.

##         estatus frequency percentage cumulative_perc
## 1    Sobrevivió     44294      85.31           85.31
## 2 No sobrevivió      7627      14.69          100.00
## [1] "Variables processed: RESDEFIN, CLASCOVID19, SEXO, ESINDIGE, OCUPACIO, TIPACIEN, EVOLUCI, INTUBADO, DIGCLINE, DIAGPROB, FIEBRE, TOS, ODINOGIA, DISNEA, IRRITABI, DIARREA, DOTORACI, CALOFRIOS, CEFALEA, MIALGIAS, ARTRAL, ATAEDOGE, RINORREA, POLIPNEA, VOMITO, DOLABDO, CONJUN, CIANOSIS, INISUBIS, ANOSMIA, DISGEUSIA, ASINTOMATICO, DIABETES, EPOC, ASMA, INMUSUPR, HIPERTEN, VIH.SIDA, OTRACON, ENFCARDI, OBESIDAD, INSRENCR, TABAQUIS, RECTRATA, TXCROBIA, TXANTIVI, ANTIVIRA, ANTIPIRETICOS, VACUNADO, TIPO_VAC_COV, estatus"

TABLA EDA AGRUPADA EN PACIENTES QUE SOBREVIVIERON Y QUE NO SOBREVIVIERON

tabla1covisin<-covidsinfilt %>% select(RESDEFIN,CLASCOVID19,SEXO,EDAD,ESINDIGE,OCUPACIO,TIPACIEN,EVOLUCI,INTUBADO,DIGCLINE,DIAGPROB,FIEBRE:TXANTIVI,ANTIVIRA,
                                     ANTIPIRETICOS,VACUNADO,TIPO_VAC_COV,estatus) %>% tbl_summary(by=estatus) %>% add_p() %>% add_overall()
## There was an error in 'add_p()/add_difference()' for variable 'RESDEFIN', p-value omitted:
## Error in stats::chisq.test(x = c("SARS-CoV-2", "SARS-CoV-2", "SARS-CoV-2", : 'x' and 'y' must have at least 2 levels
## There was an error in 'add_p()/add_difference()' for variable 'CLASCOVID19', p-value omitted:
## Error in stats::chisq.test(x = c("CONF LAB", "CONF LAB", "CONF LAB", "CONF LAB", : 'x' and 'y' must have at least 2 levels
## There was an error in 'add_p()/add_difference()' for variable 'EVOLUCI', p-value omitted:
## Error in stats::fisher.test(c("SEGUIMIENTO TERMINADO", "SEGUIMIENTO TERMINADO", : FEXACT error 6.  LDKEY=295 is too small for this problem,
##   (ii := key2[itp=545] = 333427243, ldstp=8850)
## Try increasing the size of the workspace and possibly 'mult'
## There was an error in 'add_p()/add_difference()' for variable 'ANTIVIRA', p-value omitted:
## Error in stats::fisher.test(c("OSELTAMIVIR", NA, NA, NA, "OSELTAMIVIR", : FEXACT error 7(location). LDSTP=17460 is too small for this problem,
##   (pastp=9.24648, ipn_0:=ipoin[itp=94]=8061, stp[ipn_0]=15.1783).
## Increase workspace or consider using 'simulate.p.value=TRUE'
## There was an error in 'add_p()/add_difference()' for variable 'TIPO_VAC_COV', p-value omitted:
## Error in stats::fisher.test(c(NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, : FEXACT error 7(location). LDSTP=17040 is too small for this problem,
##   (pastp=65.5472, ipn_0:=ipoin[itp=388]=1331, stp[ipn_0]=91.525).
## Increase workspace or consider using 'simulate.p.value=TRUE'
tabla1covisin
Characteristic Overall, N = 51,9211 No sobrevivió, N = 7,6271 Sobrevivió, N = 44,2941 p-value2
RESDEFIN
SARS-CoV-2 51,921 (100%) 7,627 (100%) 44,294 (100%)
CLASCOVID19
CONF LAB 51,921 (100%) 7,627 (100%) 44,294 (100%)
SEXO <0.001
FEMENINO 27,082 (52%) 3,171 (42%) 23,911 (54%)
MASCULINO 24,839 (48%) 4,456 (58%) 20,383 (46%)
