Table 1
Â
|
No (N=4788) |
Yes (N=921) |
Overall (N=5709) |
| Cohort |
|
|
|
| Original |
2022 (42.2%) |
537 (58.3%) |
2559 (44.8%) |
| Expansion |
597 (12.5%) |
210 (22.8%) |
807 (14.1%) |
| Replacement |
2169 (45.3%) |
174 (18.9%) |
2343 (41.0%) |
| Gender |
|
|
|
| Female |
2776 (58.0%) |
538 (58.4%) |
3314 (58.0%) |
| Male |
2012 (42.0%) |
383 (41.6%) |
2395 (42.0%) |
| Age at Death |
|
|
|
| Mean (SD) |
87.0 (7.15) |
89.4 (6.62) |
87.7 (7.09) |
| Median [Min, Max] |
87.6 [66.4, 108] |
90.0 [68.9, 106] |
88.2 [66.4, 108] |
| Missing |
2325 (48.6%) |
0 (0%) |
2325 (40.7%) |
| Race |
|
|
|
| White |
4231 (88.4%) |
865 (93.9%) |
5096 (89.3%) |
| Black |
195 (4.1%) |
12 (1.3%) |
207 (3.6%) |
| Asian |
0 (0%) |
0 (0%) |
0 (0%) |
| American Indian or Alaskan Native |
0 (0%) |
0 (0%) |
0 (0%) |
| Native Hawaiian or Pacific Islander |
3 (0.1%) |
0 (0%) |
3 (0.1%) |
| Other including mixed |
159 (3.3%) |
27 (2.9%) |
186 (3.3%) |
| Missing |
200 (4.2%) |
17 (1.8%) |
217 (3.8%) |
| Dementia Status |
|
|
|
| No Dementia |
3868 (80.8%) |
501 (54.4%) |
4369 (76.5%) |
| Dementia |
920 (19.2%) |
420 (45.6%) |
1340 (23.5%) |
| APOE Status |
|
|
|
| - APOE e4 |
2779 (58.0%) |
639 (69.4%) |
3418 (59.9%) |
| + APOE e4 |
979 (20.4%) |
245 (26.6%) |
1224 (21.4%) |
| Missing |
1030 (21.5%) |
37 (4.0%) |
1067 (18.7%) |
| Smoking Status |
|
|
|
| Never |
2374 (49.6%) |
416 (45.2%) |
2790 (48.9%) |
| Former |
2181 (45.6%) |
452 (49.1%) |
2633 (46.1%) |
| Current |
221 (4.6%) |
51 (5.5%) |
272 (4.8%) |
| Missing |
12 (0.3%) |
2 (0.2%) |
14 (0.2%) |
| Pack Years |
|
|
|
| Mean (SD) |
18.6 (47.7) |
22.2 (29.9) |
19.2 (45.3) |
| Median [Min, Max] |
0 [0, 1520] |
6.00 [0, 228] |
1.00 [0, 1520] |
| Missing |
51 (1.1%) |
5 (0.5%) |
56 (1.0%) |
| Alcohol Use |
|
|
|
| never |
858 (17.9%) |
171 (18.6%) |
1029 (18.0%) |
| previous |
1087 (22.7%) |
233 (25.3%) |
1320 (23.1%) |
| current |
2657 (55.5%) |
515 (55.9%) |
3172 (55.6%) |
| Missing |
186 (3.9%) |
2 (0.2%) |
188 (3.3%) |
| BMI |
|
|
|
| Mean (SD) |
27.5 (5.01) |
26.9 (4.84) |
27.4 (4.99) |
| Median [Min, Max] |
26.8 [14.9, 61.3] |
26.2 [15.9, 48.9] |
26.7 [14.9, 61.3] |
| Missing |
127 (2.7%) |
22 (2.4%) |
149 (2.6%) |
| Cardiovascular Disease |
|
|
|
| No |
4350 (90.9%) |
808 (87.7%) |
5158 (90.3%) |
| Yes |
397 (8.3%) |
103 (11.2%) |
500 (8.8%) |
| Missing |
41 (0.9%) |
10 (1.1%) |
51 (0.9%) |
| Hypertension |
|
|
|
| No |
2728 (57.0%) |
571 (62.0%) |
3299 (57.8%) |
| Yes |
2022 (42.2%) |
343 (37.2%) |
2365 (41.4%) |
| Missing |
38 (0.8%) |
7 (0.8%) |
45 (0.8%) |
| CASI Score (IRT) |
|
|
|
| Mean (SD) |
0.330 (0.719) |
0.322 (0.680) |
0.329 (0.713) |
| Median [Min, Max] |
0.370 [-2.69, 1.75] |
0.343 [-1.75, 1.75] |
0.366 [-2.69, 1.75] |
| Education |
|
|
|
| Less than High School |
392 (8.2%) |
67 (7.3%) |
459 (8.0%) |
| GED |
70 (1.5%) |
12 (1.3%) |
82 (1.4%) |
| High School |
1650 (34.5%) |
371 (40.3%) |
2021 (35.4%) |
| Bachelor's |
1124 (23.5%) |
230 (25.0%) |
1354 (23.7%) |
| Master's |
789 (16.5%) |
121 (13.1%) |
910 (15.9%) |
| Doctorate |
290 (6.1%) |
48 (5.2%) |
338 (5.9%) |
| Other |
471 (9.8%) |
72 (7.8%) |
543 (9.5%) |
| Missing |
2 (0.0%) |
0 (0%) |
2 (0.0%) |
| Neighborhood Median Household Income |
|
|
|
| <35,000 |
449 (9.4%) |
84 (9.1%) |
533 (9.3%) |
| 35,000-49,999 |
1430 (29.9%) |
287 (31.2%) |
1717 (30.1%) |
| 50,000-74,999 |
2231 (46.6%) |
457 (49.6%) |
2688 (47.1%) |
| >75,000 |
506 (10.6%) |
91 (9.9%) |
597 (10.5%) |
| Missing |
172 (3.6%) |
2 (0.2%) |
174 (3.0%) |
| Gross Infarcts |
|
|
|
| No |
0 (0%) |
583 (63.3%) |
583 (10.2%) |
| Yes |
0 (0%) |
266 (28.9%) |
266 (4.7%) |
| Missing |
4788 (100%) |
72 (7.8%) |
4860 (85.1%) |
| Number of Gross Infarcts |
|
|
|
| Mean (SD) |
NA (NA) |
0.718 (1.53) |
0.718 (1.53) |
| Median [Min, Max] |
NA [NA, NA] |
0 [0, 16.0] |
0 [0, 16.0] |
| Missing |
4788 (100%) |
72 (7.8%) |
4860 (85.1%) |
| Microinfarcts |
|
|
|
| No |
0 (0%) |
425 (46.1%) |
425 (7.4%) |
| Yes |
0 (0%) |
416 (45.2%) |
416 (7.3%) |
| Missing |
4788 (100%) |
80 (8.7%) |
4868 (85.3%) |
| Number of Microinfarcts |
|
|
|
| Mean (SD) |
NA (NA) |
1.36 (2.24) |
1.36 (2.24) |
| Median [Min, Max] |
NA [NA, NA] |
0 [0, 15.0] |
0 [0, 15.0] |
| Missing |
4788 (100%) |
80 (8.7%) |
4868 (85.3%) |
| Atherosclerosis |
|
|
|
| None |
0 (0%) |
36 (3.9%) |
36 (0.6%) |
| Mild |
0 (0%) |
214 (23.2%) |
214 (3.7%) |
| Moderate |
0 (0%) |
510 (55.4%) |
510 (8.9%) |
| Severe |
0 (0%) |
59 (6.4%) |
59 (1.0%) |
| Missing |
4788 (100%) |
102 (11.1%) |
4890 (85.7%) |
| Arteriolosclerosis |
|
|
|
| Absent |
0 (0%) |
8 (0.9%) |
8 (0.1%) |
| Mild |
0 (0%) |
172 (18.7%) |
172 (3.0%) |
| Moderate |
0 (0%) |
349 (37.9%) |
349 (6.1%) |
| Severe |
0 (0%) |
173 (18.8%) |
173 (3.0%) |
| Missing |
4788 (100%) |
219 (23.8%) |
5007 (87.7%) |
| Total Microinfarcts |
|
|
|
| Mean (SD) |
NA (NA) |
1.47 (2.39) |
1.47 (2.39) |
| Median [Min, Max] |
NA [NA, NA] |
1.00 [0, 17.0] |
1.00 [0, 17.0] |
| Missing |
4788 (100%) |
99 (10.7%) |
4887 (85.6%) |
| PM2.5 Exposure from Death (1 year) |
|
|
|
| Mean (SD) |
7.51 (1.47) |
7.05 (1.34) |
7.38 (1.45) |
| Median [Min, Max] |
7.39 [2.64, 12.6] |
6.85 [2.75, 11.0] |
7.21 [2.64, 12.6] |
| Missing |
2421 (50.6%) |
30 (3.3%) |
2451 (42.9%) |
| PM2.5 Exposure from Death (5 year) |
|
|
|
| Mean (SD) |
7.91 (1.59) |
7.33 (1.33) |
7.75 (1.54) |
| Median [Min, Max] |
7.90 [3.31, 13.7] |
7.05 [3.41, 11.5] |
7.63 [3.31, 13.7] |
| Missing |
2379 (49.7%) |
12 (1.3%) |
2391 (41.9%) |
| PM2.5 Exposure from Death (10 year) |
|
|
|
| Mean (SD) |
8.59 (1.97) |
7.86 (1.54) |
8.39 (1.89) |
| Median [Min, Max] |
8.38 [3.40, 16.4] |
7.68 [4.33, 13.6] |
8.20 [3.40, 16.4] |
| Missing |
2344 (49.0%) |
6 (0.7%) |
2350 (41.2%) |
| PM2.5 Exposure from Death (20 year) |
|
|
|
| Mean (SD) |
10.4 (2.54) |
9.42 (2.19) |
10.1 (2.48) |
| Median [Min, Max] |
9.97 [4.81, 18.7] |
8.85 [5.37, 16.3] |
9.62 [4.81, 18.7] |
| Missing |
2326 (48.6%) |
0 (0%) |
2326 (40.7%) |
| exp_avgdeath_01_yr_MM_ufp_10_42 |
|
|
|
| Mean (SD) |
10600 (2130) |
10600 (2160) |
10600 (2140) |
| Median [Min, Max] |
10300 [4350, 21100] |
10200 [4510, 20700] |
10300 [4350, 21100] |
| Missing |
2569 (53.7%) |
86 (9.3%) |
2655 (46.5%) |
