# Load packages

# Core
library(tidyverse)
library(tidyquant)

# time series
library(timetk)

Goal

Simulate future portfolio returns

five stocks: “SPY”, “EFA”, “IJS”, “EEM”, “AGG”

market: “SPY”

from 2012-12-31 to 2017-12-31

1 Import stock prices

symbols <- c("SPY", "EFA", "IJS", "EEM", "AGG")

prices <- tq_get(x    = symbols,
                 get  = "stock.prices",    
                 from = "2012-12-31",
                 to   = "2017-12-31")

2 Convert prices to returns

asset_returns_tbl <- prices %>%
    
    group_by(symbol) %>%
    
    tq_transmute(select     = adjusted, 
                 mutate_fun = periodReturn, 
                 period     = "monthly",
                 type       = "log") %>%
    
    slice(-1) %>%
    
    ungroup() %>%
    
    set_names(c("asset", "date", "returns"))

3 Assign a weight to each asset

# symbols
symbols <- asset_returns_tbl %>% distinct(asset) %>% pull()
symbols
## [1] "AGG" "EEM" "EFA" "IJS" "SPY"
# weights
weights <- c(0.25, 0.25, 0.2, 0.2, 0.1)
weights
## [1] 0.25 0.25 0.20 0.20 0.10
w_tbl <- tibble(symbols, weights)
w_tbl
## # A tibble: 5 × 2
##   symbols weights
##   <chr>     <dbl>
## 1 AGG        0.25
## 2 EEM        0.25
## 3 EFA        0.2 
## 4 IJS        0.2 
## 5 SPY        0.1

4 Build a portfolio

# ?tq_portfolio

portfolio_returns_tbl <- asset_returns_tbl %>%
    
    tq_portfolio(assets_col = asset, 
                 returns_col = returns, 
                 weights = w_tbl, 
                 rebalance_on = "months", 
                 col_rename = "returns")

portfolio_returns_tbl
## # A tibble: 60 × 2
##    date        returns
##    <date>        <dbl>
##  1 2013-01-31  0.0204 
##  2 2013-02-28 -0.00239
##  3 2013-03-28  0.0121 
##  4 2013-04-30  0.0174 
##  5 2013-05-31 -0.0128 
##  6 2013-06-28 -0.0247 
##  7 2013-07-31  0.0321 
##  8 2013-08-30 -0.0224 
##  9 2013-09-30  0.0511 
## 10 2013-10-31  0.0301 
## # … with 50 more rows

5 Simulating growth of a dollar

# Get mean portfolio return
mean_port_return <- mean(portfolio_returns_tbl$returns)
mean_port_return
## [1] 0.005899133
# Get standard deviation of portfolio returns
stddev_port_return <- sd(portfolio_returns_tbl$returns)
stddev_port_return
## [1] 0.02347492
# Construct a normal distribution
simulated_monthly_returns <- rnorm(120, mean_port_return, stddev_port_return)
simulated_monthly_returns
##   [1]  0.0100140708  0.0461517167  0.0099223818  0.0077907340  0.0138696758
##   [6] -0.0044693399  0.0059158067  0.0140063631  0.0622668614 -0.0476367894
##  [11]  0.0189471953  0.0133162241  0.0387409004  0.0025266587 -0.0236839772
##  [16]  0.0015316647  0.0179850523 -0.0064272815 -0.0283184506  0.0629721274
##  [21]  0.0098294981  0.0103389188  0.0530626648  0.0336748631  0.0176759974
##  [26]  0.0370831160  0.0114848276  0.0316809829  0.0044146169  0.0302799475
##  [31]  0.0150270922 -0.0125375799 -0.0158771741  0.0132784342 -0.0198553397
##  [36]  0.0151955240  0.0249566693 -0.0305871978  0.0220584311  0.0256580626
##  [41]  0.0052027045  0.0198478098  0.0135105196  0.0141714091  0.0470592001
##  [46]  0.0124803316 -0.0181611304  0.0130902841  0.0099895677  0.0181120167
##  [51] -0.0008802235 -0.0410763011  0.0079905316  0.0226767048 -0.0524410267
##  [56]  0.0313970551  0.0069516716  0.0309762118 -0.0589663566 -0.0200633069
##  [61] -0.0070760851 -0.0258452049 -0.0009969278 -0.0155550701  0.0209636064
##  [66] -0.0127748364  0.0156925113  0.0357775019  0.0350286880  0.0396848344
##  [71] -0.0047711221  0.0202800918  0.0209020089 -0.0089025186 -0.0445091580
##  [76] -0.0364490250  0.0433436390  0.0155803227  0.0322516156 -0.0088799733
##  [81] -0.0091810878 -0.0035626145  0.0186852541 -0.0146440107  0.0137742883
##  [86]  0.0289732828  0.0392897099 -0.0303553266  0.0333647234 -0.0137803742
##  [91]  0.0300355420  0.0096680052 -0.0173706969 -0.0255295734  0.0066483594
##  [96]  0.0195662575  0.0224942819  0.0133412858 -0.0174088946 -0.0133178356
## [101] -0.0075239378  0.0338364782 -0.0267656733 -0.0415568793  0.0132909713
## [106] -0.0033008988 -0.0043084243  0.0383138677  0.0008053330  0.0423763474
## [111] -0.0002802744  0.0275881716 -0.0382321256  0.0285780149  0.0215897200
## [116]  0.0245591183 -0.0111696390 -0.0265800199  0.0372716308  0.0116024656
# Add a dollar
simulated_returns_add_1 <- tibble(returns = c(1, 1 + simulated_monthly_returns))
simulated_returns_add_1
## # A tibble: 121 × 1
##    returns
##      <dbl>
##  1   1    
##  2   1.01 
##  3   1.05 
##  4   1.01 
##  5   1.01 
##  6   1.01 
##  7   0.996
##  8   1.01 
##  9   1.01 
## 10   1.06 
## # … with 111 more rows
# Calculate the cumulative growth of a dollar
simulated_growth <- simulated_returns_add_1 %>%
    mutate(growth = accumulate(returns, function(x, y) x*y)) %>%
    select(growth)