EDAD 43 (31, 58) 67 (56, 76) 40 (29, 52) <0.001
ESINDIGE 0.10
NO 49,789 (100%) 7,232 (100%) 42,557 (100%)
SI 150 (0.3%) 29 (0.4%) 121 (0.3%)
Unknown 1,982 366 1,616
OCUPACIO <0.001
CAMPESINOS 511 (1.0%) 177 (2.3%) 334 (0.8%)
CHOFERES 383 (0.7%) 74 (1.0%) 309 (0.7%)
COMERCIANTES DE MERCADOS FIJOS O AMBULANTES 707 (1.4%) 128 (1.7%) 579 (1.3%)
DENTISTAS 123 (0.2%) 3 (<0.1%) 120 (0.3%)
DESEMPLEADOS 2,489 (4.8%) 860 (11%) 1,629 (3.7%)
EMPLEADOS 15,861 (31%) 1,003 (13%) 14,858 (34%)
ENFERMERAS 2,852 (5.5%) 16 (0.2%) 2,836 (6.4%)
ESTUDIANTES 2,615 (5.0%) 37 (0.5%) 2,578 (5.8%)
GERENTES O PROPIETARIOS DE EMPRESAS O NEGOCIOS 186 (0.4%) 37 (0.5%) 149 (0.3%)
HOGAR 7,207 (14%) 2,274 (30%) 4,933 (11%)
JUBILADO / PENSIONADO 3,418 (6.6%) 1,769 (23%) 1,649 (3.7%)
LABORATORISTAS 187 (0.4%) 2 (<0.1%) 185 (0.4%)
MAESTROS 1,116 (2.1%) 97 (1.3%) 1,019 (2.3%)
MEDICOS 2,037 (3.9%) 59 (0.8%) 1,978 (4.5%)
OBREROS 316 (0.6%) 66 (0.9%) 250 (0.6%)
OTROS 8,517 (16%) 946 (12%) 7,571 (17%)
OTROS PROFESIONISTAS 1,102 (2.1%) 58 (0.8%) 1,044 (2.4%)
OTROS TRABAJADORES DE LA SALUD 2,294 (4.4%) 21 (0.3%) 2,273 (5.1%)
TIPACIEN <0.001
AMBULATORIO 36,345 (70%) 51 (0.7%) 36,294 (82%)
HOSPITALIZADO 15,576 (30%) 7,576 (99%) 8,000 (18%)
EVOLUCI
ALTA - CURACION 152 (0.3%) 0 (0%) 152 (0.3%)
ALTA - MEJORIA 6,720 (13%) 0 (0%) 6,720 (15%)
ALTA - TRASLADO 200 (0.4%) 0 (0%) 200 (0.5%)
ALTA - VOLUNTARIA 329 (0.6%) 0 (0%) 329 (0.7%)
CASO GRAVE - 16 (<0.1%) 0 (0%) 16 (<0.1%)
CASO GRAVE - TRASLADO 1 (<0.1%) 0 (0%) 1 (<0.1%)
CASO NO GRAVE 16 (<0.1%) 0 (0%) 16 (<0.1%)
DEFUNCION 7,627 (15%) 7,627 (100%) 0 (0%)
EN TRATAMIENTO 45 (<0.1%) 0 (0%) 45 (0.1%)
REFERENCIA 11 (<0.1%) 0 (0%) 11 (<0.1%)
SEGUIMIENTO DOMICILIARIO 78 (0.2%) 0 (0%) 78 (0.2%)
SEGUIMIENTO TERMINADO 36,726 (71%) 0 (0%) 36,726 (83%)
INTUBADO <0.001
NO 12,772 (86%) 5,670 (77%) 7,102 (96%)
SI 1,994 (14%) 1,662 (23%) 332 (4.5%)
Unknown 37,155 295 36,860
DIGCLINE <0.001
NO 40,832 (79%) 1,974 (26%) 38,858 (88%)
SI 11,089 (21%) 5,653 (74%) 5,436 (12%)
DIAGPROB <0.001
ENFERMEDAD TIPO INFLUENZA (ETI) 37,331 (72%) 69 (0.9%) 37,262 (84%)
INFECCION RESPIRATORIA AGUDA GRAVE (IRAG) 14,590 (28%) 7,558 (99%) 7,032 (16%)
FIEBRE 0.2
NO 13,467 (26%) 1,934 (25%) 11,533 (26%)
SE IGNORA 21 (<0.1%) 5 (<0.1%) 16 (<0.1%)
SI 38,433 (74%) 5,688 (75%) 32,745 (74%)
TOS 0.5
NO 11,253 (22%) 1,643 (22%) 9,610 (22%)
SE IGNORA 17 (<0.1%) 4 (<0.1%) 13 (<0.1%)
SI 40,651 (78%) 5,980 (78%) 34,671 (78%)
ODINOGIA <0.001
NO 29,052 (56%) 5,395 (71%) 23,657 (53%)
SE IGNORA 107 (0.2%) 18 (0.2%) 89 (0.2%)
SI 22,762 (44%) 2,214 (29%) 20,548 (46%)
DISNEA <0.001
NO 34,258 (66%) 646 (8.5%) 33,612 (76%)
SE IGNORA 10 (<0.1%) 0 (0%) 10 (<0.1%)
SI 17,653 (34%) 6,981 (92%) 10,672 (24%)
IRRITABI <0.001
NO 35,195 (68%) 5,393 (71%) 29,802 (67%)
SE IGNORA 38 (<0.1%) 8 (0.1%) 30 (<0.1%)
SI 16,688 (32%) 2,226 (29%) 14,462 (33%)
DIARREA <0.001
NO 42,489 (82%) 6,031 (79%) 36,458 (82%)
SE IGNORA 37 (<0.1%) 11 (0.1%) 26 (<0.1%)
SI 9,395 (18%) 1,585 (21%) 7,810 (18%)