| exp_avgdeath_01_yr_MM_ufp_10_70 |
|
|
|
| Mean (SD) |
9500 (3060) |
9290 (2950) |
9440 (3030) |
| Median [Min, Max] |
8970 [2100, 31100] |
8560 [2650, 25800] |
8880 [2100, 31100] |
| Missing |
2569 (53.7%) |
86 (9.3%) |
2655 (46.5%) |
| exp_avgdeath_01_yr_MM_ufp_20_1k |
|
|
|
| Mean (SD) |
7380 (1890) |
7290 (1880) |
7360 (1890) |
| Median [Min, Max] |
7090 [2330, 15900] |
6900 [2740, 15000] |
7050 [2330, 15900] |
| Missing |
2569 (53.7%) |
86 (9.3%) |
2655 (46.5%) |
| exp_avgdeath_01_yr_MM_ufp_36_1k |
|
|
|
| Mean (SD) |
3300 (684) |
3290 (710) |
3290 (691) |
| Median [Min, Max] |
3240 [1320, 7120] |
3220 [1480, 6960] |
3230 [1320, 7120] |
| Missing |
2569 (53.7%) |
86 (9.3%) |
2655 (46.5%) |
| CERAD Score |
|
|
|
| 0 |
0 (0%) |
187 (20.3%) |
187 (3.3%) |
| 1 |
0 (0%) |
205 (22.3%) |
205 (3.6%) |
| 2 |
0 (0%) |
198 (21.5%) |
198 (3.5%) |
| 3 |
0 (0%) |
238 (25.8%) |
238 (4.2%) |
| Missing |
4788 (100%) |
93 (10.1%) |
4881 (85.5%) |
| BRAAK Stage |
|
|
|
| 0 |
0 (0%) |
24 (2.6%) |
24 (0.4%) |
| 1 |
0 (0%) |
68 (7.4%) |
68 (1.2%) |
| 2 |
0 (0%) |
136 (14.8%) |
136 (2.4%) |
| 3 |
0 (0%) |
142 (15.4%) |
142 (2.5%) |
| 4 |
0 (0%) |
148 (16.1%) |
148 (2.6%) |
| 5 |
0 (0%) |
173 (18.8%) |
173 (3.0%) |
| 6 |
0 (0%) |
131 (14.2%) |
131 (2.3%) |
| 98 |
0 (0%) |
1 (0.1%) |
1 (0.0%) |
| Missing |
4788 (100%) |
98 (10.6%) |
4886 (85.6%) |
| amylangi_score |
|
|
|
| 0 |
0 (0%) |
526 (57.1%) |
526 (9.2%) |
| 1 |
0 (0%) |
152 (16.5%) |
152 (2.7%) |
| 2 |
0 (0%) |
145 (15.7%) |
145 (2.5%) |
| 3 |
0 (0%) |
24 (2.6%) |
24 (0.4%) |
| Missing |
4788 (100%) |
74 (8.0%) |
4862 (85.2%) |
| Late Stage |
|
|
|
| 0 |
0 (0%) |
432 (46.9%) |
432 (7.6%) |
| 1 |
0 (0%) |
178 (19.3%) |
178 (3.1%) |
| 2 |
0 (0%) |
204 (22.1%) |
204 (3.6%) |
| 3 |
0 (0%) |
13 (1.4%) |
13 (0.2%) |
| Missing |
4788 (100%) |
94 (10.2%) |
4882 (85.5%) |
| Thal Phase |
|
|
|
| 0 |
0 (0%) |
50 (5.4%) |
50 (0.9%) |
| 1 |
0 (0%) |
34 (3.7%) |
34 (0.6%) |
| 2 |
0 (0%) |
39 (4.2%) |
39 (0.7%) |
| 3 |
0 (0%) |
88 (9.6%) |
88 (1.5%) |
| 4 |
0 (0%) |
108 (11.7%) |
108 (1.9%) |
| 5 |
0 (0%) |
67 (7.3%) |
67 (1.2%) |
| Missing |
4788 (100%) |
535 (58.1%) |
5323 (93.2%) |
| Any Hippocampal Sclerosis |
|
|
|
| 0 |
0 (0%) |
714 (77.5%) |
714 (12.5%) |
| 1 |
0 (0%) |
115 (12.5%) |
115 (2.0%) |
| Missing |
4788 (100%) |
92 (10.0%) |
4880 (85.5%) |
| Number of Microinfarcts (cere) |
|
|
|
| Mean (SD) |
NA (NA) |
0.866 (1.79) |
0.866 (1.79) |
| Median [Min, Max] |
NA [NA, NA] |
0 [0, 15.0] |
0 [0, 15.0] |
| Missing |
4788 (100%) |
80 (8.7%) |
4868 (85.3%) |
| Number of Microinfarcts, (deep) |
|
|
|
| Mean (SD) |
NA (NA) |
0.498 (0.951) |
0.498 (0.951) |
| Median [Min, Max] |
NA [NA, NA] |
0 [0, 6.00] |
0 [0, 6.00] |
| Missing |
4788 (100%) |
80 (8.7%) |
4868 (85.3%) |
Looking into UFP
Exposure Plots
Green = 5 year average exposure, red = 10 year average exposure


Plotting AP for those with Autopsy


Log Linear Analysis
## Call:
## MASS::loglm(formula = ~ath_bi + art_bi, data = outs)
##
## Statistics:
## X^2 df P(> X^2)
## Likelihood Ratio 572.8033 45 0
## Pearson 564.2073 45 0
## Call:
## MASS::loglm(formula = ~ath_bi + chronic_microinfarcts_any, data = outs)
##
## Statistics:
## X^2 df P(> X^2)
## Likelihood Ratio 841.8655 45 0
## Pearson 914.4342 45 0
## Call:
## MASS::loglm(formula = ~ath_bi + chronic_grossinfarcts_any, data = outs)
##
## Statistics:
## X^2 df P(> X^2)
## Likelihood Ratio 722.0615 45 0
## Pearson 858.2416 45 0
## Call:
## MASS::loglm(formula = ~art_bi + chronic_microinfarcts_any, data = outs)
##
## Statistics:
## X^2 df P(> X^2)
## Likelihood Ratio 702.3974 45 0
## Pearson 735.4973 45 0
## Call:
## MASS::loglm(formula = ~art_bi + chronic_grossinfarcts_any, data = outs)
##
## Statistics:
## X^2 df P(> X^2)
## Likelihood Ratio 582.5935 45 0
## Pearson 685.7489 45 0
## Call:
## MASS::loglm(formula = ~chronic_microinfarcts_any + chronic_grossinfarcts_any,
## data = outs)
##
## Statistics:
## X^2 df P(> X^2)
## Likelihood Ratio 851.6556 45 0
## Pearson 1213.7905 45 0
## Call:
## MASS::loglm(formula = ~chronic_microinfarcts_any + deathage_group2,
## data = outs)
##
## Statistics:
## X^2 df P(> X^2)
## Likelihood Ratio 745.3532 44 0
## Pearson 815.4693 44 0
## Call:
## MASS::loglm(formula = ~chronic_grossinfarcts_any + +deathage_group2,
## data = outs)
##
## Statistics:
## X^2 df P(> X^2)
## Likelihood Ratio 625.5492 44 0
## Pearson 766.0614 44 0
Modeling
Risk Factor Modeling
emmeans for Microinfarct models
## CVD_cat = 0:
## deathage_group2 prob SE df asymp.LCL asymp.UCL
## < 80 0.288 0.0377 Inf 0.220 0.367
## 80-89 0.433 0.0322 Inf 0.371 0.496
## 90+ 0.547 0.0318 Inf 0.484 0.608
##
## CVD_cat = 1:
## deathage_group2 prob SE df asymp.LCL asymp.UCL
## < 80 0.287 0.0830 Inf 0.154 0.471
## 80-89 0.798 0.0697 Inf 0.629 0.903
## 90+ 0.485 0.1116 Inf 0.282 0.694
##
## Results are averaged over the levels of: male_cat
## Confidence level used: 0.95
## Intervals are back-transformed from the logit scale

## diabetes_cat = 0:
## deathage_group2 prob SE df asymp.LCL asymp.UCL
## < 80 0.291 0.0402 Inf 0.219 0.376
## 80-89 0.494 0.0334 Inf 0.430 0.560
## 90+ 0.541 0.0313 Inf 0.480 0.602
##
## diabetes_cat = 1:
## deathage_group2 prob SE df asymp.LCL asymp.UCL
## < 80 0.238 0.0577 Inf 0.144 0.369
## 80-89 0.438 0.0725 Inf 0.304 0.581
## 90+ 0.590 0.1336 Inf 0.328 0.809
##
## Results are averaged over the levels of: male_cat
## Confidence level used: 0.95
## Intervals are back-transformed from the logit scale

## HTN_cat = 0:
## deathage_group2 prob SE df asymp.LCL asymp.UCL
## < 80 0.301 0.0445 Inf 0.221 0.394
## 80-89 0.461 0.0402 Inf 0.384 0.540
## 90+ 0.519 0.0397 Inf 0.442 0.596
##
## HTN_cat = 1:
## deathage_group2 prob SE df asymp.LCL asymp.UCL
## < 80 0.248 0.0504 Inf 0.163 0.359
## 80-89 0.507 0.0462 Inf 0.417 0.597
## 90+ 0.591 0.0468 Inf 0.497 0.678
##
## Results are averaged over the levels of: male_cat
## Confidence level used: 0.95
## Intervals are back-transformed from the logit scale

emmeans for Gross Infarct models
