Nama : Muhammad Hafidlul Qolbi

NIM : 220605110063

Kelas : C

Mata Kuliah : Kalkulus

Dosen Pengampuh : Prof. Dr. Suhartono, M.Kom

Jurusan : Teknik Informatika

Lembaga : Universitas Islam Negeri Maulana Malik Ibrahim Malang

Anda telah melihat operator kalkulus dasar, diferensiasi, yang diimplementasikan oleh mosaicCalcfungsi R/ D(). Operator diferensiasi mengambil sebagai input fungsi dan variabel “sehubungan dengan”. Outputnya adalah fungsi lain yang memiliki variabel “sehubungan dengan” sebagai argumen, dan kemungkinan argumen lain juga.

8.1 Antiturunan

Sekarang, bayangkan kita mulai dengan df(x) dan kami ingin menemukan fungsi DF(x) dimana turunan dari DF(x) adalah f(x). Dengan kata lain, bayangkan menerapkan kebalikan dari D() operator ke fungsi df(x) menghasilkan f() (atau sesuatu seperti itu).

Operator invers ini diimplementasikan dalam R/ mosaicCalcsebagai antiD()fungsi. Seperti yang disarankan akhiran anti, antiD()“membatalkan” apa D() melakukan.

8.2 Satu Variabel Menjadi Dua Argumen

Jarang sekali Anda ingin anti-diferensiasi fungsi yang baru saja Anda bedakan. Yang satu membatalkan yang lain, jadi tidak ada gunanya kecuali mengilustrasikan dalam buku teks bagaimana diferensiasi dan anti-diferensiasi terkait satu sama lain. Tetapi sering kali Anda bekerja dengan fungsi yang mendeskripsikan turunan dari beberapa fungsi yang tidak diketahui, dan Anda ingin menemukan fungsi yang tidak diketahui tersebut.

Ini sering disebut “mengintegrasikan” suatu fungsi. “Integrasi” adalah istilah yang lebih pendek dan lebih bagus daripada “anti-diferensiasi”, dan merupakan istilah yang lebih umum digunakan. Fungsi yang dihasilkan oleh proses umumnya disebut “integral”. Istilah “integral tak tentu” dan “integral tak tentu” sering digunakan untuk membedakan antara fungsi yang dihasilkan oleh anti-diferensiasi dan nilai fungsi tersebut ketika dievaluasi pada masukan tertentu. Ini akan membingungkan pada awalnya, tetapi Anda akan segera merasakan apa yang terjadi.

Inti masalahnya adalah ada lebih dari satu cara untuk “membatalkan” turunan.

8.3 Integral

Derivatif memberi tahu Anda bagaimana suatu fungsi berubah secara lokal. Anti-derivatif mengumpulkan nilai-nilai lokal tersebut untuk memberi Anda nilai global; itu mempertimbangkan tidak hanya properti lokal dari fungsi pada satu nilai input tertentu tetapi juga nilai pada rentang input.

Ingatlah bahwa turunan dari f itu sendiri adalah fungsi, dan fungsi itu memiliki argumen yang sama dengan f. Jadi, karena f(x)didefinisikan memiliki argumen bernama x, fungsi yang dibuat oleh D(f(x) ~ x)juga memiliki argumen bernama x(dan apa pun parameter lain yang terlibat).

Contoh Soal:

library(mosaicCalc)
## Loading required package: mosaic
## Registered S3 method overwritten by 'mosaic':
##   method                           from   
##   fortify.SpatialPolygonsDataFrame ggplot2
## 
## The 'mosaic' package masks several functions from core packages in order to add 
## additional features.  The original behavior of these functions should not be affected by this.
## 
## Attaching package: 'mosaic'
## The following objects are masked from 'package:dplyr':
## 
##     count, do, tally
## The following object is masked from 'package:Matrix':
## 
##     mean
## The following object is masked from 'package:ggplot2':
## 
##     stat
## The following objects are masked from 'package:stats':
## 
##     binom.test, cor, cor.test, cov, fivenum, IQR, median, prop.test,
##     quantile, sd, t.test, var
## The following objects are masked from 'package:base':
## 
##     max, mean, min, prod, range, sample, sum
## Loading required package: mosaicCore
## 
## Attaching package: 'mosaicCore'
## The following objects are masked from 'package:dplyr':
## 
##     count, tally
## 
## Attaching package: 'mosaicCalc'
## The following object is masked from 'package:stats':
## 
##     D
f = D(exp(2*x) ~ x)
f(1)
## [1] 14.77811