simulated_growth
## # A tibble: 121 × 1
##    growth
##     <dbl>
##  1   1   
##  2   1.01
##  3   1.06
##  4   1.07
##  5   1.08
##  6   1.09
##  7   1.09
##  8   1.09
##  9   1.11
## 10   1.18
## # … with 111 more rows
# Check the compound annual growth rate
cagr <- ((simulated_growth$growth[nrow(simulated_growth)]^(1/10)) - 1) * 100
cagr
## [1] 8.75304

6 Simulation function

simulate_accumulation <- function(init_value, N, mean, stdev) {
    tibble(returns = c(init_value, 1 + rnorm(N, mean, stdev))) %>%
        mutate(growth = accumulate(returns, function(x, y) x*y)) %>%
        select(growth)
}
simulate_accumulation(1, 120, mean_port_return, stddev_port_return)
## # A tibble: 121 × 1
##    growth
##     <dbl>
##  1  1    
##  2  0.989
##  3  1.00 
##  4  0.975
##  5  1.00 
##  6  1.04 
##  7  1.07 
##  8  1.08 
##  9  1.06 
## 10  1.10 
## # … with 111 more rows
# Save the function
dump(list = c("simulate_accumulation"), file = "../00_scripts/simulate_accumulation.R")

7 Running multiple simulations

# Create a vector of 1s as a starting point
sims <- 51
starts <- rep(1, sims) %>%
    set_names(paste0("sim", 1:sims))

starts
##  sim1  sim2  sim3  sim4  sim5  sim6  sim7  sim8  sim9 sim10 sim11 sim12 sim13 
##     1     1     1     1     1     1     1     1     1     1     1     1     1 
## sim14 sim15 sim16 sim17 sim18 sim19 sim20 sim21 sim22 sim23 sim24 sim25 sim26 
##     1     1     1     1     1     1     1     1     1     1     1     1     1 
## sim27 sim28 sim29 sim30 sim31 sim32 sim33 sim34 sim35 sim36 sim37 sim38 sim39 
##     1     1     1     1     1     1     1     1     1     1     1     1     1 
## sim40 sim41 sim42 sim43 sim44 sim45 sim46 sim47 sim48 sim49 sim50 sim51 
##     1     1     1     1     1     1     1     1     1     1     1     1
# Simulate
monte_carlo_sim_51 <- starts %>%
    # Simulate
    map_dfc(simulate_accumulation,
            N     = 120,
            mean  = mean_port_return,
            stdev = stddev_port_return) %>%
    # Add the column, month
    mutate(month = seq(1:nrow(.))) %>%
    # Arrange column names
    select(month, everything()) %>%
    set_names(c("month", names(starts))) %>%
    pivot_longer(cols = -month, names_to = "sim", values_to = "growth")
monte_carlo_sim_51
## # A tibble: 6,171 × 3
##    month sim   growth
##    <int> <chr>  <dbl>
##  1     1 sim1       1
##  2     1 sim2       1
##  3     1 sim3       1
##  4     1 sim4       1
##  5     1 sim5       1
##  6     1 sim6       1
##  7     1 sim7       1
##  8     1 sim8       1
##  9     1 sim9       1
## 10     1 sim10      1
## # … with 6,161 more rows
# Calculate the quantiles for simulated values
probs <- c(.005, .025, .25, .5, .75, .975, .995)
monte_carlo_sim_51 %>%
    group_by(sim) %>%
    summarise(growth = last(growth)) %>%
    ungroup() %>%
    pull(growth) %>%
    # Find the quantiles
    quantile(probs = probs) %>%
    round(2)
##  0.5%  2.5%   25%   50%   75% 97.5% 99.5% 
##  1.12  1.24  1.76  2.02  2.42  2.84  2.89

8 Visualizing simulations with ggplot

monte_carlo_sim_51 %>%
    ggplot(aes(x = month, y = growth, col = sim)) +
    geom_line() +
    theme(legend.position = "none")

# Simplify the plot
sim_summary <- monte_carlo_sim_51 %>%
    group_by(sim) %>%
    summarise(growth = last(growth)) %>%
    ungroup() %>%
    summarise(max = max(growth),
              median = median(growth),
              min = min(growth))
sim_summary
## # A tibble: 1 × 3
##     max median   min
##   <dbl>  <dbl> <dbl>
## 1  2.90   2.02  1.09
monte_carlo_sim_51 %>%
    group_by(sim) %>%
    filter(last(growth) == sim_summary$max |
           last(growth) == sim_summary$median |
           last(growth) == sim_summary$min) %>%
    # Plot
    ggplot(aes(month, growth, col = sim)) +
    geom_line() +
    theme() +
    
  labs(title = "Simulating growth of $1 over 120 months")