## CVD_cat = 0:
## deathage_group2 prob SE df asymp.LCL asymp.UCL
## < 80 0.106 0.0255 Inf 0.0658 0.168
## 80-89 0.281 0.0290 Inf 0.2275 0.341
## 90+ 0.377 0.0308 Inf 0.3190 0.439
##
## CVD_cat = 1:
## deathage_group2 prob SE df asymp.LCL asymp.UCL
## < 80 0.178 0.0705 Inf 0.0779 0.358
## 80-89 0.517 0.0864 Inf 0.3521 0.678
## 90+ 0.440 0.1108 Inf 0.2451 0.654
##
## Results are averaged over the levels of: male_cat
## Confidence level used: 0.95
## Intervals are back-transformed from the logit scale

## diabetes_cat = 0:
## deathage_group2 prob SE df asymp.LCL asymp.UCL
## < 80 0.1539 0.0319 Inf 0.10123 0.227
## 80-89 0.3090 0.0306 Inf 0.25239 0.372
## 90+ 0.3832 0.0304 Inf 0.32561 0.444
##
## diabetes_cat = 1:
## deathage_group2 prob SE df asymp.LCL asymp.UCL
## < 80 0.0359 0.0252 Inf 0.00884 0.134
## 80-89 0.2989 0.0669 Inf 0.18573 0.443
## 90+ 0.3443 0.1287 Inf 0.14654 0.616
##
## Results are averaged over the levels of: male_cat
## Confidence level used: 0.95
## Intervals are back-transformed from the logit scale

## HTN_cat = 0:
## deathage_group2 prob SE df asymp.LCL asymp.UCL
## < 80 0.1644 0.0358 Inf 0.1055 0.247
## 80-89 0.2694 0.0354 Inf 0.2058 0.344
## 90+ 0.3752 0.0383 Inf 0.3036 0.453
##
## HTN_cat = 1:
## deathage_group2 prob SE df asymp.LCL asymp.UCL
## < 80 0.0557 0.0268 Inf 0.0213 0.138
## 80-89 0.3474 0.0440 Inf 0.2668 0.438
## 90+ 0.3886 0.0462 Inf 0.3028 0.482
##
## Results are averaged over the levels of: male_cat
## Confidence level used: 0.95
## Intervals are back-transformed from the logit scale

Simple Model (Age, Sex, Race)
|
Â
|
Atherosclerosis
|
Arteriolosclerosis
|
Microinfacts (binary)
|
Gross Infarcts (binary)
|
|
Predictors
|
Odds Ratios
|
CI
|
p
|
Odds Ratios
|
CI
|
p
|
Odds Ratios
|
CI
|
p
|
Odds Ratios
|
CI
|
p
|
|
None|Mild
|
125.391
|
122.895 – 127.938
|
<0.001
|
|
|
|
|
|
|
|
|
|
|
Mild|Moderate
|
857.861
|
630.580 – 1167.061
|
<0.001
|
988.212
|
725.878 – 1345.355
|
<0.001
|
|
|
|
|
|
|
|
Moderate|Severe
|
35986.388
|
21510.294 – 60204.669
|
<0.001
|
9065.082
|
5313.336 – 15465.937
|
<0.001
|
|
|
|
|
|
|
|
Age at Death
|
1.090
|
1.069 – 1.113
|
<0.001
|
1.092
|
1.070 – 1.114
|
<0.001
|
1.050
|
1.030 – 1.071
|
<0.001
|
1.062
|
1.039 – 1.086
|
<0.001
|
|
Gender: Male
|
0.881
|
0.648 – 1.199
|
0.421
|
1.011
|
0.743 – 1.375
|
0.946
|
0.862
|
0.637 – 1.165
|
0.333
|
1.033
|
0.739 – 1.442
|
0.850
|
|
Race: nonwhite
|
1.575
|
0.948 – 2.650
|
0.084
|
1.343
|
0.788 – 2.294
|
0.279
|
1.131
|
0.705 – 1.809
|
0.608
|
0.611
|
0.331 – 1.068
|
0.097
|
|
Absent|Mild
|
|
|
|
34.307
|
33.621 – 35.007
|
<0.001
|
|
|
|
|
|
|
|
(Intercept)
|
|
|
|
|
|
|
0.013
|
0.002 – 0.073
|
<0.001
|
0.002
|
0.000 – 0.015
|
<0.001
|
|
Observations
|
696
|
611
|
841
|
849
|
|
R2 Nagelkerke
|
0.126
|
0.137
|
0.026
|
0.030
|
Simple Model + Year of Death
|
Â
|
Atherosclerosis
|
Arteriolosclerosis
|
Microinfacts (binary)
|
Gross Infarcts (binary)
|
|
Predictors
|
Odds Ratios
|
CI
|
p
|
Odds Ratios
|
CI
|
p
|
Odds Ratios
|
CI
|
p
|
Odds Ratios
|
CI
|
p
|
|
None|Mild
|
192969936760936726528.000
|
NaN – NaN
|
<0.001
|
|
|
|
|
|
|
|
|
|
|
Mild|Moderate
|
1328951952216979406848.000
|
989038757151993495552.000 – 1785686636170828840960.000
|
<0.001
|
0.000
|
0.000 – 0.000
|
<0.001
|
|
|
|
|
|
|
|
Moderate|Severe
|
56594649453038900609024.000
|
34220539148529035116544.000 – 93597425008718332821504.000
|
<0.001
|
0.000
|
0.000 – 0.000
|
<0.001
|
|
|
|
|
|
|
|
Age at Death
|
1.090
|
NaN – NaN
|
NaN
|
1.091
|
1.090 – 1.092
|
<0.001
|
1.050
|
1.030 – 1.071
|
<0.001
|
1.065
|
1.042 – 1.090
|
<0.001
|
|
Gender: Male
|
0.885
|
0.837 – 0.935
|
0.416
|
1.011
|
0.989 – 1.034
|
0.946
|
0.863
|
0.638 – 1.168
|
0.341
|
1.002
|
0.709 – 1.415
|
0.990
|
|
Race: nonwhite
|
1.492
|
1.211 – 1.839
|
0.119
|
1.386
|
0.764 – 2.515
|
0.232
|
1.196
|
0.739 – 1.931
|
0.465
|
0.452
|
0.242 – 0.800
|
0.009
|
|
Year of Death
|
1.021
|
0.684 – 1.524
|
NaN
|
0.979
|
0.508 – 1.886
|
<0.001
|
0.984
|
0.959 – 1.009
|
0.200
|
1.108
|
1.073 – 1.146
|
<0.001
|
|
Absent|Mild
|
|
|
|
0.000
|
0.000 – 0.000
|
<0.001
|
|
|
|
|
|
|
|
(Intercept)
|
|
|
|
|
|
|
2380569556953.886
|
0.000 – 17061107133728691550249482681581568.000
|
0.267
|
0.000
|
0.000 – 0.000
|
<0.001
|
|
Observations
|
696
|
611
|
841
|
849
|
|
R2 Nagelkerke
|
0.130
|
0.140
|
0.025
|
0.102
|
Simple Model + Year of Death (as a factor)
|
Â
|
Atherosclerosis
|
Arteriolosclerosis
|
Microinfacts (binary)
|
Gross Infarcts (binary)
|
|
Predictors
|
Odds Ratios
|
CI
|
p
|
Odds Ratios
|
CI
|
p
|
Odds Ratios
|
CI
|
p
|
Odds Ratios
|
CI
|
p
|
|
None|Mild
|
828.486
|
810.299 – 847.082
|
<0.001
|
|
|
|
|
|
|
|
|
|
|
Mild|Moderate
|
6569.853
|
4775.813 – 9037.828
|
<0.001
|
2204.187
|
1600.914 – 3034.791
|
<0.001
|
|
|
|
|
|
|
|
Moderate|Severe
|
358884.680
|
209489.280 – 614820.070
|
<0.001
|
21743.973
|
12594.185 – 37541.164
|
<0.001
|
|
|
|
|
|
|
|
Age at Death
|
1.110
|
0.035 – 34.709
|
<0.001
|
1.100
|
0.016 – 76.986
|
<0.001
|
1.047
|
1.026 – 1.069
|
<0.001
|
1.063
|
1.039 – 1.089
|
<0.001
|
|
Gender: Male
|
0.915
|
0.149 – 5.626
|
0.585
|
1.068
|
0.047 – 24.317
|
0.687
|
0.889
|
0.649 – 1.218
|
0.464
|
0.924
|
0.642 – 1.327
|
0.668
|
|
Race: nonwhite
|
1.778
|
0.382 – 8.262
|
0.036
|
1.453
|
0.019 – 111.020
|
0.179
|
1.396
|
0.840 – 2.331
|
0.198
|
0.513
|
0.266 – 0.944
|
0.038
|
|
as.factor(death_year)1996
|
26.466
|
7.279 – 96.222
|
0.062
|
|
|
|
|
|
|
|
|
|
|
as.factor(death_year)1997
|
0.287
|
0.067 – 1.224
|
0.178
|
|
|
|
0.302
|
0.002 – 42.615
|
0.585
|
0.000
|
0.000 – 0.000
|
0.988
|
|
as.factor(death_year)1998
|
1.712
|
0.554 – 5.291
|
0.492
|
2.283
|
2.283 – 2.283
|
0.703
|
0.478
|
0.010 – 51.237
|
0.695
|
0.166
|
0.001 – 22.220
|
0.404
|
|
as.factor(death_year)1999
|
3.061
|
1.157 – 8.093
|
0.089
|
0.135
|
0.021 – 0.848
|
0.208
|
2.091
|
0.065 – 195.723
|
0.670
|
0.000
|
0.000 – 0.000
|
0.979
|
|
as.factor(death_year)2000
|
0.646
|
0.215 – 1.944
|
0.554
|
0.066
|
0.022 – 0.197
|
0.218
|
1.218
|
0.036 – 117.579
|
0.911
|
0.275
|
0.006 – 30.096
|
0.498
|
|
as.factor(death_year)2001
|
0.586
|
0.204 – 1.686
|
0.353
|
1632353.685
|
587551.688 – 4535053.865
|
<0.001
|
1.432
|
0.046 – 130.941
|
0.834
|
0.481
|
0.014 – 45.905
|
0.677
|
|
as.factor(death_year)2002
|
0.525
|
0.176 – 1.573
|
0.194
|
8.970
|
3.216 – 25.021
|
0.020
|
0.788
|
0.025 – 71.976
|
0.889
|
0.182
|
