Nama : Muhammad Hafidlul Qolbi
NIM : 220605110063
Kelas : C
Mata Kuliah : Kalkulus
Dosen Pengampuh : Prof. Dr. Suhartono, M.Kom
Jurusan : Teknik Informatika
Lembaga : Universitas Islam Negeri Maulana Malik Ibrahim Malang
Latihan Soal Susunan Data!!
library(MASS)
lm.fit <- lm(medv~lstat, data=Boston)
anova(lm.fit)
## Analysis of Variance Table
##
## Response: medv
## Df Sum Sq Mean Sq F value Pr(>F)
## lstat 1 23244 23243.9 601.62 < 2.2e-16 ***
## Residuals 504 19472 38.6
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
summary(lm.fit)
##
## Call:
## lm(formula = medv ~ lstat, data = Boston)
##
## Residuals:
## Min 1Q Median 3Q Max
## -15.168 -3.990 -1.318 2.034 24.500
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 34.55384 0.56263 61.41 <2e-16 ***
## lstat -0.95005 0.03873 -24.53 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 6.216 on 504 degrees of freedom
## Multiple R-squared: 0.5441, Adjusted R-squared: 0.5432
## F-statistic: 601.6 on 1 and 504 DF, p-value: < 2.2e-16
shapiro.test(residuals(lm.fit))
##
## Shapiro-Wilk normality test
##
## data: residuals(lm.fit)
## W = 0.87857, p-value < 2.2e-16
library(lmtest)
## Warning: package 'lmtest' was built under R version 4.2.2
## Loading required package: zoo
## Warning: package 'zoo' was built under R version 4.2.2
##
## Attaching package: 'zoo'
## The following objects are masked from 'package:base':
##
## as.Date, as.Date.numeric
bptest(lm.fit)
##
## studentized Breusch-Pagan test
##
## data: lm.fit
## BP = 15.497, df = 1, p-value = 8.262e-05
dwtest(lm.fit, alternative = "two.sided")
##
## Durbin-Watson test
##
## data: lm.fit
## DW = 0.8915, p-value < 2.2e-16
## alternative hypothesis: true autocorrelation is not 0
sres <- rstandard(lm.fit)
sres[which(abs(sres)>2)]
## 99 142 162 163 164 167 181 187
## 2.038479 2.037877 2.758553 2.787466 3.000496 3.058318 2.002509 3.172448
## 196 204 205 215 225 226 229 234
## 2.947239 2.833127 2.933544 2.788670 2.286679 3.199842 2.559571 2.822187
## 257 258 262 263 268 281 283 284
## 2.000582 3.274417 2.488441 3.201252 3.627671 2.325519 2.307994 2.976149
## 369 370 371 372 373 375 413 506
## 2.991366 3.062883 2.945717 3.946264 3.847133 2.498416 2.600516 -2.443658
cooksD <- cooks.distance(lm.fit)
p50 <- qf(0.5, df1=2, df2=560-2)
any(cooksD>p50)
## [1] FALSE
Sumber Referensi:
https://bookdown.org/moh_rosidi2610/Metode_Numerik/datamod.html