DOTORACI <0.001
NO 37,627 (72%) 4,232 (55%) 33,395 (75%)
SE IGNORA 104 (0.2%) 12 (0.2%) 92 (0.2%)
SI 14,190 (27%) 3,383 (44%) 10,807 (24%)
CALOFRIOS <0.001
NO 35,428 (68%) 5,450 (71%) 29,978 (68%)
SE IGNORA 94 (0.2%) 12 (0.2%) 82 (0.2%)
SI 16,399 (32%) 2,165 (28%) 14,234 (32%)
CEFALEA <0.001
NO 11,094 (21%) 2,755 (36%) 8,339 (19%)
SE IGNORA 38 (<0.1%) 9 (0.1%) 29 (<0.1%)
SI 40,789 (79%) 4,863 (64%) 35,926 (81%)
MIALGIAS 0.012
NO 20,777 (40%) 2,943 (39%) 17,834 (40%)
SE IGNORA 107 (0.2%) 12 (0.2%) 95 (0.2%)
SI 31,037 (60%) 4,672 (61%) 26,365 (60%)
ARTRAL <0.001
NO 23,199 (45%) 3,198 (42%) 20,001 (45%)
SE IGNORA 113 (0.2%) 14 (0.2%) 99 (0.2%)
SI 28,609 (55%) 4,415 (58%) 24,194 (55%)
ATAEDOGE <0.001
NO 29,458 (57%) 2,824 (37%) 26,634 (60%)
SE IGNORA 123 (0.2%) 15 (0.2%) 108 (0.2%)
SI 22,340 (43%) 4,788 (63%) 17,552 (40%)
RINORREA <0.001
NO 33,149 (64%) 5,826 (76%) 27,323 (62%)
SE IGNORA 123 (0.2%) 18 (0.2%) 105 (0.2%)
SI 18,649 (36%) 1,783 (23%) 16,866 (38%)
POLIPNEA <0.001
NO 46,594 (90%) 5,437 (71%) 41,157 (93%)
SE IGNORA 133 (0.3%) 14 (0.2%) 119 (0.3%)
SI 5,194 (10%) 2,176 (29%) 3,018 (6.8%)
VOMITO <0.001
NO 48,088 (93%) 6,881 (90%) 41,207 (93%)
SE IGNORA 138 (0.3%) 19 (0.2%) 119 (0.3%)
SI 3,695 (7.1%) 727 (9.5%) 2,968 (6.7%)
DOLABDO <0.001
NO 46,229 (89%) 6,558 (86%) 39,671 (90%)
SE IGNORA 147 (0.3%) 20 (0.3%) 127 (0.3%)
SI 5,545 (11%) 1,049 (14%) 4,496 (10%)
CONJUN <0.001
NO 46,816 (90%) 7,133 (94%) 39,683 (90%)
SE IGNORA 154 (0.3%) 22 (0.3%) 132 (0.3%)
SI 4,951 (9.5%) 472 (6.2%) 4,479 (10%)
CIANOSIS <0.001
NO 50,714 (98%) 7,124 (93%) 43,590 (98%)
SE IGNORA 149 (0.3%) 21 (0.3%) 128 (0.3%)
SI 1,058 (2.0%) 482 (6.3%) 576 (1.3%)
INISUBIS <0.001
NO 38,524 (74%) 5,200 (68%) 33,324 (75%)
SE IGNORA 200 (0.4%) 40 (0.5%) 160 (0.4%)
SI 13,197 (25%) 2,387 (31%) 10,810 (24%)
ANOSMIA <0.001
NO 37,419 (72%) 5,552 (73%) 31,867 (72%)
SE IGNORA 5,720 (11%) 1,195 (16%) 4,525 (10%)
SI 8,782 (17%) 880 (12%) 7,902 (18%)
DISGEUSIA <0.001
NO 38,385 (74%) 5,636 (74%) 32,749 (74%)
SE IGNORA 5,815 (11%) 1,196 (16%) 4,619 (10%)
SI 7,721 (15%) 795 (10%) 6,926 (16%)
ASINTOMATICO <0.001
NO 51,391 (99%) 7,620 (100%) 43,771 (99%)
SE IGNORA 34 (<0.1%) 1 (<0.1%) 33 (<0.1%)
SI 496 (1.0%) 6 (<0.1%) 490 (1.1%)
DIABETES <0.001
NO 44,610 (86%) 4,896 (64%) 39,714 (90%)
SE IGNORA 116 (0.2%) 46 (0.6%) 70 (0.2%)
SI 7,195 (14%) 2,685 (35%) 4,510 (10%)
EPOC <0.001
NO 51,138 (98%) 7,314 (96%) 43,824 (99%)
SE IGNORA 79 (0.2%) 30 (0.4%) 49 (0.1%)
SI 704 (1.4%) 283 (3.7%) 421 (1.0%)
ASMA <0.001
NO 50,696 (98%) 7,419 (97%) 43,277 (98%)
SE IGNORA 86 (0.2%) 32 (0.4%) 54 (0.1%)
SI 1,139 (2.2%) 176 (2.3%) 963 (2.2%)
INMUSUPR <0.001
NO 51,270 (99%) 7,400 (97%) 43,870 (99%)
SE IGNORA 98 (0.2%) 38 (0.5%) 60 (0.1%)
SI 553 (1.1%) 189 (2.5%) 364 (0.8%)
HIPERTEN <0.001
NO 40,685 (78%) 3,581 (47%) 37,104 (84%)
SE IGNORA 107 (0.2%) 43 (0.6%) 64 (0.1%)
SI 11,129 (21%) 4,003 (52%) 7,126 (16%)
VIH/SIDA <0.001
NO 51,658 (99%) 7,549 (99%) 44,109 (100%)
SE IGNORA 96 (0.2%) 34 (0.4%) 62 (0.1%)