0.005 – 18.518
|
0.351
|
|
as.factor(death_year)2003
|
1.361
|
0.510 – 3.636
|
0.583
|
2.810
|
1.038 – 7.607
|
0.066
|
1.830
|
0.059 – 166.772
|
0.723
|
0.111
|
0.002 – 11.831
|
0.242
|
|
as.factor(death_year)2004
|
1.720
|
0.585 – 5.057
|
0.314
|
0.873
|
0.305 – 2.499
|
0.794
|
1.524
|
0.050 – 137.306
|
0.803
|
0.079
|
0.001 – 8.707
|
0.186
|
|
as.factor(death_year)2005
|
1.675
|
0.649 – 4.319
|
0.356
|
1.426
|
0.541 – 3.760
|
0.497
|
3.470
|
0.113 – 316.479
|
0.466
|
0.362
|
0.011 – 34.452
|
0.563
|
|
as.factor(death_year)2006
|
1.564
|
0.540 – 4.533
|
0.372
|
2.163
|
0.756 – 6.188
|
0.129
|
2.388
|
0.080 – 213.939
|
0.606
|
0.251
|
0.007 – 24.109
|
0.434
|
|
as.factor(death_year)2007
|
1.678
|
0.625 – 4.503
|
0.346
|
1.785
|
0.713 – 4.474
|
0.280
|
1.560
|
0.051 – 141.042
|
0.794
|
0.264
|
0.007 – 25.432
|
0.451
|
|
as.factor(death_year)2008
|
1.794
|
0.709 – 4.541
|
0.226
|
0.850
|
0.357 – 2.025
|
0.742
|
3.579
|
0.119 – 320.499
|
0.450
|
0.770
|
0.025 – 69.944
|
0.878
|
|
as.factor(death_year)2009
|
0.654
|
0.255 – 1.673
|
0.433
|
1.085
|
0.463 – 2.544
|
0.878
|
1.393
|
0.045 – 126.437
|
0.846
|
0.483
|
0.015 – 45.252
|
0.675
|
|
as.factor(death_year)2010
|
2.781
|
1.122 – 6.893
|
0.042
|
0.984
|
0.410 – 2.363
|
0.973
|
1.487
|
0.050 – 132.226
|
0.813
|
0.720
|
0.023 – 65.445
|
0.847
|
|
as.factor(death_year)2011
|
1.246
|
0.538 – 2.886
|
0.642
|
1.238
|
0.570 – 2.691
|
0.629
|
1.789
|
0.060 – 158.660
|
0.729
|
0.602
|
0.019 – 54.570
|
0.766
|
|
as.factor(death_year)2012
|
2.394
|
1.017 – 5.633
|
0.069
|
1.206
|
0.536 – 2.716
|
0.666
|
1.995
|
0.068 – 176.628
|
0.680
|
0.759
|
0.025 – 68.627
|
0.871
|
|
as.factor(death_year)2013
|
2.955
|
1.224 – 7.133
|
0.019
|
0.955
|
0.407 – 2.242
|
0.919
|
1.150
|
0.039 – 101.661
|
0.934
|
1.988
|
0.065 – 178.389
|
0.685
|
|
as.factor(death_year)2014
|
5.441
|
2.532 – 11.692
|
<0.001
|
1.645
|
0.785 – 3.446
|
0.208
|
1.334
|
0.046 – 116.663
|
0.863
|
0.927
|
0.031 – 82.453
|
0.964
|
|
as.factor(death_year)2015
|
3.146
|
1.360 – 7.279
|
0.009
|
0.636
|
0.279 – 1.449
|
0.274
|
1.118
|
0.038 – 98.351
|
0.947
|
1.604
|
0.053 – 143.110
|
0.779
|
|
as.factor(death_year)2016
|
1.074
|
0.144 – 8.009
|
0.874
|
0.744
|
0.102 – 5.426
|
0.497
|
1.581
|
0.054 – 139.298
|
0.784
|
1.985
|
0.066 – 177.621
|
0.685
|
|
as.factor(death_year)2017
|
2.057
|
0.266 – 15.886
|
0.065
|
1.494
|
0.206 – 10.839
|
0.286
|
1.581
|
0.055 – 137.469
|
0.782
|
0.547
|
0.018 – 48.675
|
0.720
|
|
as.factor(death_year)2018
|
0.756
|
0.084 – 6.802
|
0.513
|
1.333
|
0.172 – 10.361
|
0.493
|
0.964
|
0.033 – 84.734
|
0.983
|
1.646
|
0.055 – 146.596
|
0.767
|
|
Absent|Mild
|
|
|
|
69.967
|
68.489 – 71.477
|
<0.001
|
|
|
|
|
|
|
|
(Intercept)
|
|
|
|
|
|
|
0.011
|
0.000 – 0.448
|
0.016
|
0.003
|
0.000 – 0.135
|
0.003
|
|
as.factor(death_year)2019
|
|
|
|
|
|
|
1.266
|
0.044 – 110.810
|
0.888
|
0.933
|
0.031 – 83.121
|
0.967
|
|
as.factor(death_year)2020
|
|
|
|
|
|
|
0.295
|
0.008 – 28.855
|
0.493
|
1.091
|
0.032 – 105.255
|
0.961
|
|
Observations
|
696
|
611
|
841
|
849
|
|
R2 Nagelkerke
|
0.217
|
0.184
|
0.054
|
0.142
|
Simple Model + Year of Death (centered)
|
Â
|
Atherosclerosis
|
Arteriolosclerosis
|
Microinfacts (binary)
|
Gross Infarcts (binary)
|
|
Predictors
|
Odds Ratios
|
CI
|
p
|
Odds Ratios
|
CI
|
p
|
Odds Ratios
|
CI
|
p
|
Odds Ratios
|
CI
|
p
|
|
None|Mild
|
135.420
|
132.721 – 138.174
|
<0.001
|
|
|
|
|
|
|
|
|
|
|
Mild|Moderate
|
932.693
|
685.535 – 1268.961
|
<0.001
|
829.209
|
608.977 – 1129.085
|
<0.001
|
|
|
|
|
|
|
|
Moderate|Severe
|
39729.193
|
23634.513 – 66784.062
|
<0.001
|
7630.937
|
4457.605 – 13063.339
|
<0.001
|
|
|
|
|
|
|
|
Age at Death
|
1.090
|
1.069 – 1.113
|
<0.001
|
1.091
|
1.070 – 1.114
|
<0.001
|
1.050
|
1.030 – 1.071
|
<0.001
|
1.065
|
1.042 – 1.090
|
<0.001
|
|
Gender: Male
|
0.885
|
0.651 – 1.203
|
0.435
|
1.011
|
0.743 – 1.376
|
0.945
|
0.863
|
0.638 – 1.168
|
0.341
|
1.002
|
0.709 – 1.415
|
0.990
|
|
Race: nonwhite
|
1.491
|
0.893 – 2.522
|
0.131
|
1.385
|
0.811 – 2.375
|
0.235
|
1.196
|
0.739 – 1.931
|
0.465
|
0.452
|
0.242 – 0.800
|
0.009
|
|
death year centered
|
1.021
|
0.995 – 1.048
|
0.113
|
0.980
|
0.949 – 1.012
|
0.211
|
0.984
|
0.959 – 1.009
|
0.200
|
1.108
|
1.073 – 1.146
|
<0.001
|
|
Absent|Mild
|
|
|
|
28.587
|
28.015 – 29.171
|
<0.001
|
|
|
|
|
|
|
|
(Intercept)
|
|
|
|
|
|
|
0.014
|
0.002 – 0.078
|
<0.001
|
0.001
|
0.000 – 0.008
|
<0.001
|
|
Observations
|
696
|
611
|
841
|
849
|
|
R2 Nagelkerke
|
0.130
|
0.140
|
0.025
|
0.102
|
Simple Model + CVD
|
Â
|
Atherosclerosis
|
Arteriolosclerosis
|
Microinfacts (binary)
|
Gross Infarcts (binary)
|
|
Predictors
|
Odds Ratios
|
CI
|
p
|
Odds Ratios
|
CI
|
p
|
Odds Ratios
|
CI
|
p
|
Odds Ratios
|
CI
|
p
|
|
None|Mild
|
111.696
|
109.446 – 113.992
|
<0.001
|
|
|
|
|
|
|
|
|
|
|
Mild|Moderate
|
748.546
|
547.955 – 1022.567
|
<0.001
|
1121.223
|
819.655 – 1533.743
|
<0.001
|
|
|
|
|
|
|
|
Moderate|Severe
|
32188.397
|
18434.677 – 56203.474
|
<0.001
|
10983.490
|
6172.549 – 19544.121
|
<0.001
|
|
|
|
|
|
|
|
Age at Death
|
1.088
|
1.067 – 1.111
|
<0.001
|
1.093
|
1.071 – 1.116
|
<0.001
|
1.050
|
1.029 – 1.071
|
<0.001
|
1.065
|
1.041 – 1.090
|
<0.001
|
|
Gender: Male
|
0.850
|
0.623 – 1.161
|
0.308
|
1.030
|
0.754 – 1.409
|
0.852
|
0.826
|
0.608 – 1.122
|
0.222
|
1.051
|
0.750 – 1.473
|
0.771
|
|
Race: nonwhite
|
2.027
|
1.170 – 3.562
|
0.013
|
1.847
|
1.041 – 3.295
|
0.037
|
1.325
|
0.812 – 2.166
|
0.259
|
0.651
|
0.350 – 1.151
|
0.156
|
|
CVD cat: CVD cat 1
|
1.620
|
0.987 – 2.693
|
0.060
|
2.661
|
1.599 – 4.457
|
<0.001
|
1.666
|
1.042 – 2.681
|
0.034
|
1.871
|
1.135 – 3.055
|
0.013
|
|
Absent|Mild
|
|
|
|
40.222
|
39.403 – 41.058
|
<0.001
|
|
|
|
|
|
|
|
(Intercept)
|
|
|
|
|
|
|
0.013
|
0.002 – 0.072
|
<0.001
|
0.002
|
0.000 – 0.012
|
<0.001
|
|
Observations
|
683
|
598
|
832
|
840
|
|
R2 Nagelkerke
|
0.175
|
0.203
|
0.033
|
0.038
|
Simple Model + Diabetes
|
Â
|
Atherosclerosis
|
Arteriolosclerosis
|
Microinfacts (binary)
|
Gross Infarcts (binary)
|
|
Predictors
|
Odds Ratios
|
CI
|
p
|
Odds Ratios
|
CI
|
p
|
Odds Ratios
|
CI
|
p
|
Odds Ratios
|
CI
|
p
|
|
None|Mild
|
362.083
|
354.552 – 369.773
|
<0.001
|
|
|
|
|
|
|
|
|
|
|
