# Load packages

# Core
library(tidyverse)
library(tidyquant)
library(readr)

# Time series
library(lubridate)
library(tibbletime)

# modeling
library(broom)

Goal

Examine how each asset contributes to portfolio standard deviation. This is to ensure that our risk is not concentrated in any one asset.

five stocks: “SPY”, “EFA”, “IJS”, “EEM”, “AGG” from 2012-12-31 to 2017-12-31

1 Import stock prices

symbols <- c("SPY", "EFA", "IJS", "EEM", "AGG")

prices <- tq_get(x    = symbols,
                 get  = "stock.prices",    
                 from = "2012-12-31",
                 to   = "2017-12-31")

2 Convert prices to returns

asset_returns_tbl <- prices %>%
    
    group_by(symbol) %>%
    
    tq_transmute(select     = adjusted, 
                 mutate_fun = periodReturn, 
                 period     = "monthly",
                 type       = "log") %>%
    
    slice(-1) %>%
    
    ungroup() %>%
    
    set_names(c("asset", "date", "returns"))

3 Component Contribution Step-by-Step

Refresh your memory on covariance with this video. Click this link Refresh your memory on matrix multiplication. Click this link

# Transform data into wide form
asset_returns_wide_tbl <- asset_returns_tbl %>%

    pivot_wider(names_from = asset, values_from = returns) %>%

    column_to_rownames(var = "date")