SI 167 (0.3%) 44 (0.6%) 123 (0.3%)
OTRACON <0.001
NO 50,306 (97%) 7,169 (94%) 43,137 (97%)
SE IGNORA 126 (0.2%) 41 (0.5%) 85 (0.2%)
SI 1,489 (2.9%) 417 (5.5%) 1,072 (2.4%)
ENFCARDI <0.001
NO 50,544 (97%) 7,063 (93%) 43,481 (98%)
SE IGNORA 98 (0.2%) 37 (0.5%) 61 (0.1%)
SI 1,279 (2.5%) 527 (6.9%) 752 (1.7%)
OBESIDAD <0.001
NO 43,706 (84%) 5,793 (76%) 37,913 (86%)
SE IGNORA 97 (0.2%) 38 (0.5%) 59 (0.1%)
SI 8,118 (16%) 1,796 (24%) 6,322 (14%)
INSRENCR <0.001
NO 50,897 (98%) 7,135 (94%) 43,762 (99%)
SE IGNORA 92 (0.2%) 35 (0.5%) 57 (0.1%)
SI 932 (1.8%) 457 (6.0%) 475 (1.1%)
TABAQUIS <0.001
NO 48,985 (94%) 6,936 (91%) 42,049 (95%)
SE IGNORA 109 (0.2%) 43 (0.6%) 66 (0.1%)
SI 2,827 (5.4%) 648 (8.5%) 2,179 (4.9%)
RECTRATA <0.001
NO 47,724 (92%) 6,730 (89%) 40,994 (93%)
SI 3,961 (7.7%) 815 (11%) 3,146 (7.1%)
Unknown 236 82 154
TXCROBIA <0.001
NO 18,279 (66%) 1,152 (34%) 17,127 (70%)
SI 9,417 (34%) 2,209 (66%) 7,208 (30%)
Unknown 24,225 4,266 19,959
TXANTIVI <0.001
NO 44,617 (88%) 5,716 (77%) 38,901 (90%)
SI 6,020 (12%) 1,661 (23%) 4,359 (10%)
Unknown 1,284 250 1,034
ANTIVIRA
AMANTADINA 128 (2.1%) 5 (0.3%) 123 (2.8%)
AMPICILINA 1 (<0.1%) 0 (0%) 1 (<0.1%)
ANTIFLUD D 1 (<0.1%) 1 (<0.1%) 0 (0%)
azitromicina 1 (<0.1%) 0 (0%) 1 (<0.1%)
AZITROMICINA 5 (<0.1%) 0 (0%) 5 (0.1%)
CLARITROMICINA 1 (<0.1%) 0 (0%) 1 (<0.1%)
cloroquina 1 (<0.1%) 0 (0%) 1 (<0.1%)
CLOROQUINA 3 (<0.1%) 0 (0%) 3 (<0.1%)
cloroquina, azitrominicina 1 (<0.1%) 0 (0%) 1 (<0.1%)
INVAZ, FLUCONAZOL, 1 (<0.1%) 1 (<0.1%) 0 (0%)
IVERMECTIN 1 (<0.1%) 0 (0%) 1 (<0.1%)
IVERMECTINA 4 (<0.1%) 2 (0.1%) 2 (<0.1%)
IVERTMENTINA 1 (<0.1%) 0 (0%) 1 (<0.1%)
KALETRA 2 (<0.1%) 0 (0%) 2 (<0.1%)
LEVOFLOXACINO 1 (<0.1%) 0 (0%) 1 (<0.1%)
LORATADINA 3 (<0.1%) 0 (0%) 3 (<0.1%)
OSELTAMIVIR 5,828 (97%) 1,643 (99%) 4,185 (96%)
REMDESIVIR 2 (<0.1%) 1 (<0.1%) 1 (<0.1%)
RIBAVIRINA 5 (<0.1%) 3 (0.2%) 2 (<0.1%)
RIMNTADINA 9 (0.1%) 2 (0.1%) 7 (0.2%)
rivabarina 1 (<0.1%) 0 (0%) 1 (<0.1%)
VIBRAMICINA 1 (<0.1%) 0 (0%) 1 (<0.1%)
VIRAZIDE 2 (<0.1%) 0 (0%) 2 (<0.1%)
XX 1 (<0.1%) 0 (0%) 1 (<0.1%)
ZAVAMIVIR 21 (0.3%) 4 (0.2%) 17 (0.4%)
Unknown 45,896 5,965 39,931
ANTIPIRETICOS <0.001
NO 23,603 (46%) 3,147 (41%) 20,456 (46%)
SI 28,225 (54%) 4,444 (59%) 23,781 (54%)
Unknown 93 36 57
VACUNADO <0.001
NO 44,097 (85%) 7,003 (92%) 37,094 (84%)
SE IGNORA 80 (0.2%) 23 (0.3%) 57 (0.1%)
SI 7,700 (15%) 590 (7.7%) 7,110 (16%)
Unknown 44 11 33
TIPO_VAC_COV
AstraZeneca 3,329 (39%) 264 (44%) 3,065 (38%)
CanSino 533 (6.2%) 46 (7.7%) 487 (6.1%)
Gamaleya 1 (<0.1%) 1 (0.2%) 0 (0%)
Janssen (Johnson & Johnson) 85 (1.0%) 2 (0.3%) 83 (1.0%)
Moderna 240 (2.8%) 1 (0.2%) 239 (3.0%)
Novavax 3 (<0.1%) 0 (0%) 3 (<0.1%)
Pfizer BioNTech 2,125 (25%) 127 (21%) 1,998 (25%)
Se desconoce 243 (2.8%) 60 (10%) 183 (2.3%)
Sinopharma 26 (0.3%) 4 (0.7%) 22 (0.3%)
Sinovac 1,992 (23%) 93 (16%) 1,899 (24%)
Unknown 43,344 7,029 36,315
1 n (%); Median (IQR)
2 Pearson's Chi-squared test; Wilcoxon rank sum test; Fisher's exact test

