=====================================================

Nama Mahasiswa : Yoza Setya Febriyanti

NIM : 220605110062

Kelas : C

Mata Kuliah : Kalkulus

Dosen Pengampuh : Prof.Dr.Suhartono,M.Kom

Jurusan : Teknik Informatika

Universitas : UIN Maulana Malik Ibrahim Malang

=====================================================

Fungsi tanpa parameter: splines dan smoother

“Smoothers” dan “splines” adalah dua jenis fungsi tujuan umum yang dapat menangkap pola dalam data, tetapi tidak ada bentuk aljabar sederhana. Membuat fungsi seperti itu sangat mudah, selama Anda dapat membebaskan diri dari gagasan bahwa fungsi harus selalu memiliki rumus.

Penghalus dan splines ditentukan bukan oleh bentuk dan parameter aljabar, tetapi oleh data dan algoritme. Sebagai ilustrasi, pertimbangkan beberapa data sederhana. Kumpulan data Loblollyberisi 84 pengukuran umur dan tinggi pinus loblolly.

library("mosaicCalc")
## Loading required package: mosaic
## Registered S3 method overwritten by 'mosaic':
##   method                           from   
##   fortify.SpatialPolygonsDataFrame ggplot2
## 
## The 'mosaic' package masks several functions from core packages in order to add 
## additional features.  The original behavior of these functions should not be affected by this.
## 
## Attaching package: 'mosaic'
## The following objects are masked from 'package:dplyr':
## 
##     count, do, tally
## The following object is masked from 'package:Matrix':
## 
##     mean
## The following object is masked from 'package:ggplot2':
## 
##     stat
## The following objects are masked from 'package:stats':
## 
##     binom.test, cor, cor.test, cov, fivenum, IQR, median, prop.test,
##     quantile, sd, t.test, var
## The following objects are masked from 'package:base':
## 
##     max, mean, min, prod, range, sample, sum
## Loading required package: mosaicCore
## 
## Attaching package: 'mosaicCore'
## The following objects are masked from 'package:dplyr':
## 
##     count, tally
## 
## Attaching package: 'mosaicCalc'
## The following object is masked from 'package:stats':
## 
##     D
gf_point(height ~ age, data=datasets::Loblolly)

dataup1 = datasets::Loblolly
dataup1
##    height age Seed
## 1    4.51   3  301
## 15  10.89   5  301
## 29  28.72  10  301
## 43  41.74  15  301
## 57  52.70  20  301
## 71  60.92  25  301
## 2    4.55   3  303
## 16  10.92   5  303
## 30  29.07  10  303
## 44  42.83  15  303
## 58  53.88  20  303
## 72  63.39  25  303
## 3    4.79   3  305
## 17  11.37   5  305
## 31  30.21  10  305
## 45  44.40  15  305
## 59  55.82  20  305
## 73  64.10  25  305
## 4    3.91   3  307
## 18   9.48   5  307
## 32  25.66  10  307
## 46  39.07  15  307
## 60  50.78  20  307
## 74  59.07  25  307
## 5    4.81   3  309
## 19  11.20   5  309
## 33  28.66  10  309
## 47  41.66  15  309
## 61  53.31  20  309
## 75  63.05  25  309
## 6    3.88   3  311
## 20   9.40   5  311
## 34  25.99  10  311
## 48  39.55  15  311
## 62  51.46  20  311
## 76  59.64  25  311
## 7    4.32   3  315
## 21  10.43   5  315
## 35  27.16  10  315
## 49  40.85  15  315
## 63  51.33  20  315
## 77  60.07  25  315
## 8    4.57   3  319
## 22  10.57   5  319
## 36  27.90  10  319
## 50  41.13  15  319
## 64  52.43  20  319
## 78  60.69  25  319
## 9    3.77   3  321
## 23   9.03   5  321
## 37  25.45  10  321
## 51  38.98  15  321
## 65  49.76  20  321
## 79  60.28  25  321
## 10   4.33   3  323
## 24  10.79   5  323
## 38  28.97  10  323
## 52  42.44  15  323
## 66  53.17  20  323
## 80  61.62  25  323
## 11   4.38   3  325
## 25  10.48   5  325
## 39  27.93  10  325
## 53  40.20  15  325
## 67  50.06  20  325
## 81  58.49  25  325
## 12   4.12   3  327
## 26   9.92   5  327
## 40  26.54  10  327
## 54  37.82  15  327
## 68  48.43  20  327
## 82  56.81  25  327
## 13   3.93   3  329
## 27   9.34   5  329
## 41  26.08  10  329
## 55  37.79  15  329
## 69  48.31  20  329
## 83  56.43  25  329
## 14   3.46   3  331
## 28   9.05   5  331
## 42  25.85  10  331
## 56  39.15  15  331
## 70  49.12  20  331
## 84  59.49  25  331
gf_point(Seed ~ age, data=datasets::Loblolly)

Untuk berbagai tujuan, mengukur bagaimana laju pertumbuhan berubah seiring bertambahnya usia pohon, yang diperlukan hanyalah fungsi mulus yang terlihat seperti data. Mari kita pertimbangkan dua:

  1. Sebuah “spline kubik”, yang mengikuti kelompok titik data dan kurva dengan halus dan anggun.
f1 <- spliner(height ~ age, data = datasets::Loblolly)
## Warning in regularize.values(x, y, ties, missing(ties)): collapsing to unique
## 'x' values
  1. Sebuah “interpolant linier”, yang menghubungkan kelompok titik data dengan garis lurus.
f2 <- connector(height ~ age, data = datasets::Loblolly)
## Warning in regularize.values(x, y, ties, missing(ties), na.rm = na.rm):
## collapsing to unique 'x' values

