Nama : Muhammad Hafidlul Qolbi
NIM : 220605110063
Kelas : C
Mata Kuliah : Kalkulus
Dosen Pengampuh : Prof. Dr. Suhartono, M.Kom
Jurusan : Teknik Informatika
Lembaga : Universitas Islam Negeri Maulana Malik Ibrahim Malang
Latihan Soal Integral!!
Pertama!
riemann <- function(f, a, b, m = 100){
n_width <- (b-a)/m
x <- seq(a, b-n_width, length.out = m) + n_width/2
y <- f(x)
return(sum(y)*abs(b-a)/m)
}
riemann(function(x) x^2, a=0, b=1, m=2)
## [1] 0.3125
riemann(function(x) x^2, a=0, b=1, m=4)
## [1] 0.328125
riemann(function(x) x^2, a=0, b=1)
## [1] 0.333325
Kedua!!
trap <- function(f, a, b, m=100){
x <- seq(a, b, length.out = m+1)
y <- f(x)
p_area <- sum((y[2:(m+1)] + y[1:m]))
p_area <- p_area * abs(b-a)/(2*m)
return(p_area)
}
trap(function(x)x^2, a=0, b=1, m=2)
## [1] 0.375
Sumber Referensi:
https://bookdown.org/moh_rosidi2610/Metode_Numerik/diffinteg.html#newtoncotes