#Podemos definir que probabilidad existion a no sobrevivir si los pacientes se encontraban con diferentes condiciones

Utilizando gtsummary

Clinica

library(gtsummary)

clinicm <- coxph(Surv(deftime, evento) ~ SEXO+EDAD+TOS+ODINOGIA+DISNEA+IRRITABI+DIARREA+DOTORACI+CALOFRIOS+CEFALEA+ARTRAL+RINORREA+POLIPNEA+CONJUN+CIANOSIS+INISUBIS+ANOSMIA+DISGEUSIA, data = covidsinfilt)

cm_table <- tbl_regression(clinicm, exponentiate = TRUE) 

cm_table
## Warning: The `fmt_missing()` function is deprecated and will soon be removed
## * Use the `sub_missing()` function instead

## Warning: The `fmt_missing()` function is deprecated and will soon be removed
## * Use the `sub_missing()` function instead

## Warning: The `fmt_missing()` function is deprecated and will soon be removed
## * Use the `sub_missing()` function instead
Characteristic HR1 95% CI1 p-value
SEXO
FEMENINO
MASCULINO 1.02 0.97, 1.07 0.4
EDAD 1.01 1.01, 1.01 <0.001
TOS
NO
SE IGNORA 0.04 0.01, 0.21 <0.001
SI 0.96 0.91, 1.01 0.14
ODINOGIA
NO
SE IGNORA 0.99 0.43, 2.28 >0.9
SI 0.99 0.94, 1.04 0.7
DISNEA
NO
SI 1.00 0.92, 1.08 >0.9
IRRITABI
NO
SE IGNORA 0.52 0.16, 1.71 0.3
SI 1.03 0.98, 1.09 0.3
DIARREA
NO
SE IGNORA 1.83 0.41, 8.20 0.4
SI 0.97 0.92, 1.03 0.3
DOTORACI
NO
SE IGNORA 0.74 0.30, 1.87 0.5
SI 1.06 1.01, 1.11 0.020
CALOFRIOS
NO
SE IGNORA 2.85 0.68, 12.0 0.2
SI 0.99 0.94, 1.05 0.9
CEFALEA
NO
SE IGNORA 3.70 0.92, 14.8 0.065
SI 0.94 0.90, 0.99 0.019
ARTRAL
NO
SE IGNORA 0.86 0.39, 1.90 0.7
SI 0.97 0.92, 1.02 0.2
RINORREA
NO
SE IGNORA 2.37 0.59, 9.51 0.2
SI 0.92 0.87, 0.97 0.003
POLIPNEA
NO
SE IGNORA 0.72 0.36, 1.42 0.3
SI 1.05 1.00, 1.11 0.053
CONJUN
NO
SE IGNORA 0.46 0.17, 1.22 0.12
SI 0.97 0.88, 1.07 0.6
CIANOSIS
NO
SE IGNORA 1.29 0.43, 3.93 0.6
SI 1.08 0.98, 1.19 0.11
INISUBIS
NO
SE IGNORA 1.07 0.77, 1.47 0.7
SI 1.02 0.97, 1.08 0.3
ANOSMIA
NO
SE IGNORA 1.14 0.79, 1.64 0.5
SI 0.87 0.79, 0.96 0.005
DISGEUSIA
NO
SE IGNORA 0.96 0.67, 1.38 0.8
SI 0.92 0.83, 1.02 0.10
1 HR = Hazard Ratio, CI = Confidence Interval