Mild|Moderate
|
2648.676
|
1943.119 – 3610.425
|
<0.001
|
2894.358
|
2122.044 – 3947.756
|
<0.001
|
|
|
|
|
|
|
|
Moderate|Severe
|
116721.070
|
69573.022 – 195820.273
|
<0.001
|
27372.194
|
15975.455 – 46899.257
|
<0.001
|
|
|
|
|
|
|
|
Age at Death
|
1.103
|
1.080 – 1.126
|
<0.001
|
1.104
|
1.081 – 1.129
|
<0.001
|
1.047
|
1.026 – 1.068
|
<0.001
|
1.058
|
1.034 – 1.082
|
<0.001
|
|
Gender: Male
|
0.918
|
0.674 – 1.251
|
0.587
|
1.041
|
0.764 – 1.419
|
0.799
|
0.858
|
0.634 – 1.161
|
0.321
|
1.030
|
0.736 – 1.439
|
0.863
|
|
Race: nonwhite
|
1.689
|
1.013 – 2.849
|
0.047
|
1.381
|
0.807 – 2.368
|
0.240
|
1.142
|
0.711 – 1.831
|
0.581
|
0.620
|
0.335 – 1.088
|
0.110
|
diabetes cat: diabetes cat 1
|
2.808
|
1.751 – 4.552
|
<0.001
|
2.091
|
1.333 – 3.284
|
0.001
|
0.812
|
0.524 – 1.247
|
0.345
|
0.693
|
0.400 – 1.156
|
0.173
|
|
Absent|Mild
|
|
|
|
97.319
|
95.240 – 99.442
|
<0.001
|
|
|
|
|
|
|
|
(Intercept)
|
|
|
|
|
|
|
0.018
|
0.003 – 0.105
|
<0.001
|
0.003
|
0.000 – 0.025
|
<0.001
|
|
Observations
|
694
|
609
|
838
|
846
|
|
R2 Nagelkerke
|
0.162
|
0.161
|
0.024
|
0.030
|
Simple Model + Diabetes (Interaction with Age at Death)
|
Â
|
Atherosclerosis
|
Arteriolosclerosis
|
Microinfacts (binary)
|
Gross Infarcts (binary)
|
|
Predictors
|
Odds Ratios
|
CI
|
p
|
Odds Ratios
|
CI
|
p
|
Odds Ratios
|
CI
|
p
|
Odds Ratios
|
CI
|
p
|
|
None|Mild
|
0.315
|
0.231 – 0.431
|
<0.001
|
|
|
|
|
|
|
|
|
|
|
Mild|Moderate
|
2.475
|
1.459 – 4.199
|
<0.001
|
2.310
|
1.336 – 3.995
|
<0.001
|
|
|
|
|
|
|
|
Moderate|Severe
|
108.507
|
52.236 – 225.395
|
<0.001
|
21.688
|
10.907 – 43.125
|
<0.001
|
|
|
|
|
|
|
|
Gender: Male
|
0.897
|
0.657 – 1.225
|
0.493
|
0.993
|
0.728 – 1.355
|
0.963
|
0.858
|
0.633 – 1.164
|
0.325
|
1.015
|
0.726 – 1.419
|
0.929
|
|
Race: nonwhite
|
2.253
|
1.335 – 3.836
|
0.003
|
1.603
|
0.929 – 2.778
|
0.091
|
|
|
|
|
|
|
diabetes cat: diabetes cat 1
|
8.188
|
4.001 – 17.244
|
<0.001
|
3.342
|
1.687 – 6.669
|
0.001
|
0.761
|
0.357 – 1.553
|
0.464
|
0.205
|
0.031 – 0.745
|
0.039
|
|
deathage_group280-89
|
5.160
|
3.317 – 8.093
|
<0.001
|
4.791
|
2.920 – 7.979
|
<0.001
|
2.377
|
1.505 – 3.807
|
<0.001
|
2.458
|
1.432 – 4.380
|
0.002
|
|
deathage_group290+
|
9.684
|
6.170 – 15.361
|
<0.001
|
9.478
|
5.790 – 15.778
|
<0.001
|
2.869
|
1.831 – 4.562
|
<0.001
|
3.415
|
2.019 – 6.015
|
<0.001
|
|
diabetes_cat1:deathage_group280-89
|
0.115
|
0.042 – 0.315
|
<0.001
|
0.470
|
0.175 – 1.253
|
0.132
|
1.048
|
0.401 – 2.795
|
0.925
|
4.660
|
1.053 – 33.797
|
0.068
|
|
diabetes_cat1:deathage_group290+
|
0.274
|
0.061 – 1.197
|
0.091
|
0.351
|
0.092 – 1.344
|
0.125
|
1.602
|
0.432 – 6.340
|
0.486
|
4.130
|
0.683 – 35.171
|
0.142
|
|
Absent|Mild
|
|
|
|
0.072
|
0.053 – 0.099
|
<0.001
|
|
|
|
|
|
|
|
(Intercept)
|
|
|
|
|
|
|
0.444
|
0.290 – 0.667
|
<0.001
|
0.181
|
0.105 – 0.295
|
<0.001
|
|
Observations
|
694
|
609
|
838
|
846
|
|
R2 Nagelkerke
|
0.187
|
0.167
|
0.027
|
0.030
|
Simple Model + Diabetes (Interaction with Gender)
|
Â
|
Atherosclerosis
|
Arteriolosclerosis
|
Microinfacts (binary)
|
Gross Infarcts (binary)
|
|
Predictors
|
Odds Ratios
|
CI
|
p
|
Odds Ratios
|
CI
|
p
|
Odds Ratios
|
CI
|
p
|
Odds Ratios
|
CI
|
p
|
|
None|Mild
|
338.713
|
331.661 – 345.915
|
<0.001
|
|
|
|
|
|
|
|
|
|
|
Mild|Moderate
|
2480.750
|
1476.633 – 4167.670
|
<0.001
|
2619.177
|
1520.822 – 4510.776
|
<0.001
|
|
|
|
|
|
|
|
Moderate|Severe
|
109769.133
|
59484.376 – 202561.802
|
<0.001
|
24888.642
|
14026.695 – 44161.830
|
<0.001
|
|
|
|
|
|
|
|
Age at Death
|
1.102
|
1.080 – 1.126
|
<0.001
|
1.104
|
1.080 – 1.128
|
<0.001
|
1.048
|
1.027 – 1.070
|
<0.001
|
1.058
|
1.034 – 1.083
|
<0.001
|
|
Race: nonwhite
|
1.660
|
0.994 – 2.803
|
0.055
|
1.319
|
0.767 – 2.275
|
0.317
|
1.221
|
0.754 – 1.975
|
0.415
|
0.639
|
0.344 – 1.127
|
0.137
|
diabetes cat: diabetes cat 1
|
2.329
|
1.272 – 4.327
|
0.007
|
1.644
|
0.927 – 2.918
|
0.089
|
1.168
|
0.658 – 2.065
|
0.594
|
0.851
|
0.419 – 1.637
|
0.640
|
|
Gender: Male
|
0.867
|
0.622 – 1.208
|
0.397
|
0.951
|
0.678 – 1.333
|
0.769
|
0.972
|
0.699 – 1.351
|
0.864
|
1.090
|
0.763 – 1.557
|
0.635
|
|
diabetes_cat1:male_catMale
|
1.567
|
0.618 – 4.003
|
0.346
|
1.805
|
0.755 – 4.328
|
0.185
|
0.434
|
0.179 – 1.028
|
0.061
|
0.613
|
0.204 – 1.745
|
0.367
|
|
Absent|Mild
|
|
|
|
87.578
|
85.706 – 89.490
|
<0.001
|
|
|
|
|
|
|
|
(Intercept)
|
|
|
|
|
|
|
0.015
|
0.002 – 0.090
|
<0.001
|
0.003
|
0.000 – 0.024
|
<0.001
|
|
Observations
|
694
|
609
|
838
|
846
|
|
R2 Nagelkerke
|
0.163
|
0.164
|
0.024
|
0.030
|
Simple Model + Hypertension
|
Â
|
Atherosclerosis
|
Arteriolosclerosis
|
Microinfacts (binary)
|
Gross Infarcts (binary)
|
|
Predictors
|
Odds Ratios
|
CI
|
p
|
Odds Ratios
|
CI
|
p
|
Odds Ratios
|
CI
|
p
|
Odds Ratios
|
CI
|
p
|
|
None|Mild
|
126.026
|
123.504 – 128.599
|
<0.001
|
|
|
|
|
|
|
|
|
|
|
Mild|Moderate
|
870.485
|
638.268 – 1187.188
|
<0.001
|
1307.329
|
957.578 – 1784.827
|
<0.001
|
|
|
|
|
|
|
|
Moderate|Severe
|
36958.870
|
21771.260 – 62741.341
|
<0.001
|
12447.058
|
7182.761 – 21569.596
|
<0.001
|
|
|
|
|
|
|
|
Age at Death
|
1.089
|
1.067 – 1.111
|
<0.001
|
1.093
|
1.071 – 1.115
|
<0.001
|
1.049
|
1.029 – 1.071
|
<0.001
|
1.061
|
1.038 – 1.086
|
<0.001
|
|
Gender: Male
|
0.890
|
0.653 – 1.214
|
0.463
|
1.038
|
0.761 – 1.417
|
0.816
|
0.874
|
0.645 – 1.185
|
0.386
|
1.040
|
0.742 – 1.456
|
0.821
|
|
Race: nonwhite
|
1.334
|
0.791 – 2.278
|
0.285
|
1.108
|
0.640 – 1.921
|
0.715
|
1.037
|
0.640 – 1.673
|
0.881
|
0.533
|
0.279 – 0.954
|
0.043
|
|
HTN cat: HTN cat 1
|
1.504
|
1.095 – 2.072
|
0.012
|
1.881
|
1.374 – 2.582
|
<0.001
|
1.147
|
0.846 – 1.555
|
0.376
|
1.110
|
0.793 – 1.552
|
0.541
|
|
Absent|Mild
|
|
|
|
44.900
|
43.992 – 45.826
|
<0.001
|
|
|
|
|
|
|
|
(Intercept)
|
|
|
|
|
|
|
0.013
|
0.002 – 0.072
|
<0.001
|
0.002
|
0.000 – 0.016
|
<0.001
|
|
Observations
|
689
|
604
|
834
|
842
|
|
R2 Nagelkerke
|
0.157
|
0.181
|
0.027
|
0.032
|
Simple Model + Hypertension (Interaction with Age at Death)
|
Â
|
Atherosclerosis
|
Arteriolosclerosis
|
Microinfacts (binary)
|
Gross Infarcts (binary)
|
|
Predictors
|
Odds Ratios
|
CI
|
p
|
Odds Ratios
|
CI
|
p
|
Odds Ratios
|
CI
|
p
|
Odds Ratios
|
CI
|
p
|
|
None|Mild