asset_returns_wide_tbl
##                      AGG           EEM           EFA          IJS           SPY
## 2013-01-31 -0.0062311938 -0.0029354005  0.0366061757  0.052133140  4.992314e-02
## 2013-02-28  0.0058911491 -0.0231051707 -0.0129694841  0.016175423  1.267823e-02
## 2013-03-28  0.0009850600 -0.0102351118  0.0129694841  0.040257926  3.726805e-02
## 2013-04-30  0.0096395452  0.0120844531  0.0489676089  0.001222811  1.903027e-02
## 2013-05-31 -0.0202147132 -0.0494829885 -0.0306553972  0.041976121  2.333516e-02
## 2013-06-28 -0.0157779825 -0.0547287588 -0.0271444801 -0.001402864 -1.343409e-02
## 2013-07-31  0.0026880092  0.0131599404  0.0518604577  0.063541279  5.038562e-02
## 2013-08-30 -0.0082980899 -0.0257057495 -0.0197463849 -0.034743219 -3.045140e-02
## 2013-09-30  0.0111430458  0.0695890421  0.0753384185  0.063873332  3.115592e-02
## 2013-10-31  0.0082924924  0.0408612799  0.0320817099  0.034234133  4.526659e-02
## 2013-11-29 -0.0025101909 -0.0025939865  0.0054496983  0.041661224  2.920703e-02
## 2013-12-31 -0.0055824907 -0.0040744160  0.0215280708  0.012892071  2.559606e-02
## 2014-01-31  0.0152919823 -0.0903226112 -0.0534132794 -0.035775219 -3.588450e-02
## 2014-02-28  0.0037564801  0.0332206760  0.0595048974  0.045257165  4.451039e-02
## 2014-03-31 -0.0014818075  0.0380216156 -0.0046025452  0.013315259  8.261373e-03
## 2014-04-30  0.0081832315  0.0077724429  0.0165294212 -0.023184144  6.927501e-03
## 2014-05-30  0.0117213295  0.0290915367  0.0158285027  0.006205132  2.294127e-02
## 2014-06-30 -0.0005754430  0.0237339224  0.0091654340  0.037718805  2.043469e-02
## 2014-07-31 -0.0025121061  0.0135554617 -0.0263796497 -0.052009220 -1.352885e-02
## 2014-08-29  0.0114310011  0.0279047061  0.0018002465  0.043657637  3.870485e-02
## 2014-09-30 -0.0061675134 -0.0808571142 -0.0395985369 -0.061260338 -1.389248e-02
## 2014-10-31  0.0105844346  0.0140968857 -0.0026548920  0.068874865  2.327772e-02
## 2014-11-28  0.0065488638 -0.0155413186  0.0006254735  0.004773506  2.710136e-02
## 2014-12-31  0.0014751226 -0.0404424506 -0.0407467494  0.025296250 -2.539643e-03
## 2015-01-30  0.0203153498 -0.0068956277  0.0062265852 -0.054628333 -3.007711e-02
## 2015-02-27 -0.0089885630  0.0431361393  0.0614504436  0.056914669  5.468210e-02
## 2015-03-31  0.0037406263 -0.0150862103 -0.0143887705  0.010156480 -1.583028e-02
## 2015-04-30 -0.0032331841  0.0662813466  0.0358165769 -0.018417951  9.785810e-03
## 2015-05-29 -0.0043838434 -0.0419110152  0.0019526163  0.007510182  1.277398e-02
## 2015-06-30 -0.0108251101 -0.0297465425 -0.0316786710  0.004171345 -2.052115e-02
## 2015-07-31  0.0085842899 -0.0651781389  0.0201145100 -0.027375435  2.233794e-02
## 2015-08-31 -0.0033634289 -0.0925124218 -0.0771525728 -0.047268393 -6.288659e-02
## 2015-09-30  0.0080814495 -0.0318248618 -0.0451948693 -0.038464791 -2.584745e-02
## 2015-10-30  0.0006849612  0.0618082679  0.0640259285  0.063589751  8.163513e-02
## 2015-11-30 -0.0038981426 -0.0255606021 -0.0075556977  0.024415486  3.648467e-03
## 2015-12-31 -0.0019186900 -0.0389470505 -0.0235951354 -0.052157205 -1.743354e-02
## 2016-01-29  0.0123295872 -0.0516368011 -0.0567578101 -0.060306891 -5.106880e-02
## 2016-02-29  0.0088316939 -0.0082114634 -0.0339139805  0.020605377 -8.263092e-04
## 2016-03-31  0.0087089954  0.1218792209  0.0637455915  0.089910149  6.510027e-02
## 2016-04-29  0.0025461389  0.0040791547  0.0219751237  0.021044247  3.933629e-03
## 2016-05-31  0.0001358254 -0.0376287047 -0.0008558911  0.004397031  1.686845e-02
## 2016-06-30  0.0191667225  0.0445825728 -0.0244916419  0.008292459  3.469836e-03
## 2016-07-29  0.0054294202  0.0524423075  0.0390003649  0.049348466  3.582180e-02
## 2016-08-31 -0.0021562507  0.0087983145  0.0053267590  0.011260877  1.196924e-03
## 2016-09-30  0.0005160896  0.0248729397  0.0132791048  0.008614714  5.827379e-05
## 2016-10-31 -0.0082050359 -0.0083121374 -0.0224036424 -0.038134761 -1.748925e-02
## 2016-11-30 -0.0259902514 -0.0451618458 -0.0179744466  0.125246396  3.617591e-02
## 2016-12-30  0.0025384370 -0.0025300917  0.0267028055  0.031491761  2.006913e-02
## 2017-01-31  0.0021260125  0.0644313576  0.0323818587 -0.012143891  1.773659e-02
## 2017-02-28  0.0064377295  0.0172578934  0.0118364607  0.013429120  3.853909e-02
## 2017-03-31 -0.0005528650  0.0361891145  0.0318057513 -0.006533536  1.249459e-03
## 2017-04-28  0.0090298144  0.0168661696  0.0239521597  0.005107755  9.877151e-03
## 2017-05-31  0.0068470303  0.0280600769  0.0348101995 -0.022862610  1.401406e-02
## 2017-06-30 -0.0001827512  0.0092238315  0.0029558687  0.029151928  6.354856e-03
## 2017-07-31  0.0033344185  0.0565945909  0.0261880413  0.007481322  2.034571e-02
## 2017-08-31  0.0093692946  0.0232437794 -0.0004483141 -0.027564251  2.913398e-03
## 2017-09-29 -0.0057321049 -0.0004465575  0.0233427888  0.082321566  1.994915e-02
## 2017-10-31  0.0009776767  0.0322786886  0.0166536389  0.005915704  2.329073e-02
## 2017-11-30 -0.0014838472 -0.0038969510  0.0068699364  0.036913485  3.010806e-02
## 2017-12-29  0.0047401013  0.0369253399  0.0133984342 -0.003730945  1.205483e-02
# Covariance of asset returns
covariance_matrix <- cov(asset_returns_wide_tbl)

covariance_matrix
##               AGG          EEM          EFA           IJS           SPY
## AGG  7.398455e-05 0.0001042080 4.178028e-05 -7.812255e-05 -9.033612e-06
## EEM  1.042080e-04 0.0017547152 1.039018e-03  6.437736e-04  6.795449e-04
## EFA  4.178028e-05 0.0010390175 1.064237e-03  6.490275e-04  6.975414e-04
## IJS -7.812255e-05 0.0006437736 6.490275e-04  1.565448e-03  8.290249e-04
## SPY -9.033612e-06 0.0006795449 6.975414e-04  8.290249e-04  7.408295e-04
# Standard deviation of portfolio
# Summarizes how much each asset's returns vary with those of other assets within the portfolio into a single number
w <- c(0.25, 0.25, 0.2, 0.2, 0.1)