comorbilidades

#sinfiltro
coxph(Surv(deftime, evento) ~DIABETES+EPOC+ASMA+INMUSUPR+HIPERTEN+ENFCARDI+OBESIDAD+INSRENCR+TABAQUIS+RECTRATA+TXCROBIA+TIPACIEN+VACUNADO, data = covidsinfilt)
## Call:
## coxph(formula = Surv(deftime, evento) ~ DIABETES + EPOC + ASMA + 
##     INMUSUPR + HIPERTEN + ENFCARDI + OBESIDAD + INSRENCR + TABAQUIS + 
##     RECTRATA + TXCROBIA + TIPACIEN + VACUNADO, data = covidsinfilt)
## 
##                            coef exp(coef)  se(coef)      z        p
## DIABETESSE IGNORA      1.146387  3.146804  0.364145  3.148  0.00164
## DIABETESSI             0.095667  1.100393  0.038645  2.476  0.01330
## EPOCSE IGNORA         -1.035340  0.355106  1.033234 -1.002  0.31633
## EPOCSI                 0.241843  1.273594  0.106991  2.260  0.02380
## ASMASE IGNORA         -2.599773  0.074290  1.464112 -1.776  0.07579
## ASMASI                 0.064475  1.066599  0.117929  0.547  0.58457
## INMUSUPRSE IGNORA      0.371861  1.450431  0.610118  0.609  0.54220
## INMUSUPRSI            -0.049718  0.951498  0.115539 -0.430  0.66697
## HIPERTENSE IGNORA      0.389513  1.476262  0.418170  0.931  0.35161
## HIPERTENSI             0.076544  1.079550  0.037282  2.053  0.04006
## ENFCARDISE IGNORA      0.662666  1.939958  0.465427  1.424  0.15451
## ENFCARDISI             0.083379  1.086954  0.072130  1.156  0.24770
## OBESIDADSE IGNORA      0.640214  1.896887  0.415831  1.540  0.12366
## OBESIDADSI            -0.012988  0.987096  0.040758 -0.319  0.74998
## INSRENCRSE IGNORA      1.015707  2.761316  0.579607  1.752  0.07970
## INSRENCRSI             0.356799  1.428749  0.087146  4.094 4.23e-05
## TABAQUISSE IGNORA     -0.117538  0.889107  0.334301 -0.352  0.72514
## TABAQUISSI            -0.087471  0.916245  0.062014 -1.410  0.15839
## RECTRATASI             0.045472  1.046521  0.050894  0.893  0.37161
## TXCROBIASI            -0.087650  0.916081  0.037941 -2.310  0.02088
## TIPACIENHOSPITALIZADO  0.508555  1.662887  0.310109  1.640  0.10102
## VACUNADOSI            -0.002949  0.997055  0.054811 -0.054  0.95709
## 
## Likelihood ratio test=86.7  on 22 df, p=1.24e-09
## n= 3294, number of events= 3294 
##    (48627 observations deleted due to missingness)
comorbcm <- coxph(Surv(deftime, evento) ~DIABETES+EPOC+ASMA+INMUSUPR+HIPERTEN+ENFCARDI+OBESIDAD+INSRENCR+TABAQUIS+RECTRATA+TXCROBIA+TIPACIEN+VACUNADO, data = covidsinfilt)

cm_table <- tbl_regression(comorbcm, exponentiate = TRUE) 

cm_table
## Warning: The `fmt_missing()` function is deprecated and will soon be removed
## * Use the `sub_missing()` function instead

## Warning: The `fmt_missing()` function is deprecated and will soon be removed
## * Use the `sub_missing()` function instead

## Warning: The `fmt_missing()` function is deprecated and will soon be removed
## * Use the `sub_missing()` function instead
Characteristic HR1 95% CI1 p-value
DIABETES
NO
SE IGNORA 3.15 1.54, 6.42 0.002
SI 1.10 1.02, 1.19 0.013
EPOC
NO
SE IGNORA 0.36 0.05, 2.69 0.3
SI 1.27 1.03, 1.57 0.024
ASMA
NO
SE IGNORA 0.07 0.00, 1.31 0.076
SI 1.07 0.85, 1.34 0.6
INMUSUPR
NO
SE IGNORA 1.45 0.44, 4.80 0.5
SI 0.95 0.76, 1.19 0.7
HIPERTEN
NO
SE IGNORA 1.48 0.65, 3.35 0.4
SI 1.08 1.00, 1.16 0.040
ENFCARDI
NO
SE IGNORA 1.94 0.78, 4.83 0.2
SI 1.09 0.94, 1.25 0.2
OBESIDAD
NO
SE IGNORA 1.90 0.84, 4.29 0.12
SI 0.99 0.91, 1.07 0.7
INSRENCR
NO
SE IGNORA 2.76 0.89, 8.60 0.080
SI 1.43 1.20, 1.69 <0.001
TABAQUIS
NO
SE IGNORA 0.89 0.46, 1.71 0.7
SI 0.92 0.81, 1.03 0.2
RECTRATA
NO
SI 1.05 0.95, 1.16 0.4
TXCROBIA
NO
SI 0.92 0.85, 0.99 0.021
TIPACIEN
AMBULATORIO
HOSPITALIZADO 1.66 0.91, 3.05 0.10
VACUNADO
NO
SI 1.00 0.90, 1.11 >0.9
1 HR = Hazard Ratio, CI = Confidence Interval

KM curves and survival analysis

Sexo

library(ggthemes)

sexo<-survfit(Surv(deftime, evento) ~SEXO, data = covidsinfilt)


sexkmplot<-ggsurvplot(sexo, 
  xlab = "Days",
  ylab = "Survival Probability", xlim = c(0, 120),conf.int=T, risk.table = T,
  pval= TRUE, pval.coord = c(100, 0.25),fontsize = 5, break.time.by = 20, legend.title = "Sex", legend.labs = c("Female", "Male"))

sexkmplot

sexhr <- coxph(Surv(deftime, evento) ~SEXO, data = covidsinfilt)

sexhr_table <- tbl_regression(sexhr, exponentiate = TRUE) 

sexhr_table
## Warning: The `fmt_missing()` function is deprecated and will soon be removed
## * Use the `sub_missing()` function instead

## Warning: The `fmt_missing()` function is deprecated and will soon be removed
## * Use the `sub_missing()` function instead

## Warning: The `fmt_missing()` function is deprecated and will soon be removed
## * Use the `sub_missing()` function instead
Characteristic HR1 95% CI1 p-value
SEXO
FEMENINO
MASCULINO 1.03 0.98, 1.08 0.2
1 HR = Hazard Ratio, CI = Confidence Interval