|
0.238
|
0.174 – 0.324
|
<0.001
|
|
|
|
|
|
|
|
|
|
|
Mild|Moderate
|
1.654
|
0.964 – 2.838
|
0.019
|
2.720
|
1.570 – 4.714
|
<0.001
|
|
|
|
|
|
|
|
Moderate|Severe
|
68.845
|
37.442 – 126.587
|
<0.001
|
26.047
|
13.228 – 51.289
|
<0.001
|
|
|
|
|
|
|
|
Gender: Male
|
0.846
|
0.621 – 1.154
|
0.292
|
0.999
|
0.731 – 1.365
|
0.994
|
0.868
|
0.640 – 1.179
|
0.366
|
1.016
|
0.725 – 1.424
|
0.925
|
|
Race: nonwhite
|
1.495
|
0.877 – 2.579
|
0.144
|
1.221
|
0.705 – 2.117
|
0.477
|
|
|
|
|
|
|
|
HTN cat: HTN cat 1
|
1.711
|
0.933 – 3.154
|
0.084
|
4.135
|
2.116 – 8.199
|
<0.001
|
0.766
|
0.386 – 1.491
|
0.439
|
0.300
|
0.085 – 0.844
|
0.035
|
|
deathage_group280-89
|
2.991
|
1.817 – 4.950
|
<0.001
|
4.533
|
2.589 – 8.086
|
<0.001
|
1.990
|
1.188 – 3.381
|
0.010
|
1.875
|
1.021 – 3.561
|
0.047
|
|
deathage_group290+
|
6.343
|
3.776 – 10.756
|
<0.001
|
11.204
|
6.379 – 20.095
|
<0.001
|
2.512
|
1.503 – 4.262
|
0.001
|
3.053
|
1.695 – 5.720
|
<0.001
|
|
HTN_cat1:deathage_group280-89
|
0.953
|
0.431 – 2.106
|
0.906
|
0.519
|
0.222 – 1.201
|
0.127
|
1.568
|
0.690 – 3.616
|
0.286
|
4.812
|
1.503 – 18.655
|
0.013
|
|
HTN_cat1:deathage_group290+
|
0.750
|
0.338 – 1.663
|
0.480
|
0.266
|
0.116 – 0.605
|
0.002
|
1.744
|
0.764 – 4.038
|
0.189
|
3.529
|
1.115 – 13.568
|
0.044
|
|
Absent|Mild
|
|
|
|
0.085
|
0.062 – 0.116
|
<0.001
|
|
|
|
|
|
|
|
(Intercept)
|
|
|
|
|
|
|
0.462
|
0.291 – 0.717
|
0.001
|
0.195
|
0.110 – 0.329
|
<0.001
|
|
Observations
|
689
|
604
|
834
|
842
|
|
R2 Nagelkerke
|
0.159
|
0.196
|
0.031
|
0.035
|
Simple Model + Hypertension (Interaction with Gender)
|
Â
|
Atherosclerosis
|
Arteriolosclerosis
|
Microinfacts (binary)
|
Gross Infarcts (binary)
|
|
Predictors
|
Odds Ratios
|
CI
|
p
|
Odds Ratios
|
CI
|
p
|
Odds Ratios
|
CI
|
p
|
Odds Ratios
|
CI
|
p
|
|
None|Mild
|
121.808
|
119.370 – 124.296
|
<0.001
|
|
|
|
|
|
|
|
|
|
|
Mild|Moderate
|
842.453
|
495.857 – 1431.316
|
<0.001
|
1143.897
|
662.071 – 1976.374
|
<0.001
|
|
|
|
|
|
|
|
Moderate|Severe
|
35806.410
|
23711.248 – 54071.342
|
<0.001
|
11058.142
|
7389.010 – 16549.240
|
<0.001
|
|
|
|
|
|
|
|
Age at Death
|
1.089
|
1.067 – 1.111
|
<0.001
|
1.093
|
1.071 – 1.115
|
<0.001
|
1.049
|
1.029 – 1.070
|
<0.001
|
1.062
|
1.039 – 1.086
|
<0.001
|
|
Race: nonwhite
|
1.313
|
0.778 – 2.245
|
0.313
|
1.091
|
0.632 – 1.886
|
0.754
|
1.021
|
0.628 – 1.651
|
0.933
|
0.534
|
0.280 – 0.956
|
0.044
|
|
HTN cat: HTN cat 1
|
1.354
|
0.899 – 2.047
|
0.149
|
1.402
|
0.938 – 2.098
|
0.100
|
0.761
|
0.510 – 1.134
|
0.180
|
1.171
|
0.756 – 1.813
|
0.479
|
|
Gender: Male
|
0.805
|
0.541 – 1.200
|
0.287
|
0.768
|
0.513 – 1.150
|
0.201
|
0.581
|
0.388 – 0.866
|
0.008
|
1.097
|
0.707 – 1.701
|
0.680
|
|
HTN_cat1:male_catMale
|
1.288
|
0.686 – 2.426
|
0.432
|
2.097
|
1.116 – 3.952
|
0.022
|
2.651
|
1.437 – 4.909
|
0.002
|
0.879
|
0.445 – 1.727
|
0.709
|
|
Absent|Mild
|
|
|
|
39.115
|
38.323 – 39.923
|
<0.001
|
|
|
|
|
|
|
|
(Intercept)
|
|
|
|
|
|
|
0.016
|
0.003 – 0.090
|
<0.001
|
0.002
|
0.000 – 0.015
|
<0.001
|
|
Observations
|
689
|
604
|
834
|
842
|
|
R2 Nagelkerke
|
0.158
|
0.189
|
0.031
|
0.032
|
Micro Infarct Model + CVD (one model for each age group)
|
Â
|
< 80
|
80-89
|
90+
|
|
Predictors
|
Odds Ratios
|
CI
|
p
|
Odds Ratios
|
CI
|
p
|
Odds Ratios
|
CI
|
p
|
|
(Intercept)
|
1034.201
|
0.122 – 9930803.157
|
0.133
|
0.396
|
0.000 – 1011.084
|
0.817
|
0.113
|
0.000 – 128.399
|
0.545
|
|
Age at Death
|
0.904
|
0.800 – 1.020
|
0.103
|
1.008
|
0.920 – 1.105
|
0.864
|
1.026
|
0.953 – 1.106
|
0.501
|
|
Gender: Male
|
0.616
|
0.312 – 1.214
|
0.161
|
0.959
|
0.583 – 1.578
|
0.870
|
0.936
|
0.568 – 1.545
|
0.796
|
|
CVD cat: CVD cat 1
|
1.066
|
0.414 – 2.576
|
0.889
|
5.243
|
2.280 – 13.805
|
<0.001
|
0.776
|
0.307 – 1.947
|
0.584
|
|
Observations
|
91
|
333
|
408
|
|
R2 Tjur
|
0.017
|
0.051
|
0.002
|
Micro Infarct Model + Diabetes (one model for each age group)
|
Â
|
< 80
|
80-89
|
90+
|
|
Predictors
|
Odds Ratios
|
CI
|
p
|
Odds Ratios
|
CI
|
p
|
Odds Ratios
|
CI
|
p
|
|
(Intercept)
|
9753.646
|
1.581 – 69695710.108
|
0.040
|
0.596
|
0.000 – 1221.382
|
0.894
|
0.124
|
0.000 – 140.862
|
0.563
|
|
Age at Death
|
0.878
|
0.781 – 0.985
|
0.028
|
1.006
|
0.921 – 1.100
|
0.889
|
1.024
|
0.951 – 1.104
|
0.524
|
|
Gender: Male
|
0.667
|
0.340 – 1.297
|
0.233
|
0.929
|
0.574 – 1.503
|
0.763
|
0.954
|
0.580 – 1.572
|
0.853
|
diabetes cat: diabetes cat 1
|
0.689
|
0.316 – 1.430
|
0.330
|
0.796
|
0.418 – 1.497
|
0.480
|
1.257
|
0.419 – 4.064
|
0.686
|
|
Observations
|
93
|
334
|
411
|
|
R2 Tjur
|
0.020
|
0.000
|
0.002
|
Micro Infarct Model + Hypertension (one model for each age group)
|
Â
|
< 80
|
80-89
|
90+
|
|
Predictors
|
Odds Ratios
|
CI
|
p
|
Odds Ratios
|
CI
|
p
|
Odds Ratios
|
CI
|
p
|
|
(Intercept)
|
2561.655
|
0.337 – 23109871.998
|
0.087
|
0.417
|
0.000 – 857.149
|
0.822
|
0.098
|
0.000 – 118.574
|
0.523
|
|
Age at Death
|
0.893
|
0.790 – 1.007
|
0.066
|
1.009
|
0.923 – 1.102
|
0.848
|
1.026
|
0.952 – 1.107
|
0.502
|
|
Gender: Male
|
0.652
|
0.332 – 1.273
|
0.211
|
0.970
|
0.598 – 1.571
|
0.900
|
0.972
|
0.589 – 1.608
|
0.911
|
|
HTN cat: HTN cat 1
|
0.875
|
0.426 – 1.772
|
0.712
|
1.211
|
0.748 – 1.963
|
0.437
|
1.363
|
0.837 – 2.234
|
0.215
|
|
Observations
|
92
|
333
|
409
|
|
R2 Tjur
|
0.017
|
0.003
|
0.007
|
Gross Infarct Model + CVD (one model for each age group)
|
Â
|
< 80
|
80-89
|
90+
|
|
Predictors
|
Odds Ratios
|
CI
|
p
|
Odds Ratios
|
CI
|
p
|
Odds Ratios
|
CI
|
p
|
|
(Intercept)
|
1.691
|
0.000 – 2322204.782
|
0.943
|
0.021
|
0.000 – 87.999
|
0.368
|
9.420
|
0.007 – 14716.264
|
0.544
|
|
Age at Death
|
0.946
|
0.782 – 1.150
|
0.568
|
1.035
|
0.939 – 1.142
|
0.491
|
0.972
|
0.900 – 1.049
|
0.472
|
|
Gender: Male
|
7.835
|
2.319 – 39.288
|
0.003
|
0.934
|
0.548 – 1.582
|
0.799
|
0.754
|
0.447 – 1.258
|
0.283
|
|
CVD cat: CVD cat 1
|
2.763
|
0.790 – 9.000
|
0.095
|
2.729
|
1.306 – 5.735
|
0.007
|
1.321
|
0.512 – 3.307
|
0.553
|
|
Observations
|
91
|
337
|
412
|
|
R2 Tjur
|
0.058
|
0.030
|
0.007
|
Gross Infarct Model + Diabetes (one model for each age group)
|
Â
|
< 80
|
80-89
|
90+
|
|
Predictors
|
Odds Ratios
|
CI
|
p
|
Odds Ratios
|
CI
|
p
|
Odds Ratios
|
CI
|
p
|
|
(Intercept)