sd_portfolio <- sqrt(t(w) %*% covariance_matrix %*% w)
sd_portfolio
##           [,1]
## [1,] 0.0234749
# Component contribution
# Similar to the formula for sd_portfolio
# Mathematical trick to summarize the same, sd_portfolio, by asset instead of a single number
component_contribution <- (t(w) %*% covariance_matrix * w) / sd_portfolio[1,1]
component_contribution
##              AGG         EEM         EFA         IJS         SPY
## [1,] 0.000387396 0.009257161 0.005815629 0.005684458 0.002330251
rowSums(component_contribution)
## [1] 0.0234749
# Component contribution in percentage
component_percentages <- (component_contribution / sd_portfolio[1,1]) %>%
    round(3) %>%
    as_tibble()

component_percentages
## # A tibble: 1 × 5
##     AGG   EEM   EFA   IJS   SPY
##   <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 0.017 0.394 0.248 0.242 0.099
component_percentages %>%

    as_tibble() %>%
    gather(key = "asset", value = "contribution")
## # A tibble: 5 × 2
##   asset contribution
##   <chr>        <dbl>
## 1 AGG          0.017
## 2 EEM          0.394
## 3 EFA          0.248
## 4 IJS          0.242
## 5 SPY          0.099

4 Component Contribution with a Custom Function

# Transform data into wide form
asset_returns_wide_tbl <- asset_returns_tbl %>%
    pivot_wider(names_from = asset, values_from = returns) %>%
    column_to_rownames(var = "date")
# Custom function
calculate_component_contribution <- function(asset_returns_wide_tbl, w) {
    # Covariance of asset returns
    covariance_matrix <- cov(asset_returns_wide_tbl)
    
    # Standard deviation of portfolio
    sd_portfolio <- sqrt(t(w) %*% covariance_matrix %*% w)
    # Component contribution
    component_contribution <- (t(w) %*% covariance_matrix * w) / sd_portfolio[1,1]
    # Component contribution in percentage
    component_percentages <- (component_contribution / sd_portfolio[1,1]) %>%
        round(3) %>%
        as_tibble()
    
    return(component_percentages)
}
asset_returns_wide_tbl %>% calculate_component_contribution(w = c(0.25,0.25,0.2,0.2,0.1))
## # A tibble: 1 × 5
##     AGG   EEM   EFA   IJS   SPY
##   <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 0.017 0.394 0.248 0.242 0.099

5 Visualizing Component Contribution

# Figure 10.1 Contribution to Standard Deviation ----
asset_returns_wide_tbl %>%
    calculate_component_contribution(w = c(0.25,0.25,0.2,0.2,0.1)) %>%
    gather(key = "asset", value = "contribution") %>%
    ggplot(aes(asset, contribution)) +
    geom_col(fill = "cornflowerblue") +
    
    theme(plot.title = element_text(hjust = 0.5)) +
    scale_y_continuous(labels = scales::percent_format(accuracy = 1)) +
    
    labs(title = "Percent Contribution to Portfolio Standard Deviation",
         y = "Percent Contribution to Risk",
         x = NULL)

# Figure 10.2 Weight versus Contribution ----
asset_returns_wide_tbl %>%
    calculate_component_contribution(w = c(0.25,0.25,0.2,0.2,0.1)) %>%
    gather(key = "asset", value = "contribution") %>%
    add_column(weights = c(0.25,0.25,0.2,0.2,0.1)) %>%
    pivot_longer(cols = c(contribution, weights), names_to = "type", values_to = "value") %>%
    ggplot(aes(asset, value, fill = type)) +
    geom_col(position = "dodge") +
    
    theme(plot.title = element_text(hjust = 0.5)) +
    scale_y_continuous(labels = scales::percent_format(accuracy = 1)) +
    theme_tq() +
    scale_fill_tq() +
    labs(title = "Percent Contribution to Volatility",
         y = "percent",
         x = "asset") 

6 Rolling Component Contribution

calculate_comp_contrib_by_window <- function(asset_returns_wide_tbl,
                                             start = 1,
                                             window = 24,
                                             weights) {
    # 1 Define start date
    start_date <- rownames(asset_returns_wide_tbl)[start]
    # 2 Define end date
    end_date <- rownames(asset_returns_wide_tbl)[start + window]
    # 3 Subset df
    df_subset <- asset_returns_wide_tbl %>%
        rownames_to_column(var = "date") %>%
        filter(date >= start_date & date < end_date) %>%
        column_to_rownames(var = "date")
    # 4 Calculate component contribution
    component_percentages <-df_subset %>%
        calculate_component_contribution(w = weights)
    # 5 Add end date to df
    component_percentages %>%
        mutate(date = ymd(end_date)) %>%
        select(date, everything())
}