AGE

#stratificar edad

covidsinfilt<-covidsinfilt %>% 
  mutate(
    # para crear las categorias requeridas
    age_group = dplyr::case_when(
      EDAD <= 18            ~ "<18",
      EDAD >= 18 & EDAD <= 40 ~ "18-40",
      EDAD >= 40 & EDAD <= 60 ~ "40-60",
      EDAD >= 60 & EDAD <= 80 ~ "60-80",
      EDAD > 80             ~ ">80"
    ),
    # Convertimos a factor
    age_group = factor(
      age_group,
      level = c("<18","60-80","18-40", "40-60",">80")))


covidsinfilt %>% select(age_group,EDAD,estatus) %>%  tbl_summary(by=estatus) %>% add_p() %>%  add_overall()
## Warning: The `fmt_missing()` function is deprecated and will soon be removed
## * Use the `sub_missing()` function instead
Characteristic Overall, N = 51,9211 No sobrevivió, N = 7,6271 Sobrevivió, N = 44,2941 p-value2
age_group <0.001
<18 2,028 (3.9%) 23 (0.3%) 2,005 (4.5%)
60-80 9,100 (18%) 3,841 (50%) 5,259 (12%)
18-40 21,377 (41%) 457 (6.0%) 20,920 (47%)
40-60 17,461 (34%) 2,157 (28%) 15,304 (35%)
>80 1,955 (3.8%) 1,149 (15%) 806 (1.8%)
EDAD 43 (31, 58) 67 (56, 76) 40 (29, 52) <0.001
1 n (%); Median (IQR)
2 Pearson's Chi-squared test; Wilcoxon rank sum test
agegr <- survfit(Surv(deftime, evento) ~age_group, data = covidsinfilt)

tbl_survfit(
  covidsinfilt, y = Surv(deftime, evento),
  include = c(age_group),
  probs = 0.5,
  label_header = "**Median Survival**"
  ) %>% 
  add_p()
## Warning: The `fmt_missing()` function is deprecated and will soon be removed
## * Use the `sub_missing()` function instead
Characteristic Median Survival p-value1
age_group <0.001
<18 8.0 (5.0, 18)
60-80 14 (14, 15)
18-40 15 (15, 17)
40-60 15 (15, 16)
>80 12 (11, 12)
1 Log-rank test
agegrkmplot<-ggsurvplot(agegr, 
  xlab = "Days",
  ylab = "Survival Probability", xlim = c(0, 120),conf.int=T, risk.table = T,
  pval= TRUE, pval.coord = c(100, 0.25),fontsize = 5, break.time.by = 20, legend.title = "Age Group")

agegrkmplot

agestrat<-covidsinfilt %>% filter(age_group == "<18" | age_group == "60-80") 

agestrata<- survfit(Surv(deftime, evento) ~ age_group, data = agestrat)

ggsurvplot(agestrata, 
  xlab = "Days",
  ylab = "Survival Probability", xlim = c(0, 120), conf.int=T, risk.table = T,
  pval= TRUE, pval.coord = c(100, 0.25),fontsize = 5, break.time.by = 20, legend.title = "Age Group")

agerh <- coxph(Surv(deftime, evento) ~age_group, data = agestrat)

tbl_regression(agerh, exponentiate = TRUE) 
## Warning: The `fmt_missing()` function is deprecated and will soon be removed
## * Use the `sub_missing()` function instead

## Warning: The `fmt_missing()` function is deprecated and will soon be removed
## * Use the `sub_missing()` function instead

## Warning: The `fmt_missing()` function is deprecated and will soon be removed
## * Use the `sub_missing()` function instead
Characteristic HR1 95% CI1 p-value
age_group
<18
60-80 0.63 0.42, 0.95 0.028
18-40
40-60
>80
1 HR = Hazard Ratio, CI = Confidence Interval

TIPO DE PACIENTE

#TIPO DE PACIENTE
 
tippax <- survfit(Surv(deftime, evento) ~ TIPACIEN, data = covidsinfilt)

tbl_survfit(
  covidsinfilt, y = Surv(deftime, evento),
  include = c(TIPACIEN),
  probs = 0.5,
  label_header = "**Median Survival**"
  ) %>% add_p()
## Warning: The `fmt_missing()` function is deprecated and will soon be removed
## * Use the `sub_missing()` function instead
Characteristic Median Survival p-value1
TIPACIEN 0.001
AMBULATORIO 16 (12, 22)
HOSPITALIZADO 14 (14, 15)
1 Log-rank test
tippaxkmplot<-ggsurvplot(tippax, 
  xlab = "Days",
  ylab = "Survival Probability", xlim = c(0, 120),conf.int=T, risk.table = T,
  pval= TRUE, pval.coord = c(100, 0.25),fontsize = 5, break.time.by = 20, legend.title = "Patient:",
  legend.labs = c("Outpatient", "Hospitalized"))

tippaxkmplot

tippaxcox <- coxph(Surv(deftime, evento) ~TIPACIEN, data = agestrat)

tbl_regression(tippaxcox, exponentiate = TRUE) 
## Warning: The `fmt_missing()` function is deprecated and will soon be removed
## * Use the `sub_missing()` function instead

## Warning: The `fmt_missing()` function is deprecated and will soon be removed
## * Use the `sub_missing()` function instead

## Warning: The `fmt_missing()` function is deprecated and will soon be removed
## * Use the `sub_missing()` function instead
Characteristic HR1 95% CI1 p-value
TIPACIEN
AMBULATORIO
HOSPITALIZADO 1.28 0.84, 1.95 0.2
1 HR = Hazard Ratio, CI = Confidence Interval