|
0.204
|
0.000 – 84384.199
|
0.813
|
0.024
|
0.000 – 88.498
|
0.376
|
8.650
|
0.007 – 13233.576
|
0.559
|
|
Age at Death
|
0.984
|
0.828 – 1.178
|
0.853
|
1.035
|
0.941 – 1.141
|
0.478
|
0.974
|
0.901 – 1.050
|
0.490
|
|
Gender: Male
|
5.189
|
1.750 – 20.346
|
0.007
|
0.884
|
0.523 – 1.485
|
0.642
|
0.762
|
0.454 – 1.269
|
0.301
|
diabetes cat: diabetes cat 1
|
0.212
|
0.032 – 0.791
|
0.046
|
0.975
|
0.478 – 1.907
|
0.941
|
0.809
|
0.234 – 2.463
|
0.718
|
|
Observations
|
93
|
338
|
415
|
|
R2 Tjur
|
0.035
|
0.003
|
0.005
|
Gross Infarct Model + Hypertension (one model for each age group)
|
Â
|
< 80
|
80-89
|
90+
|
|
Predictors
|
Odds Ratios
|
CI
|
p
|
Odds Ratios
|
CI
|
p
|
Odds Ratios
|
CI
|
p
|
|
(Intercept)
|
0.025
|
0.000 – 9472.814
|
0.580
|
0.012
|
0.000 – 47.733
|
0.299
|
8.090
|
0.006 – 13013.264
|
0.574
|
|
Age at Death
|
1.013
|
0.852 – 1.212
|
0.885
|
1.041
|
0.946 – 1.148
|
0.415
|
0.974
|
0.901 – 1.051
|
0.502
|
|
Gender: Male
|
4.778
|
1.591 – 18.907
|
0.011
|
0.941
|
0.555 – 1.589
|
0.820
|
0.735
|
0.436 – 1.228
|
0.243
|
|
HTN cat: HTN cat 1
|
0.327
|
0.091 – 0.946
|
0.055
|
1.464
|
0.869 – 2.468
|
0.152
|
1.028
|
0.623 – 1.689
|
0.913
|
|
Observations
|
92
|
337
|
413
|
|
R2 Tjur
|
0.033
|
0.012
|
0.006
|
Primary results for model 2
Atherosclerosis
Outcome = Atherosclerosis severity
Predictors = AP Exposure + Age at Death + Gender + Race + Education + Year of Death + Neighborhood Household Income + APOE
|
Â
|
PM 2.5
|
NO2
|
|
Predictors
|
Odds Ratios
|
CI
|
p
|
Odds Ratios
|
CI
|
p
|
|
None|Mild
|
2.104
|
1.538 – 2.877
|
0.760
|
0.245
|
0.231 – 0.259
|
0.289
|
|
Mild|Moderate
|
15.432
|
0.296 – 804.473
|
0.261
|
1.792
|
0.037 – 87.221
|
0.661
|
|
Moderate|Severe
|
745.981
|
109.412 – 5086.175
|
0.007
|
86.471
|
12.689 – 589.276
|
0.001
|
PM 2.5 Exposure from Death(10 year)
|
1.220
|
0.893 – 1.670
|
0.214
|
|
|
|
|
splines::bs(age_death_yrs)1
|
10.554
|
0.204 – 548.041
|
0.242
|
15.513
|
0.321 – 754.216
|
0.166
|
|
splines::bs(age_death_yrs)2
|
17.355
|
2.571 – 118.087
|
0.004
|
17.755
|
2.633 – 120.801
|
0.003
|
|
splines::bs(age_death_yrs)3
|
39.786
|
1.364 – 1187.843
|
0.034
|
53.255
|
1.920 – 1513.845
|
0.020
|
|
Gender: Male
|
0.853
|
0.618 – 1.176
|
0.332
|
0.841
|
0.610 – 1.160
|
0.292
|
|
Race: nonwhite
|
1.567
|
0.915 – 2.712
|
0.105
|
1.556
|
0.908 – 2.693
|
0.111
|
|
tr_med_inc_hshld_cat35,000-49,999
|
0.982
|
0.564 – 1.699
|
0.948
|
1.029
|
0.574 – 1.831
|
0.923
|
|
tr_med_inc_hshld_cat50,000-74,999
|
1.017
|
0.592 – 1.734
|
0.951
|
1.052
|
0.594 – 1.850
|
0.862
|
Neighborhood Median Household Income: >75,000
|
1.136
|
0.546 – 2.367
|
0.734
|
1.132
|
0.541 – 2.374
|
0.742
|
|
splines::bs(death_year)1
|
0.008
|
0.000 – 1.369
|
0.068
|
0.002
|
0.000 – 0.248
|
0.012
|
|
splines::bs(death_year)2
|
57.678
|
5.526 – 612.842
|
0.001
|
19.545
|
3.862 – 98.445
|
<0.001
|
|
splines::bs(death_year)3
|
0.144
|
0.003 – 6.898
|
0.328
|
0.030
|
0.002 – 0.494
|
0.015
|
|
APOE Status: +APOE e 4
|
1.406
|
0.965 – 2.058
|
0.078
|
1.400
|
0.961 – 2.050
|
0.082
|
NO 2 Exposure from Death(10 year)
|
|
|
|
1.028
|
0.972 – 1.088
|
0.340
|
|
Observations
|
667
|
667
|
|
R2 Nagelkerke
|
0.260
|
0.259
|
Arteriolosclerosis
Outcome = Atherosclerosis severity
Predictors = AP Exposure + Age at Death + Gender + Race + Education + Year of Death + Neighborhood Household Income + APOE
|
Â
|
PM 2.5
|
NO2
|
|
Predictors
|
Odds Ratios
|
CI
|
p
|
Odds Ratios
|
CI
|
p
|
|
Absent|Mild
|
14.347
|
10.475 – 19.649
|
0.414
|
1.009
|
0.955 – 1.065
|
0.998
|
|
Mild|Moderate
|
525.640
|
6.237 – 44302.997
|
0.056
|
36.468
|
0.457 – 2907.442
|
0.201
|
|
Moderate|Severe
|
5102.695
|
790.428 – 32941.010
|
0.009
|
351.634
|
54.268 – 2278.452
|
0.037
|
PM 2.5 Exposure from Death(10 year)
|
1.289
|
0.942 – 1.766
|
0.114
|
|
|
|
|
splines::bs(age_death_yrs)1
|
1187.646
|
15.019 – 106395.627
|
0.002
|
2117.797
|
28.412 – 180154.484
|
0.001
|
|
splines::bs(age_death_yrs)2
|
38.998
|
6.016 – 251.529
|
<0.001
|
38.026
|
5.835 – 245.857
|
<0.001
|
|
splines::bs(age_death_yrs)3
|
571.205
|
17.212 – 21218.816
|
<0.001
|
912.074
|
28.743 – 32683.458
|
<0.001
|
|
Gender: Male
|
0.973
|
0.705 – 1.342
|
0.867
|
0.954
|
0.692 – 1.314
|
0.772
|
|
Race: nonwhite
|
1.188
|
0.683 – 2.072
|
0.542
|
1.169
|
0.672 – 2.037
|
0.581
|
|
tr_med_inc_hshld_cat35,000-49,999
|
0.899
|
0.531 – 1.522
|
0.693
|
0.862
|
0.496 – 1.497
|
0.598
|
|
tr_med_inc_hshld_cat50,000-74,999
|
0.685
|
0.409 – 1.144
|
0.149
|
0.632
|
0.367 – 1.085
|
0.097
|
Neighborhood Median Household Income: >75,000
|
0.860
|
0.423 – 1.747
|
0.676
|
0.779
|
0.383 – 1.583
|
0.491
|
|
splines::bs(death_year)1
|
2.130
|
0.000 – 24327.377
|
0.875
|
1.240
|
0.000 – 13864.746
|
0.964
|
|
splines::bs(death_year)2
|
1.220
|
0.022 – 58.648
|
0.921
|
0.439
|
0.010 – 17.014
|
0.662
|
|
splines::bs(death_year)3
|
3.943
|
0.006 – 1941.415
|
0.668
|
0.918
|
0.002 – 344.880
|
0.978
|
|
APOE Status: +APOE e 4
|
1.571
|
1.086 – 2.277
|
0.017
|
1.563
|
1.080 – 2.265
|
0.018
|
NO 2 Exposure from Death(10 year)
|
|
|
|
1.005
|
0.952 – 1.061
|
0.871
|
|
Observations
|
589
|
589
|
|
R2 Nagelkerke
|
0.261
|
0.257
|
Microinfarcts (binary)
Outcome = Presence of Microinfarcts
Predictors = AP Exposure + Age at Death + Gender + Race + Education + Year of Death + Neighborhood Household Income + APOE
|
Â
|
PM 2.5
|
NO2
|
|
Predictors
|
Odds Ratios
|
CI
|
p
|
Odds Ratios
|
CI
|
p
|
|
(Intercept)
|
6.968
|
0.071 – 733.432
|
0.410
|
0.173
|
0.011 – 2.503
|
0.207
|
PM 2.5 Exposure from Death(10 year)
|
0.718
|
0.529 – 0.966
|
0.031
|
|
|
|
|
splines::bs(age_death_yrs)1
|
0.031
|
0.000 – 2.139
|
0.107
|
0.016
|
0.000 – 1.019
|
0.051
|
|
splines::bs(age_death_yrs)2
|
12.065
|
1.825 – 82.943
|
0.010
|
11.885
|
1.801 – 81.949
|
0.011
|
|
splines::bs(age_death_yrs)3
|
0.263
|
0.008 – 8.681
|
0.454
|
0.154
|
0.005 – 4.831
|
0.288
|
|
Gender: Male
|
0.868
|
0.630 – 1.197
|
0.388
|
0.880
|
0.639 – 1.212
|
0.432
|
|
Race: nonwhite
|
1.332
|
0.787 – 2.264
|
0.286
|
1.337
|
0.789 – 2.273
|
0.281
|
|
tr_med_inc_hshld_cat35,000-49,999
|
2.717
|
1.548 – 4.879
|
0.001
|
2.599
|
1.443 – 4.780
|
0.002
|
|
tr_med_inc_hshld_cat50,000-74,999
|
1.601
|
0.929 – 2.821