Anda dapat membuat grafiknya:

f1(age = 8)
## [1] 20.68193
f2(age = 8)
## [1] 20.54729
library("dplyr")
library("mosaicCalc")
gf_point(height ~ age, data = datasets::Loblolly) %>%
  slice_plot(f1(age) ~ age, color="blue") %>%
  slice_plot(f2(age) ~ age, color="red") 

Anda bahkan dapat “menyelesaikannya”, misalnya menemukan usia di mana tingginya 35 kaki:

findZeros(f1(age) - 35 ~ age, xlim=range(0,30))
##       age
## 1 12.6905
findZeros(f2(age) - 35 ~ age, xlim=range(0,30))
##    age
## 1 12.9
f1
## function (age, deriv = 0) 
## {
##     x <- get(fnames[2])
##     if (connect) 
##         SF(x)
##     else SF(x, deriv = deriv)
## }
## <environment: 0x000002a74f5c0118>
f2
## function (age) 
## {
##     x <- get(fnames[2])
##     if (connect) 
##         SF(x)
##     else SF(x, deriv = deriv)
## }
## <environment: 0x000002a74e0f2f60>

Pohon-pohon ditebang untuk diambil kayunya, dan minat dalam melakukan pengukuran adalah untuk membantu memperkirakan berapa banyak volume kayu yang dapat digunakan yang dapat diperoleh dari sebuah pohon, berdasarkan lingkar (yaitu, keliling) dan tinggi. Ini akan berguna, misalnya, dalam memperkirakan berapa nilai uang sebuah pohon. Namun, tidak seperti data pinus loblolly, data ceri hitam tidak melibatkan pohon yang jatuh dengan baik ke dalam kelompok yang ditentukan.

Cherry <- datasets::trees
gf_point(Volume ~ Girth, data = Cherry)

Cukup mudah untuk membuat spline atau konektor linier:

g1 = spliner(Volume ~ Girth, data = Cherry)
## Warning in regularize.values(x, y, ties, missing(ties)): collapsing to unique
## 'x' values
g2 = connector(Volume ~ Girth, data = Cherry)
## Warning in regularize.values(x, y, ties, missing(ties), na.rm = na.rm):
## collapsing to unique 'x' values
slice_plot(g1(x) ~ x, domain(x = 8:18)) %>%
  slice_plot(g2(x) ~ x, color ="red") %>%
  gf_point(Volume ~ Girth, data = Cherry) %>%
  gf_labs(x = "Girth (inches)")

Gerakan naik turun adalah fungsi yang sulit dipercaya. Untuk situasi seperti itu, di mana Anda memiliki alasan untuk percaya bahwa fungsi mulus lebih tepat daripada fungsi dengan banyak pasang surut, jenis fungsi yang berbeda sesuai: lebih halus.

g3 <- smoother(Volume ~ Girth, data = Cherry, span=1.5)
gf_point(Volume~Girth, data=Cherry) %>%
  slice_plot(g3(Girth) ~ Girth) %>%
  gf_labs(x = "Girth (inches)")

Penghalus dinamai dengan baik: mereka membangun fungsi halus yang mendekati data. Anda memiliki kendali atas seberapa halus fungsinya seharusnya. Hyper-parameter spanmengatur ini:

g4 <- smoother(Volume ~ Girth, data=Cherry, span=1.0)
gf_point(Volume~Girth, data = Cherry) %>%
  slice_plot(g4(Girth) ~ Girth) %>%
  gf_labs(x = "Girth (inches)", y = "Wood volume")

Tentu saja, sering kali Anda ingin menangkap hubungan di mana terdapat lebih dari satu variabel sebagai input. Penghalus melakukan ini dengan sangat baik; cukup tentukan variabel mana yang akan menjadi input.

g5 <- smoother(Volume ~ Girth+Height, 
               data = Cherry, span = 1.0)
gf_point(Height ~ Girth, data = Cherry) %>%
  contour_plot(g5(Girth, Height) ~ Girth + Height) %>%
  gf_labs(x = "Girth (inches)", 
          y = "Height (ft)", 
          title = "Volume (ft^3)")

Saat Anda membuat konektor yang lebih halus atau spline atau linier, ingat aturan ini:

  1. Anda memerlukan bingkai data yang berisi data.

  2. Anda menggunakan rumus dengan variabel yang Anda inginkan sebagai output fungsi di sisi kiri tilde, dan variabel input di sisi kanan.

  3. Fungsi yang dibuat akan memiliki nama input yang cocok dengan variabel yang Anda tentukan sebagai input. (Untuk saat ini, hanya smootherakan menerima lebih dari satu variabel input.)

  4. Kelancaran suatu smootherfungsi dapat diatur oleh spanargumen. Rentang 1,0 biasanya cukup mulus. Kesalahannya adalah 0,5.

  5. Saat membuat spline, Anda memiliki opsi untuk mendeklarasikan monotonic=TRUE. Ini akan mengatur hal-hal untuk menghindari benjolan asing pada data yang menunjukkan pola naik yang stabil atau pola turun yang stabil.

Saat Anda ingin memplot suatu fungsi, tentu saja Anda perlu memilih rentang untuk nilai input. Seringkali masuk akal untuk memilih rentang yang sesuai dengan data yang menjadi dasar fungsi. Anda dapat menemukan ini dengan range()perintah, misalnya

range(Cherry$Height)
## [1] 63 87

daftar pustaka

https://dtkaplan.github.io/RforCalculus/parameters-and-functions.html#functions-without-parameters-splines-and-smoothers