Intubated

#INTUBADO

intub <- survfit(Surv(deftime, evento) ~INTUBADO, data = covidsinfilt)

tbl_survfit(
  covidsinfilt, y = Surv(deftime, evento),
  include = c(INTUBADO),
  probs = 0.5,
  label_header = "**Median Survival**"
  ) %>% 
  add_p()
## Warning: The `fmt_missing()` function is deprecated and will soon be removed
## * Use the `sub_missing()` function instead
Characteristic Median Survival p-value1
INTUBADO <0.001
NO 14 (14, 14)
SI 16 (15, 16)
1 Log-rank test
intubkmplot<-ggsurvplot(intub, 
  xlab = "Days",
  ylab = "Survival Probability", xlim = c(0, 120),conf.int=T, risk.table = T,
  pval= TRUE, pval.coord = c(100, 0.25),fontsize = 5, break.time.by = 20, legend.title = "Intubated:",
  legend.labs = c("Not", "Yes"))

intubkmplot

intubcox <- coxph(Surv(deftime, evento) ~INTUBADO, data = agestrat)

tbl_regression(intubcox, exponentiate = TRUE)
## Warning: The `fmt_missing()` function is deprecated and will soon be removed
## * Use the `sub_missing()` function instead

## Warning: The `fmt_missing()` function is deprecated and will soon be removed
## * Use the `sub_missing()` function instead

## Warning: The `fmt_missing()` function is deprecated and will soon be removed
## * Use the `sub_missing()` function instead
Characteristic HR1 95% CI1 p-value
INTUBADO
NO
SI 0.88 0.81, 0.95 <0.001
1 HR = Hazard Ratio, CI = Confidence Interval

DIAGNOSTICO PROBABLE (SEVERIDAD)

#DIAGPROB


sev <- survfit(Surv(deftime, evento) ~DIAGPROB, data = covidsinfilt)

tbl_survfit(
  covidsinfilt, y = Surv(deftime, evento),
  include = c(DIAGPROB),
  probs = 0.5,
  label_header = "**Median Survival**"
  ) %>% 
  add_p()
## Warning: The `fmt_missing()` function is deprecated and will soon be removed
## * Use the `sub_missing()` function instead
Characteristic Median Survival p-value1
DIAGPROB 0.008
ENFERMEDAD TIPO INFLUENZA (ETI) 14 (12, 19)
INFECCION RESPIRATORIA AGUDA GRAVE (IRAG) 14 (14, 15)
1 Log-rank test
sevkmplot<-ggsurvplot(sev, 
  xlab = "Days",
  ylab = "Survival Probability", xlim = c(0, 120),conf.int=T, risk.table = T,
  pval= TRUE, pval.coord = c(100, 0.25),fontsize = 5, break.time.by = 20, legend.title = "Severity",
  legend.labs = c("ETI", "SARI"))

sevkmplot

clasicox <- coxph(Surv(deftime, evento) ~DIAGPROB, data = agestrat)

tbl_regression(clasicox, exponentiate = TRUE)
## Warning: The `fmt_missing()` function is deprecated and will soon be removed
## * Use the `sub_missing()` function instead

## Warning: The `fmt_missing()` function is deprecated and will soon be removed
## * Use the `sub_missing()` function instead

## Warning: The `fmt_missing()` function is deprecated and will soon be removed
## * Use the `sub_missing()` function instead
Characteristic HR1 95% CI1 p-value
DIAGPROB
ENFERMEDAD TIPO INFLUENZA (ETI)
INFECCION RESPIRATORIA AGUDA GRAVE (IRAG) 1.26 0.89, 1.77 0.2
1 HR = Hazard Ratio, CI = Confidence Interval

COX-REGRESSION ANALISIS WITH CLINIC AND MORTALITY COVID-19

library(survminer)
library(survival)

covidsincox <-covidsinfilt %>% filter(if_all(c(SEXO, TIPACIEN, INTUBADO, DIAGPROB), ~ .x != "SE IGNORA"))

DEMO <- coxph(Surv(deftime, evento) ~ SEXO +  INTUBADO + DIAGPROB , data = covidsincox)

cm_table <- tbl_regression(DEMO, exponentiate = TRUE) 

cm_table
## Warning: The `fmt_missing()` function is deprecated and will soon be removed
## * Use the `sub_missing()` function instead

## Warning: The `fmt_missing()` function is deprecated and will soon be removed
## * Use the `sub_missing()` function instead

## Warning: The `fmt_missing()` function is deprecated and will soon be removed
## * Use the `sub_missing()` function instead
Characteristic HR1 95% CI1 p-value
SEXO
FEMENINO
MASCULINO 1.03 0.99, 1.08 0.15
INTUBADO
NO
SI 0.89 0.84, 0.94 <0.001
DIAGPROB
ENFERMEDAD TIPO INFLUENZA (ETI)
INFECCION RESPIRATORIA AGUDA GRAVE (IRAG) 0.88 0.55, 1.40 0.6
1 HR = Hazard Ratio, CI = Confidence Interval
library(forestmodel)


print(forest_model(coxph(Surv(deftime, evento) ~ SEXO +  INTUBADO + DIAGPROB , data = covidsincox)))
## Warning in recalculate_width_panels(panel_positions, mapped_text =
## mapped_text, : Unable to resize forest panel to be smaller than its heading;
## consider a smaller text size