|
0.096
|
1.568
|
0.885 – 2.835
|
0.128
|
Neighborhood Median Household Income: >75,000
|
1.515
|
0.719 – 3.211
|
0.275
|
1.557
|
0.734 – 3.321
|
0.249
|
|
splines::bs(death_year)1
|
13.972
|
0.096 – 2499.475
|
0.308
|
85.766
|
0.868 – 11204.436
|
0.064
|
|
splines::bs(death_year)2
|
1.302
|
0.125 – 13.735
|
0.826
|
8.313
|
1.706 – 43.917
|
0.010
|
|
splines::bs(death_year)3
|
0.503
|
0.013 – 19.727
|
0.712
|
5.939
|
0.407 – 102.750
|
0.204
|
|
APOE Status: +APOE e 4
|
1.094
|
0.756 – 1.584
|
0.632
|
1.100
|
0.760 – 1.591
|
0.613
|
NO 2 Exposure from Death(10 year)
|
|
|
|
0.969
|
0.918 – 1.023
|
0.256
|
|
Observations
|
806
|
806
|
|
R2 Tjur
|
0.057
|
0.055
|
Gross Infarcts (binary)
Outcome = Presence of Gross infarcts
Predictors = AP Exposure + Age at Death + Gender + Race + Education + Year of Death + Neighborhood Household Income + APOE
|
Â
|
PM 2.5
|
NO2
|
|
Predictors
|
Odds Ratios
|
CI
|
p
|
Odds Ratios
|
CI
|
p
|
|
(Intercept)
|
0.062
|
0.000 – 17.805
|
0.340
|
0.051
|
0.001 – 2.267
|
0.148
|
PM 2.5 Exposure from Death(10 year)
|
0.915
|
0.654 – 1.274
|
0.601
|
|
|
|
|
splines::bs(age_death_yrs)1
|
10.530
|
0.044 – 3270.904
|
0.407
|
10.332
|
0.047 – 3061.684
|
0.406
|
|
splines::bs(age_death_yrs)2
|
180.691
|
21.076 – 1785.382
|
<0.001
|
171.172
|
19.958 – 1688.032
|
<0.001
|
|
splines::bs(age_death_yrs)3
|
3.987
|
0.045 – 337.444
|
0.540
|
4.140
|
0.050 – 335.110
|
0.523
|
|
Gender: Male
|
0.982
|
0.683 – 1.412
|
0.923
|
0.994
|
0.690 – 1.429
|
0.973
|
|
Race: nonwhite
|
0.450
|
0.229 – 0.834
|
0.015
|
0.465
|
0.236 – 0.866
|
0.020
|
|
tr_med_inc_hshld_cat35,000-49,999
|
0.738
|
0.412 – 1.331
|
0.308
|
0.629
|
0.340 – 1.169
|
0.141
|
|
tr_med_inc_hshld_cat50,000-74,999
|
0.558
|
0.316 – 0.992
|
0.045
|
0.469
|
0.254 – 0.862
|
0.015
|
Neighborhood Median Household Income: >75,000
|
0.977
|
0.447 – 2.124
|
0.953
|
0.889
|
0.404 – 1.937
|
0.767
|
|
splines::bs(death_year)1
|
0.027
|
0.000 – 37.634
|
0.293
|
0.039
|
0.000 – 44.697
|
0.326
|
|
splines::bs(death_year)2
|
18.948
|
1.001 – 475.815
|
0.059
|
29.969
|
3.335 – 448.385
|
0.005
|
|
splines::bs(death_year)3
|
0.969
|
0.011 – 126.394
|
0.989
|
1.411
|
0.041 – 100.517
|
0.860
|
|
APOE Status: +APOE e 4
|
1.016
|
0.660 – 1.552
|
0.942
|
1.016
|
0.659 – 1.554
|
0.941
|
NO 2 Exposure from Death(10 year)
|
|
|
|
0.947
|
0.889 – 1.005
|
0.077
|
|
Observations
|
813
|
813
|
|
R2 Tjur
|
0.130
|
0.132
|
Microinfarcts (continuous)
Outcome = Number of Microinfarcts Predictors = AP Exposure + Age at Death + Gender + Race + Education + Year of Death + Neighborhood Household Income + APOE
|
Â
|
PM 2.5
|
NO2
|
|
Predictors
|
Odds Ratios
|
CI
|
p
|
Odds Ratios
|
CI
|
p
|
|
0|1
|
0.159
|
0.120 – 0.210
|
0.405
|
5.100
|
4.842 – 5.373
|
0.216
|
|
1|2+
|
0.432
|
0.010 – 19.169
|
0.704
|
13.827
|
0.326 – 585.645
|
0.047
|
PM 2.5 Exposure from Death(10 year)
|
0.731
|
0.551 – 0.965
|
0.029
|
|
|
|
|
splines::bs(age_death_yrs)1
|
0.253
|
0.006 – 11.374
|
0.477
|
0.132
|
0.003 – 5.649
|
0.288
|
|
splines::bs(age_death_yrs)2
|
11.970
|
2.140 – 71.190
|
0.005
|
11.590
|
2.069 – 69.235
|
0.006
|
|
splines::bs(age_death_yrs)3
|
0.938
|
0.040 – 20.105
|
0.968
|
0.572
|
0.025 – 11.852
|
0.720
|
|
Gender: Male
|
0.909
|
0.671 – 1.230
|
0.535
|
0.923
|
0.682 – 1.248
|
0.603
|
|
Race: nonwhite
|
1.349
|
0.820 – 2.206
|
0.235
|
1.359
|
0.825 – 2.224
|
0.225
|
|
tr_med_inc_hshld_cat35,000-49,999
|
2.200
|
1.282 – 3.869
|
0.005
|
2.102
|
1.198 – 3.776
|
0.011
|
|
tr_med_inc_hshld_cat50,000-74,999
|
1.418
|
0.836 – 2.469
|
0.205
|
1.385
|
0.795 – 2.468
|
0.259
|
Neighborhood Median Household Income: >75,000
|
1.472
|
0.715 – 3.044
|
0.294
|
1.508
|
0.727 – 3.138
|
0.270
|
|
splines::bs(death_year)1
|
4.233
|
0.039 – 523.057
|
0.550
|
24.244
|
0.316 – 2214.437
|
0.156
|
|
splines::bs(death_year)2
|
0.610
|
0.067 – 5.604
|
0.661
|
3.487
|
0.758 – 17.043
|
0.115
|
|
splines::bs(death_year)3
|
0.193
|
0.006 – 6.136
|
0.351
|
2.041
|
0.159 – 29.148
|
0.589
|
|
APOE Status: +APOE e 4
|
1.239
|
0.874 – 1.753
|
0.227
|
1.242
|
0.876 – 1.757
|
0.222
|
NO 2 Exposure from Death(10 year)
|
|
|
|
0.969
|
0.919 – 1.020
|
0.236
|
|
Observations
|
701
|
701
|
|
R2 Nagelkerke
|
0.200
|
0.195
|
Gross Infarcts (continuous)
Outcome = Number of Gross infarcts
Predictors = AP Exposure + Age at Death + Gender + Race + Education + Year of Death + Neighborhood Household Income + APOE
|
Â
|
PM 2.5
|
NO2
|
|
Predictors
|
Odds Ratios
|
CI
|
p
|
Odds Ratios
|
CI
|
p
|
|
0|1
|
14.591
|
10.641 – 20.007
|
0.340
|
13.311
|
12.565 – 14.102
|
0.194
|
|
1|2+
|
35.534
|
0.179 – 7053.492
|
0.204
|
32.529
|
0.175 – 6039.331
|
0.081
|
PM 2.5 Exposure from Death(10 year)
|
0.934
|
0.680 – 1.279
|
0.671
|
|
|
|
|
splines::bs(age_death_yrs)1
|
6.410
|
0.035 – 1449.097
|
0.491
|
6.811
|
0.040 – 1454.269
|
0.471
|
|
splines::bs(age_death_yrs)2
|
168.640
|
21.367 – 1532.326
|
<0.001
|
160.384
|
20.372 – 1450.145
|
<0.001
|
|
splines::bs(age_death_yrs)3
|
3.699
|
0.054 – 236.808
|
0.538
|
4.067
|
0.063 – 247.576
|
0.503
|
|
Gender: Male
|
1.092
|
0.767 – 1.552
|
0.625
|
1.106
|
0.777 – 1.572
|
0.576
|
|
Race: nonwhite
|
0.452
|
0.233 – 0.827
|
0.014
|
0.468
|
0.240 – 0.859
|
0.019
|
|
tr_med_inc_hshld_cat35,000-49,999
|
0.743
|
0.424 – 1.313
|
0.301
|
0.634
|
0.353 – 1.149
|
0.131
|
|
tr_med_inc_hshld_cat50,000-74,999
|
0.567
|
0.328 – 0.990
|
0.044
|
0.476
|
0.266 – 0.855
|
0.013
|
Neighborhood Median Household Income: >75,000
|
0.861
|
0.408 – 1.800
|
0.692
|
0.795
|
0.376 – 1.663
|
0.545
|
|
splines::bs(death_year)1
|
0.016
|
0.000 – 18.935
|
0.218
|
0.019
|
0.000 – 18.775
|
0.221
|
|
splines::bs(death_year)2
|
25.417
|
1.453 – 598.242
|
0.033
|
36.036
|
4.115 – 524.161
|
0.003
|
|
splines::bs(death_year)3
|
0.775
|
0.010 – 88.846
|
0.911
|
0.917
|
0.028 – 59.890
|
0.964
|
|
APOE Status: +APOE e 4
|
0.947
|
0.622 – 1.428
|
0.798
|
0.944
|
0.619 – 1.424
|
0.786
|
NO 2 Exposure from Death(10 year)
|
|
|
|
0.946
|
0.892 – 1.001
|
0.061
|
|
Observations
|
705
|
705
|
|
R2 Nagelkerke
|
0.253
|
0.257
|
Bootstrapped Results Visualization
Atherosclerosis

Arteriolosclerosis

Microinfarcts (binary)

Gross infarcts (binary)

Microinfarcts (ordinal)
